Основные углеводы человека и их биологическая роль. Строение, свойства и функции углеводов. Нужна помощь по изучению какой-либы темы

Реферат: Биологическая роль углеводов

Федеральное агентство по образованию

Контрольная работа

по дисциплине "Физиологические и санитарно-гигиенические основы питания"

тема: "Биологическая роль углеводов"


Введение

1. Углеводы и их значение в питании

2. Виды углеводов

Заключение

Список используемой литературы


Введение

Гигиена питания - наука о закономерностях и принципах организации рационального (оптимального) питания здорового и больного человека. В ее рамках разрабатывают научные основы и практические мероприятия по оптимизации питания различных групп населения и санитарной охране пищевых ресурсов, сырья и продуктов на всех этапах их производства и оборота.

Фундаментальные аспекты гигиены питания связаны с изучением физиологических процессов, биохимических механизмов переваривания, усвоения пищи и клеточной метаболизации нутриентов и других компонентов пищевых продуктов, а также нутриогеномики, т.е. основ алиментарной регуляции экспрессии генов.

Гигиена питания, с одной стороны, определяет нормы физиологических потребностей в пищевых веществах и энергии, разрабатывает требования к качеству пищевой продукции и рекомендации по употреблению различных групп пищевых продуктов в зависимости от возрастных, социальных, географических и экологических факторов, режиму и условиям питания, а с другой стороны, регламентирует мероприятия по санитарно-эпидемиологической (гигиенической) экспертизе качества и безопасности пищевых продуктов и контактирующих с ними материалов и по контролю соответствия пищевых объектов на этапе их строительства и во время эксплуатации.

Гигиена питания как наука развивается с использованием общей методологии научных исследований в области физиологии, биохимии, токсикологии, микробиологии, эпидемиологии, внутренних болезней, а также собственных уникальных подходов и методик, включающих в себя оценку состояния питания, параметров пищевого статуса и алиментарной адаптации, показателей пищевой и биологической ценности продуктов.

Современный период развития гигиены питания связан с реализацией следующих научно-практических направлений:

разработка основ государственной политики в области здорового питания населения России;

фундаментальные исследования физиолого-биохимических основ питания;

постоянный мониторинг состояния питания населения России;

организация профилактики алиментарно-зависимых заболеваний;

исследования по проблеме безопасности пищевых продуктов;

разработка научно-методических подходов к оценке нетрадиционных и новых пищевых источников;

разработка и совершенствование научных основ и практики детского, диетического и профилактического питания;

научное обоснование и практическое осуществление системы алиментарной адаптации в современных экологических условиях;

широкое внедрение образовательных и просветительских программ и проектов как в системе профессионального образования и обучения, так и в обществе в целом.

В настоящее время гигиена питания в третий раз за последние 100 лет приобретает мощный общественный характер, обеспечивая выработку государственных подходов в области питания населения.

Питание является одним из важнейших факторов, определяющих здоровье населения. Правильное питание обеспечивает нормальный рост и развитие детей, способствует профилактике заболеваний, продлению жизни людей, повышению работоспособности и создает условия для адекватной адаптации их к окружающей среде.

Вместе с тем в последнее десятилетие состояние здоровья населения характеризуется негативными тенденциями. Продолжительность жизни населения в России значительно меньше, чем в большинстве развитых стран. Увеличение частоты сердечно-сосудистых, онкологических и других хронических неинфекционных заболеваний в определенной степени связано с питанием. У большинства населения России выявлены нарушения полноценного питания, обусловленные как недостаточным потреблением пищевых веществ, в первую очередь витаминов, макро - и микроэлементов (кальция, йода, железа, фтора, цинка и др.), полноценных белков, так и их нерациональным соотношением.

Одним из важных элементов являются углеводы. Они служат основным источником энергии. Свыше 56% энергии организм получает за счет углеводов, остальную часть - за счет белков и жиров.

Мир углеводов представляется нам очень неоднозначным. Иногда углеводы обвиняют в том, что именно они являются причиной лишнего веса. А иногда, наоборот, говорят, что углеводы - это идеальный источник энергии для организма.


1. Углеводы и их значение в питании

Впервые термин "углеводы" был предложен профессором Дерптского (ныне Тартуского) университета К.Г. Шмидтом в 1844 г. В то время предполагали, что все углеводы имеют общую формулу Cm (H 2O ) n , т.е. углевод + вода. Отсюда название "углеводы". В дальнейшем оказалось, что ряд соединений, по своим свойствам относящихся к классу углеводов, содержат водород и кислород в несколько иной пропорции, чем указано в общей формуле.

В 1927 г. Международная комиссия по реформе химической номенклатуры предложила термин "углеводы" заменить термином "глициды", однако старое название "углеводы" укоренилось и является общепризнанным.

Углеводы образуются в растениях при фотосинтезе и поступают в организм главным образом с растительными продуктами. Однако все большее значение в питании приобретают добавленные углеводы, которые чаще всего представлены сахарозой (или смесями других сахаров), получаемой промышленным способом и вводимой затем в пищевые рецептуры.

Величина потребности в углеводах для человека определяется их ведущей ролью в обеспечении организма энергией и нежелательностью синтеза глюкозы из жиров (а тем более из белков) и находится в прямой зависимости от энергозатрат. Средняя потребность в углеводах для тех, кто не занят тяжелым физическим трудом, 400 - 500 г. в сутки.

Способность углеводов быть высокоэффективным источником энергии лежит в основе их сберегающего белок действия. При поступлении с пищей достаточного количества углеводов аминокислоты лишь в незначительной степени используются в организме как энергетический материал. Хотя углеводы не принадлежат к числу незаменимых факторов питания и могут образовываться в организме из аминокислот и глицерина, минимальное количество углеводов суточного рациона не должно быть ниже 50 - 60 г.

Дальнейшее снижение количества углеводов ведет к резким нарушениям метаболических процессов. Избыточное потребление углеводов ведет к ожирению. При поступлении с пищей значительных количеств сахаров они не могут полностью откладываться в виде гликогена, и их избыток превращается в триглицериды, способствуя усиленному развитию жировой ткани. Повышенное содержание в крови инсулина способствует ускорению этого процесса, поскольку инсулин оказывает мощное стимулирующее действие на жироотложение.

При построении пищевых рационов чрезвычайно важно не только удовлетворить потребности человека в необходимом количестве углеводов, но и подобрать оптимальные соотношения качественно различных типов углеводов. Наиболее важно учитывать соотношение в рационе легкоусвояемых углеводов (сахаров) и медленно всасывающихся (крахмал, гликоген).

В отличие от сахаров крахмал и гликоген медленно расщепляются в кишечнике. Содержание сахара в крови при этом нарастает постепенно. В связи с этим целесообразно удовлетворять потребности в углеводах в основном за счет медленно всасывающихся углеводов. На их долю должно приходиться 80 - 90% от общего количества потребляе мых углеводов. Ограничение легкоусвояемых углеводов приобретает особое значение для тех, кто страдает атеросклерозом, сердечно-сосудистыми заболеваниями, сахарным диабетом, ожирением.

Углеводы являются основными энергонесущими элементами в питании человека, обеспечивая 50-70% общей энергетической ценности рациона.

Наряду с основной энергетической функцией углеводы участвуют в пластическом обмене. Углеводы оказывают антикетогенное действие, стимулируя окисление ацетилкоэнзима А, образующегося при окислении жирных кислот. Основным источником углеводов в питании человека является растительная пища, и только лактоза и гликоген содержатся в продуктах животного происхождения.

Основная функция углеводов - обеспечение энергией всех процессов в организме. Клетки способны получать из углеводов энергию, как при их окислении, т.е. "сгорании", так и в анаэробных условиях (без доступа кислорода). В результате метаболизации 1 г углеводов организм получает энергию, эквивалентную 4 ккал. Обмен углеводов тесно связан с обменом жиров и белков, что обеспечивает их взаимные превращения. При умеренном недостатке углеводов в питании депонированные жиры, а при глубоком дефиците (менее 50 г/сут) и аминокислоты (как свободные, так и из состава мышечных белков) вовлекаются в процесс глюконеогенеза, приводящий к получению необходимой организму энергии. Боль в мышцах после тяжелой работы - результат действия на клетки молочной кислоты, которая образуется при анаэробном распаде углеводов, когда для обеспечения работы мышечных клеток не хватает кислорода, поступающего с кровью.

Часто резкое ограничение углеводов в диете ведет к значительным нарушениям обмена веществ. Особенно страдает при этом белковый обмен. Белки при дефиците углеводов используются не по назначению: они становятся источником энергии и участниками некоторых важных химических реакций. Это приводит к повышенному образованию азотистых веществ и, как следствие, к повышенной нагрузке на почки, нарушениям солевого обмена и другим, вредным для здоровья, последствиям.

При дефиците углеводов в пище организм использует для синтеза энергии не только белки, но и жиры. При усиленном распаде жиров могут возникнуть нарушения обменных процессов, связанные с ускоренным образованием кетонов (к этому классу веществ относится известный всем ацетон) и накоплением их в организме. Избыточное образование кетонов при усиленном окислении жиров и частично белков может привести к "закислению" внутренней среды организма и отравлению тканей мозга вплоть до развития ацидотической комы с потерей сознания. При достаточном поступлении углеводов с пищей белки используются, главным образом, для пластического обмена, а не для производства энергии. Таким образом, углеводы необходимы для рационального использования белков. Они также способны стимулировать окисление промежуточных продуктов обмена жирных кислот.

Этим, однако, не исчерпывается роль углеводов. Они являются составной частью молекул некоторых аминокислот, участвуют в построении ферментов, образовании нуклеиновых кислот, являются предшественниками образования жиров, иммуноглобулинов, играющих важную роль в системе иммунитета, и гликопротеидов - комплексов углеводов и белков, которые являются важнейшими компонентами клеточных оболочек. Гиалуроновые кислоты и другие мукополисахариды образуют защитную прослойку между всеми клетками, из которых состоит организм.

Интерес к углеводам сдерживался чрезвычайной сложностью их структуры. В отличие от мономеров нуклеиновых кислот (нуклеотидов) и белков (аминокислот), которые способны связываться между собой только одним определенным путем, моносахаридные единицы в олигосахаридах и полисахаридах могут соединяться между собой несколькими путями по множеству разных положений.

Со второй половины XX в. происходит стремительное развитие химии и биохимии углеводов, обусловленное их важным биологическим значением.

Углеводы наряду с белками и липидами являются важнейшими химическими соединениями, входящими в состав живых организмов. У человека и животных углеводы выполняют важные функции: энергетическую (главный вид клеточного топлива), структурную (обязательный компонент большинства внутриклеточных структур) и защитную (участие углеводных компонентов иммуноглобулинов в поддержании иммунитета).

Углеводы (рибоза, дезоксирибоза) используются для синтеза нуклеиновых кислот, они являются составными компонентами нуклеотидных ко-ферментов, играющих исключительно важную роль в метаболизме живых существ. В последнее время все большее внимание к себе привлекают смешанные биополимеры, содержащие углеводы: гликопептиды и глико-протеины, гликолипиды и липополисахариды, гликолипопротеины и т.д. Эти вещества выполняют в организме сложные и важные функции.

Итак, выделю б иологическое значение углеводов:

· Углеводы выполняют пластическую функцию, то есть участвуют в построении костей, клеток, ферментов. Они составляют 2-3 % от веса.

· Углеводы являются основным энергетическим материалом. При окислении 1 грамма углеводов выделяются 4,1 ккал энергии и 0,4 г воды.

· В крови содержится 100-110 мг глюкозы. От концентрации глюкозы зависит осмотическое давление крови.

· Пентозы (рибоза и дезоксирибоза) участвуют в построении АТФ.

· Углеводы выполняют защитную роль в растениях.


2. Виды углеводов

Различают две основные группы углеводов: простые и сложные. К простым углеводам относятся глюкоза, фруктоза, галактоза, сахароза, лактоза и мальтоза. К сложным - крахмал, гликоген, клетчатка и пектиновые вещества.

Углеводы подразделяются на моносахариды (простые), олигосахариды и полисахариды (сложные).

1. Моносахариды

· глюкоза

· фруктоза

· галактоза

· манноза

2. Олигосахариды

· Дисахариды

· сахароза (обычный сахар, тростниковый или свекловичный)

· мальтоза

· изомальтоза

· лактоза

· лактулоза

3.Полисахариды

· декстран

· гликоген

· крахмал

· целлюлоза

· галактоманнаны

Моносахариды (простые углеводы) являются наиболее простыми представителями углеводов и при гидролизе не расщепляются до более простых соединений. Простые углеводы легко растворяются в воде и быстро усваиваются. Они обладают выраженным сладким вкусом и относятся к сахарам.

В зависимости от числа углеродных атомов в молекулах моносахариды делятся на триозы, тетрозы, пентозы и гексозы. Для человека наиболее важны гексозы (глюкоза, фруктоза, галактоза и др.) и пентозы (рибоза, дезоксирибоза и др.).

При соединении двух молекул моносахаридов образуются дисахариды.

Наиболее важной из всех моносахаридов является глюкоза, так как она является структурной единицей (кирпичиком) для построения большинства пищевых ди - и полисахаридов. Транспорт глюкозы в клетки регулируется во многих тканях гормоном поджелудочной железы - инсулином.

У человека излишки глюкозы в первую очередь превращаются именно в гликоген - единственный резервный углевод животных тканей. В организме человека общее содержание гликогена составляет около 500 г - это суточный запас углеводов, используемый при их глубоком дефиците в питании. Длительный дефицит гликогена в печени ведет к дисфункции гепатоцитов и ее жировой инфильтрации.

Олигосахариды - более сложные соединения, построенные из нескольких (от 2 до 10) остатков моносахаридов. Они делятся на дисахариды, трисахариды и т.д. Наиболее важны для человека дисахариды - сахароза, мальтоза и лактоза. Олигосахариды, к которым относятся рафиноза, стахиоза, вербаскоза, в основном содержатся в бобовых и продуктах их технологической переработки, например в соевой муке, а также в незначительных количествах во многих овощах. Фрукто-олигосахариды встречаются в зерновых (пшенице, ржи), овощах (луке, чесноке, артишоках, спарже, ревене, цикории), а также в бананах и меде.

К группе олигосахаридов также относятся мальто-декстрины, являющиеся основными компонентами промышленно производимых из полисахаридного сырья сиропов, паток. Одним из представителей олигосахаридов является лактулоза, образующаяся из лактозы в процессе тепловой обработки молока, например при выработке топленого и стерилизованного молока.

Олигосахариды практически не расщепляются в тонком кишечнике человека из-за отсутствия соответствующих ферментов. По этой причине они обладают свойствами пищевых волокон. Некоторые олигосахариды играют существенную роль в жизнедеятельности нормальной микрофлоры толстого кишечника, что позволяет отнести их к пребиотикам - веществам, частично ферментирующимся некоторыми кишечными микроорганизмами и обеспечивающим поддержание нормального микробиоценоза кишечника.

Полисахариды - высокомолекулярные соединения-полимеры, образованные из большого числа мономеров, в качестве которых выступают остатки моносахаридов. Полисахариды делятся на перевариваемые и неперевариваемые в желудочно-кишечном тракте человека. В первую подгруппу входят крахмал и гликоген, во вторую - разнообразные соединения, из которых наиболее важны для человека целлюлоза (клетчатка), гемицсллюлоза и пектиновые вещества.

Олиго - и полисахариды объединяют термином "сложные углеводы". Моно - и дисахариды обладают сладким вкусом, в связи с чем их называют также "сахарами". Полисахариды сладким вкусом не обладают. Сладость сахароз различна. Если сладость раствора сахарозы принять за 100 %, то сладость эквимолярных растворов друг их Сахаров составит: фруктозы - 173 %, глюкозы - 81 %, мальтозы и галактозы - 32 % и лактозы - 16 %.

Основным усваиваемым полисахаридом является крахмал - пищевая основа зерновых, бобовых и картофеля. На его долю приходится до 80% потребляемых с пищей углеводов. Он представляет из себя сложный полимер, состоящий из двух фракций: амилозы - линейного полимера и амило-пектина - разветвленного полимера. Именно соотношение этих двух фракций в различных сырьевых источниках крахмала и определяет его различные физико-химические и технологические характеристики, в частности растворимость в воде при разной температуре. Источником крахмала служат растительные продукты, в основном злаковые: крупы, мука, хлеб, а также картофель.

Для облегчения усвоения крахмала организмом продукт, содержащий его, должен быть подвергнут тепловой обработке. При этом образуется крахмальный клейстер в явной форме, например кисель, или скрытом виде в составе пищевой композиции: каше, хлебе, макаронах, блюд из бобовых. Крахмальные полисахариды, поступившие с пищей в организм, подвергаются последовательной, начиная с ротовой полости, ферментации до мальтодекстринов, мальтозы и глюкозы с последующим практически полным усвоением.

Вторым перевариваемым полисахаридом является гликоген. Его пищевое значение невелико - с рационом поступает не более 10-15 г гликогена в составе печени, мяса и рыбы. При созревании мяса гликоген превращается в молочную кислоту.

Некоторые сложные углеводы (клетчатка, целлюлоза и др.) в организме человека не перевариваются вовсе. Тем не менее, это необходимый компонент питания: они стимулируют перистальтику кишечника, формируют каловые массы, способствуя тем самым выведению шлаков и очистке организма. Кроме того, клетчатка хоть и не переваривается человеком, но служит источником питания для полезной кишечной микрофлоры.


Заключение

Значение углеводов в питании человека весьма велико. Они служат важнейшим источником энергии, обеспечивая до 50-70 % общей калорийности рациона.

Способность углеводов быть высокоэффективным источником энергии лежит в основе их "сберегающего белок" действия. Хотя углеводы не принадлежат к числу незаменимых факторов питания и могут образовываться в организме из аминокислот и глицерина, минимальное количество углеводов суточного рациона не должно быть ниже 50-60 г.

С нарушением обмена углеводов тесно связан ряд заболеваний: сахарный диабет, галактоземия, нарушение в системе депо гликогена, нетолерантность к молоку и т.д. Следует отметить, что в организме человека и животного углеводы присутствуют в меньшем количестве (не более 2% от сухой массы тела), чем белки и липиды; в растительных организмах за счет целлюлозы на долю углеводов приходится до 80% от сухой массы, поэтому в целом в биосфереуглеводов больше, чем всех других органических соединений вместе взятых.


Список используемой литературы

1. Справочник по диетологии/под ред. А.А. Покровского, М.А. Самсонова. - М.: Медицина, 1981

2. Популярно о питании. Под ред. А.И. Столмаковой, И.О. Мартынюка, Киев, "Здоровье", 1990

3. Королев А.А. Гигиена питания - 2-е изд. Перераб. и доп. - М.: "Академия", 2007

4. Ауреден Л. Как стать красивой. - М.: Топикал, 1995

5. http ://hudeemtut .ru

6. Ленинджер А. Основы биохимии // М.: Мир, 1985.

О Б М Е Н У Г Л Е В О Д О В

д.м.н. Е.И.Кононов

Классификация и биологическая роль углеводов

Углеводы составляют незначительную часть общего сухого веса тканей человеческого организма - не более 2%, в то время как на белки, например, приходится до 45% сухой массы тела. Тем не ме-нее, углеводы выполняют в организме целый ряд жизненно важных функции, принимая участие в структурной и метаболической органи-зации органов и тканей.

С химической точки зрения углеводы представляют собой много-атомные альдегидо- или кетоноспирты или их полимеры, причем моно-мерные единицы в полимерах соединены между собой гликозидными связями.

1.1. Классификация углеводов.

Углеводы делятся на три больших группы: моносахариды и их производные, олигосахариды и полисахариды.

1.1.1. Моносахариды в свою очередь делятся, во первых, по характеру карбонильной группы на альдозы и кетозы и, во-вто-рых,по числу атомов углерода в молекуле на триозы, тетрозы, пен-тозы и т.д. Обычно моносахариды имеют тривиальные названия: глю-коза, галактоза, рибоза, ксилоза и др. К этой же группе соедине-ний относятся различные производные моносахаридов, важнейшими из них являются фосфорные эфиры моносахаридов [ глюкозо-6-фосфат, фруктозо-1,6-бисфосфат, рибозо-5-фосфат и др.], уроновые кислоты [галактуроновая, глюкуроновая, идуроновая и др.], аминосахара

[глюкозамин, галактозамин и др.], сульфатированные производные уроновых кислот, ацетилированные производные аминосахаров и др.Об-щее количество мономеров и их производных составляет несколько де-сятков соединений, что не уступает имеющемуся в организме коли-честву индивидуальных аминокислот.

1.1.2. Олигосахариды, представляющие собой полимеры, мономерными единицами которых являются моносахариды или их произ-водные. Число отдельных мономерных блоков в полимере может дости-гать полутора или двух / не более / десятков. Все мономерные еди-ницы в полимере связаны гликозидными связями. Олигосахариды в свою очередь делятся на гомоолигосахариды, состоящие из одинаковых мономерных блоков [ мальтоза ] , и гетероолигосахариды - в их состав входят различные мономерные единицы [ лактоза ]. В боль-шинстве своем олигосахариды встречаются в организме в качестве структурных компонентов более сложных молекул - гликолипидов или гликопротеидов. В свободном виде в организме человека могут быть обнаружены мальтоза, причем мальтоза является промежуточным про-дуктом расщепления гликогена, и лактоза, входящая в качестве ре-зервного углевода в молоко кормящих женщин. Основную массу олиго-сахаридов в организме человека составляют гетероолигосахариды гликолипидов и гликопротеидов. Они имеют чрезвычайно разнообраз-ную структуру, обусловленную как разнообразием входящих в них мо-номерных единиц, так и разнообразием вариантов гликозидных связей между мономерами в олигомере .


1.1.3. Полисахариды, представляющие собой полимеры, построенные из моносахаридов или их производных, соединенных между собой гликозидными связями, с числом мономерных единиц от нес-кольких десятков до нескольких десятков тысяч. Эти полисахариды могут состоять из одинаковых мономерных единиц, т.е. являться го-мополисахаридами, или же в их состав могут входить различные мо-номерные единицы - тогда мы имеем дело с гетерополисахаридами. Единственным гомополисахаридом в организме человека является гли-коген, состоящий из остатков a-D - глюкозы. Более разнообразен на-бор гетерополисахаридов - в организме присутствуют гиалуроновая кислота, хондроитинсульфаты, кератансульфат, дерматансульфат, ге-парансульфат и гепарин. Каждый из перечисленных гетерополисахари-дов состоит из индивидуального набора мономерных единиц.Так основ-ными мономерными единицами гиалуроновой кислоты являются глюку-роновая кислота и N-ацетилглюкозамин,тогда как в состав гепарина входят сульфатированный глюкозамин и сульфатированная идуроновая кислота.

1.2. Функции углеводов различных классов Функции углеводов в организме разнообразны и, естественно, различны для разных классов соединений. Моносахариды и их производные выполняют, во-первых, энергетическую функцию: окислительное расщепление этих соединений дает организму 55-60 % необходимой ему энергии4. Во-вторых, промежуточные продукты распада моносахаридов и их производных используются в клетках для синтеза

других необходимых клетке веществ, в том числе соединений других классов; так, из промежуточных продуктов метаболизма глюкозы в

клетках могут синтезироваться липиды и заменимые аминокислоты, правда, в последнем случае необходим дополнительный источник ато-

мов азота аминогрупп. В третьих, моносахариды и их производные выполняют структурную функцию, являясь мономерными единицами дру-

гих, более сложных молекул, таких как полисахариды или нуклеотиды.

Главной функцией гетероолигосахаридов является структурная функция - они являются структурными компонентами гликопротеидов и гликолипидов. В этом качестве гетероолигосахариды участвуют в ре-ализации гликопротеидами целого ряда функций: регуляторной [ гор-моны гипофиза тиротропин и гонадотропины - гликопротеиды ],комму-никативной [ рецепторы клеток - гликопротеины ], защитной [ анти-тела - гликопротеины ]. Кроме того, гетероолигосахаридные блоки, входя в состав гликолипидов и гликопротеидов, участвуют в форми-ровании клеточных мембран, образуя, например, такой важный эле-мент клеточной структуры как гликокалликс.

Гликоген - единственный гомополисахарид, имеющийся в орга-низме животных - выполняет резервную функцию. причем он является резервом не только энергетическим, но также и резервом пластичес-кого материала. Гликоген в том или ином количестве присутствует практически во все клетках человеческого организма. Запасы глико-гена в печени могут составлять до 3-5 % от сырой массы этого ор-гана [ порой до 10 % ], а его содержание в мышцах - до 1% общей массы ткани. Учитывая массу этих органов, общее количество глико-гена в печени может составлять 150 - 200 г, а запасы гликогена в мыщцах - до 600 г.

Гетерополисахариды выполняют в организме структурную функцию они входят в состав глизаминопротеогликанов; последние,наряду с структурными белками типа коллагена или эластина, формируют межк-леточное вещество различных органов и тканей. Гликозаминопротеог-гликановые агрегаты, имея сетчатую структуру, выполняют функцию молекулярных фильтров, препятствующих или сильно тормозящих дви-жение макромолекул в межклеточной среде. Кроме того, молекулы гетерополисахаридов имеют в своей структуре множество полярных и несущих отрицательный заряд группировок, за счет которых они могут связывать большое количество воды и катионов, выполняя роль свое-образных депо для этих молекул.

Функции некоторых углеводов, имеющихся в организме, весьма специфичны. Так, гепарин является естественным антикоагулянтом - он препятствует свертыванию крови в сосудах, а лактоза, о чем уже упоминалось, является резервным углеводом женского молока.

2.Усвоение экзогенных углеводов

В обычных условиях основным источником углеводов для человека являются углеводы пищи. Суточная потребность в углеводах состав-ляет примерно 400 г, причем крайне желательно. чтобы легко усво-яемые углеводы [ глюкоза, сахароза, лактоза и пр.] составляли не более 25 % их общего количества в пищевом рационе. В процессе ус-воения пищи все экзогенные полимеры углеводной природы расщепля-ются до мономеров, что лишает эти полимеры видовой специфичности, а во внутреннюю среду организма из кишечника поступают лишь моно-сахариды и их производные; в дальнейшем эти мономеры используются по мере необходимости для синтеза специфичных для человека олиго-или полисахаридов.

Расщепление крахмала или гликогена пищи начинается уже в ротовой полости за счет воздействия на эти гомополисахариды амилазы и мальтазы слюны, однако этот процесс не имеет существенного значения, поскольку пища в ротовой полости находится очень короткое время. В желудке при пищеварении среда кислая и амилаза слюны,по-

падающая в желудок вместе с пищевым комком, практически не работает. Основная масса крахмала и гликогена пищи расщепляется в тонком кишечнике под действием амилазы поджелудочной железы до диса-харидов мальтозы и изомальтозы. Образовавшиеся дисахариды расщеп-ляются до глюкозы при участии ферментов, секретируемых стенкой кишечника: мальтазы и изомальтазы. Мальтаза катализирует гидролиз a-1,4-гликозидных связей, а изомальтаза - гидролиз a-1,6-глико-зидных связей.

Поступившая с пищей сахароза расщепляется в кишечнике до глюкозы и фруктозы при участии фермента сахаразы, а поступившая лактоза - до глюкозы и галактозы под действием фермента лактазы. Оба этих фермента секретируются стенкой кишечника.

Процессы расщепления гетероолигосахаридов или гетерополиса-харидов мало изучены. По-видимому, стенкой кишечника секретируют-ся гликозидазы, способные расщеплять a - и b - гликозидные связи имеющиеся в этих полимерах.

Всасывание моносахаридов происходит в тонком кишечнике, при-чем скорости всасывания различных моносахаридов существенно раз-личны. Если скорость всасывания глюкозы принять за 100 , то ско-рость всасывания галактозы составит 110, фруктозы - 43, маннозы - 19, ксилозы - 15. Принято считать, что всасывание глюкозы и га-лактозы идет с участием механизмов активного транспорта, всасыва-ние фруктозы и рибозы - по механизму облегченной диффузии, а вса-сывание маннозы или ксилозы по механизму простой диффузии. При-мерно 90 % всосавшейся глюкозы поступает из энтероцитов непос-редственно в кровь, а 10 % ее оказывается в лимфе, впрочем, в дальнейшем и эта глюкоза также оказывается в крови.

Следует отметить, что углеводы могут быть полностью исключены из пищевого рациона. В этом случае все необходимые для организма углеводы будут синтезироваться в клетках из соединений неуглеводный природы в ходе процессов, получивших название глюконеогенез.

), не ограничиваются выполнением какой-то одной функции в организме человека. Помимо того, что обеспечение энергией основная функциональная роль углеводов , они так же необходимы для нормальной деятельности сердца, печени, мышц и центральной нервной системы. Являются важной составляющей в регуляции обмена белков и жиров.

Основные биологические функции углеводов, для чего они необходимы в организме

  1. Энергетическая функция.
    Главная функция углеводов в организме человека. Являются основным энергетическим источником для всех видов работ, происходящих в клетках. При расщеплении углеводов высвобождаемая энергия рассеивается в виде тепла или накапливается в молекулах АТФ. Углеводы обеспечивают около 50 – 60 % суточного энергопотребления организма и все энергетические расходы мозга (мозг поглощает около 70% глюкозы, выделяемой печенью). При окислении 1 г углеводов выделяется 17,6 кДж энергии. В качестве основного энергетического источника в организме используется свободная глюкоза или запасенные углеводы в виде гликогена.
  2. Пластическая (строительная) функция.
    Углеводы (рибоза, дезоксирибоза) используются для построения АДФ, АТФ и других нуклеотидов, а также нуклеиновых кислот. Они входят в состав некоторых ферментов. Отдельные углеводы являются структурными компонентами клеточных мембран. Продукты превращения глюкозы (глюкуроновая кислота, глюкозамин и др.) входят в состав полисахаридов и сложных белков хрящевой и других тканей.
  3. Запасающая функция.
    Углеводы запасаются (накапливаются) в скелетных мышцах (до 2%), печени и других тканях в виде гликогена. При полноценном питании в печени может накапливаться до 10% гликогена, а при неблагоприятных условиях его содержание может снижаться до 0,2% массы печени.
  4. Защитная функция.
    Сложные углеводы входят в состав компонентов иммунной системы; мукополисахариды находятся в слизистых веществах, которые покрывают поверхность сосудов носа, бронхов, пищеварительного тракта, мочеполовых путей и защищают от проникновения бактерий и вирусов, а также от механических повреждений.
  5. Регуляторная функция.
    Входят в состав мембранных рецепторов гликопротеидов. Углеводы участвуют в регуляции осмотического давления в организме. Так, в крови содержится 100-110 мг/% глюкозы, от концентрации глюкозы зависит осмотическое давление крови. Клетчатка из пищи не расщепляется (переваривается) в кишечнике, однако активирует перистальтику кишечного тракта, ферменты, использующиеся в пищеварительном тракте, улучшая пищеварение и усвоение питательных веществ.

Группы углеводов

  • Простые (быстрые) углеводы
    Различают два вида сахаров: моносахариды и дисахариды. Моносахариды содержат одну сахарную группу, как, например, глюкоза, фруктоза или галактоза. Дисахариды образованы остатками двух моносахаридов и представлены, в частности, сахарозой (обычный столовый сахар) и лактозой. Быстро повышают содержание сахара в крови и обладают высоким гликемическим индексом.
  • Сложные (медленные) углеводы
    Полисахариды представляют собой углеводы, содержащие три и более молекул простых углеводов. К данному виду углеводов относятся, в частности, декстрины, крахмалы, гликогены и целлюлозы. Источниками полисахаридов являются крупы, бобовые, картофель и другие овощи. Постепенно повышают содержание глюкозы и имеют низкий гликемический индекс.
  • Неусваиваемые (волокнистые)
    Клетчатка (пищевые волокна), не обеспечивают организм энергией, но играет огромную роль в его жизнедеятельности. Содержится главным образом в растительных продуктах с низким или очень низким содержанием сахара. Следует заметить, что клетчатка замедляет усвоение углеводов, белков и жиров (может быть полезным при похудении). Является источником питания для полезных бактерий кишечника (микробиом)

Виды углеводов

Моносахариды

  • Глюкоза
    Моносахарид, бесцветное кристаллическое вещество сладкого вкуса, содержится практически в каждой углеводной цепочке.
  • Фруктоза
    Фруктовый сахар в свободном виде присутствует почти во всех сладких ягодах и плодах, самый сладкий из сахаров.
  • Галактоза
    Не встречается в свободной форме; в связанном с глюкозой виде он образует лактозу, молочный сахар.

Дисахариды

  • Сахароза
    Дисахарид, состоящий из комбинации фруктозы и глюкозы, имеет высокую растворимость. Попадая в кишечник, распадается на данные компоненты, которые затем всасываются в кровь.
  • Лактоза
    Молочный сахар, углевод группы дисахаридов, содержится в молоке и молочных продуктах.
  • Мальтоза
    Солодовый сахар, легко усваивается организмом человека. Образуется в результате объединения двух молекул глюкозы. Мальтоза возникает в результате расщепления крахмалов в процессе пищеварения.

Полисахариды

  • Крахмал
    Порошок белого цвета, нерастворимый в холодной воде. Крахмал является наиболее распространенным углеводом в рационе человека и содержится во многих основных продуктах питания.
  • Клетчатка
    Сложные углеводы, представляющие собой жесткие растительные структуры. Составная часть растительной пищи, которая не переваривается в организме человека, но играет огромную роль в его жизнедеятельности и пищеварении.
  • Мальтодекстрин
    Порошок белого или кремового цвета, со сладковатым вкусом, хорошо растворим в воде. Представляет собой промежуточный продукт ферментного расщепления растительного крахмала, в результате чего молекулы крахмала делятся на фрагменты – декстрины.
  • Гликоген
    Полисахарид, образованный остатками глюкозы; основной запасной углевод, нигде кроме организма не встречается. Гликоген, образует энергетический резерв, который может быть быстро мобилизован при необходимости восполнить внезапный недостаток глюкозы в организме человека.

Углеводы, которые относятся к классу многоатомных спиртов, играют важную роль в питании человека. Они обязательно должны присутствовать в рационе каждого, поскольку именно эти вещества на 50 – 60% восполняют потребность в энергии.

Значение углеводов для организма крайне важно, но не забывайте, что они бывают простыми и сложными. И если первые, в основном, полезны, то со вторыми вы должны быть крайне осторожными.

Роль углеводов в жизни человека

Значение углеводов заключается сразу в нескольких функциях, помогающих мужчинам и женщинам вести нормальный образ жизни. Основными из этих функций являются:

  1. Энергетическая. За счет окисления компонентов выделяется энергия, которую организм потом использует для удовлетворения своих потребностей. Значение углеводов в питании крайне важно, ведь именно они дают силы на целый день.
  2. Гидроосмотическая. Значение углеводов в питании очень велико, ведь именно благодаря им в межклеточном веществе человека удерживаются ионы магния, кальция, а также молекулы воды.
  3. Структурная. Некоторые из этих веществ входят в состав соединительных тканей. А кроме того, они вместе с белками способны образовывать ферменты, гормоны и другие соединения в организме.
  4. Защитная. Значение углеводов для организма очень важно, т.к. некоторые из них обеспечивают прочность стенок сосудов, другие – входят в состав смазки, покрывающей трущиеся друг о друга суставы человека, третьи – присутствуют в структуре слизистых оболочек.
  5. Кофакторная. Определенные виды рассматриваемых веществ участвуют в образовании ферментов, отвечающих за свертываемость крови, а также входят в состав ее плазмы.

Таким образом, переоценить значение углеводов в жизни человека очень сложно – без них мужчинам и женщинам просто не обойтись. Однако для того, чтобы вещества хорошо усваивались, их нужно принимать в четко определенных количествах.

Расчет нормы углеводов

Значение углеводов в жизни человека настолько высоко, что без них жить практически невозможно, поэтому необходимо знать свою норму потребления. Как уже упоминалось выше, вещества данной категории могут быть простыми и сложными. Ко второй группе относятся, преимущественно, разнообразные сахара. Они не полезны, а в большом количестве и вредны для человека.

Поэтому старайтесь, чтобы количество сахара в вашем рационе не превышало 10% от общей его калорийности. Исключение могут сделать для себя лишь люди, занимающиеся тяжелым физическим трудом.

Однако и потребление простых углеводов также следует регламентировать. Помните, что существуют определенные нормы, которых должен придерживаться каждый человек, независимо от того, занимается ли он спортом или нет.

В частности, считается, что молодые люди ежедневно должны съедать 5 г углеводов на 1 кг массы своего тела. А если мужчина или женщина занимается спортом или тяжелым физическим трудом, это значение может быть повышено до 8 г.

Превышать количество углеводов нежелательно, но не следует и снижать его. Ведь в противном случае в организме начинается распад жиров и белков, что может, в конце концов, привести к интоксикации. Поэтому, если по какой-то причине хотите перейти на низкоуглеводную диету, сначала посоветуйтесь с врачом.

Биологическое значение углеводов для человека очень важно, но в меру. Сокращайте количество сахара и клетчатки в рационе постепенно, чтобы не нанести травму своему организму и помочь ему привыкнуть к новому обмену веществ.

Введение

углеводы гликолипиды биологический

Углеводы - обширный наиболее распространенный на Земле класс органических соединений, входящих в состав всех организмов и необходимых для жизнедеятельности человека и животных, растений и микроорганизмов. Углеводы являются первичными продуктами фотосинтеза, в кругообороте углерода они служат своеобразным мостом между неорганическими и органическими соединениями. Углеводы и их производные во всех живых клетках играют роль пластического и структурного материала, поставщика энергии, субстратов и регуляторов для специфических биохимических процессов. Углеводы выполняют не только питательную функцию в живых организмах, они также выполняют опорную и структурную функции. Во всех тканях и органах обнаружены углеводы или их производные. Они входят в состав оболочек клеток и субклеточных образований. Принимают участие в синтезе многих важнейших веществ.

Актуальность

В настоящее время данная тема актуальна, потому что углеводы необходимы организму, так как входят в состав его тканей и выполняют важные функции: - являются главным поставщиком энергии для всех процессов в организме (они могут расщепляться и давать энергию даже в отсутствии кислорода); - необходимы для рационального использования белков (белки при дефиците Углеводов используются не по назначению: они становятся источником энергии и участниками некоторых важных химических реакций); - тесно связаны с обменом жиров (если вы употребляете слишком много Углеводов, больше, чем может преобразоваться в глюкозу или гликоген (который откладывается в печени и мышцах), то в результате образуется жир. Когда телу нужно больше топлива, жир преобразуется обратно в глюкозу, и вес тела снижается); - особенно необходимы мозгу для нормальной жизнедеятельности (если мышечные ткани могут накапливать энергию в виде жировых отложений, то мозг не может так делать, он всецело зависит от регулярного поступления в организм углеводов); - являются составной частью молекул некоторых аминокислот, участвуют в построении ферментов, образовании нуклеиновых кислот и т.д.

Понятие и классификация углеводов

Углеводами называют вещества с общей формулой Cn(H2O)m, где n и m могут иметь разные значения. Название «углеводы» отражает тот факт, что водород и кислород присутствуют в молекулах этих веществ в том же соотношении, что и в молекуле воды. Кроме углерода, водорода и кислорода, производные углеводов могут содержать и другие элементы, например азот.

Углеводы - одна из основных групп органических веществ клеток. Они представляют собой первичные продукты фотосинтеза и исходные продукты биосинтеза других органических веществ в растениях (органические кислоты, спирты, аминокислоты и др.), а также содержатся в клетках всех других организмов. В животной клетке содержание углеводов находится в пределах 1-2 %, в растительных оно может достигать в некоторых случаях 85-90 % массы сухого вещества.

Выделяют три группы углеводов:

·моносахариды или простые сахара;

·олигосахариды - соединения, состоящие из 2-10 последовательно соединенных молекул простых сахаров (например, дисахариды, трисахариды и т. д.).

·полисахариды состоят более чем из 10 молекул простых сахаров или их производных (крахмал, гликоген, целлюлоза, хитин).

Моносахариды (простые сахара)

В зависимости от длины углеродного скелета (количества атомов углерода) моносахариды разделяют на триозы (C3), тетрозы (C4), пентозы (C5), гексозы (C6), гептозы (C7).

Молекулы моносахаридов являются либо альдегидоспиртами (альдозами), либо кетоспиртами (кетозами). Химические, свойства этих веществ определяются, прежде всего, альдегидными или кетонными группировками, входящими в состав их молекул.

Моносахариды хорошо растворяются в воде, сладкие на вкус.

При растворении в воде моносахариды, начиная с пентоз, приобретают кольцевую форму.

Циклические структуры пентоз и гексоз - обычные их формы: в любой данный момент лишь небольшая часть молекул существует в виде «открытой цепи». В состав олиго- и полисахаридов также входят циклические формы моносахаридов.

Кроме сахаров, у которых все атомы углерода связаны с атомами кислорода, есть частично восстановленные сахара, важнейшим из которых является дезоксирибоза.

Олигосахариды

При гидролизе олигосахариды образуют несколько молекул простых сахаров. В олигосахаридах молекулы простых сахаров соединены так называемыми гликозидными связями, соединяющими атом углерода одной молекулы через кислород с атомом углерода другой молекулы.

К наиболее важным олигосахаридам относятся мальтоза (солодовый сахар), лактоза (молочный сахар) и сахароза (тростниковый или свекловичный сахар). Эти сахара называют также дисахаридами. По своим свойствам дисахариды блоки к моносахаридам. Они хорошо растворяются в воде и имеют сладкий вкус.

Полисахариды

Это высокомолекулярные (до 10 000 000 Да) полимерные биомолекулы, состоящие из большого числа мономеров - простых сахаров и их производных.

Полисахариды могут состоять из моносахаридов одного или разных типов. В первом случае они называются гомополисахариды (крахмал, целлюлоза, хитин и др.), во втором - гетерополисахариды (гепарин). Все полисахариды не растворимы в воде и не имеют сладкого вкуса. Некоторые из них способны набухать и ослизняться.

Наиболее важными полисахаридами являются следующие.

Целлюлоза - линейный полисахарид, состоящий из нескольких прямых параллельных цепей, соединенных между собой водородными связями. Каждая цепь образована остатками в-D-глюкозы. Такая структура препятствует проникновению воды, очень прочна на разрыв, что обеспечивает устойчивость оболочек клеток растений, в составе которых 26-40 % целлюлозы.

Целлюлоза служит пищей для многих животных, бактерий и грибов. Однако большинство животных, в том числе и человек, не могут усваивать целлюлозу, поскольку в их желудочно-кишечном тракте отсутствует фермент целлюлаза, расщепляющий целлюлозу до глюкозы. В то же время целлюлозные волокна играют важную роль в питании, поскольку они придают пище объемность и грубую консистенцию, стимулируют перистальтику кишечника.

Крахмал и гликоген . Эти полисахариды являются основными формами запасания глюкозы у растений (крахмал), животных, человека и грибов (гликоген). При их гидролизе в организмах образуется глюкоза, необходимая для процессов жизнедеятельности.

Хитин образован молекулами в-глюкозы, в которой спиртовая группа при втором атоме углерода замещена азотсодержащей группой NHCOCH3. Его длинные параллельные цепи так же, как и цепи целлюлозы, собраны в пучки. Хитин - основной структурный элемент покровов членистоногих и клеточных стенок грибов.

Краткая характеристика эколого-биологической роли углеводов

Обобщая рассмотренный выше материал, относящийся к характеристике углеводов, можно сделать следующие выводы об их эколого-биологической роли.

1. Они выполняют строительную функцию, как в клетках, так и в организме в целом за счет того, что входят в состав структур, образующих клетки и ткани (особенно это характерно для растений и грибов), например, клеточные оболочки, различные мембраны и т. д., кроме того, углеводы участвуют в образовании биологически необходимых веществ, образующих ряд структур, например в образовании нуклеиновых кислот, составляющих основу хромосом; углеводы входят в состав сложных белков - гликопротеидов, имеющих определенное значение в формировании клеточных структур и межклеточного вещества.

2. Важнейшей функцией углеводов является трофическая функция, состоящая в том, что многие из них являются продуктами питания гетеротрофных организмов (глюкоза, фруктоза, крахмал, сахароза, мальтоза, лактоза и др.). Эти вещества в комплексе с другими соединениями образуют пищевые продукты, используемые человеком (различные крупы; плоды и семена отдельных растений, включающие в свой состав углеводы, являются кормом для птиц, а моносахара, вступая в цикл различных превращений, способствуют образованию как собственных углеводов, характерных для данного организма, так и других органо-биохимических соединений (жиров, аминокислот (но не их белков), нуклеиновых кислот и т. д.).

3. Для углеводов характерна и энергетическая функция, состоящая в том, что моносахара (в частности глюкоза) в организмах легко окисляются (конечным продуктом окисления является СO2 и Н2O), при этом происходит выделение большого количества энергии, сопровождающееся синтезом АТФ.

4. Им присуща и защитная функция, состоящая в том, что из углеводов возникают структуры (и определенные органоиды в клетке), защищающие или клетку, или организм в целом от различных повреждений, в том числе и механических (например, хитиновые покровы насекомых, образующие внешний скелет, оболочки клеток растений и многих грибов, включающих целлюлозу и т. д.).

5. Большую роль играют механическая и формообразующая функции углеводов, представляющие собой способность структур, образованных либо углеводами, либо в сочетании их с другими соединениями, придавать организму определенную форму и делать их механически прочными; так, клеточные оболочки механической ткани и сосудов ксилемы создают каркас (внутренний скелет) древесных, кустарниковых и травянистых растений, хитином образован внешний скелет насекомых и т. д.

Краткая характеристика обмена углеводов в гетеротрофном организме (на примере организма человека)

Важную роль в понимании процессов обмена веществ играет знание о превращениях, которым подвергаются углеводы в гетеротрофных организмах. В организме человека этот процесс характеризуется приведенным ниже схематическим описанием.

Углеводы в составе пищи попадают в организм через ротовую полость. Моносахара в пищеварительной системе практически не подвергаются превращениям, дисахариды - гидролизуются до моносахаридов, а полисахариды подвергаются достаточно значительным превращениям (это относится к тем полисахаридам, которые организмом употребляются в пищу, а углеводы, не являющиеся пищевыми веществами, например, целлюлоза, некоторые пектины, удаляются из организма с каловыми массами).

В ротовой полости пища измельчается и гомогенизируется (становится более однородной, чем до попадания в нее). На пищу воздействует слюна, выделяемая слюнными железами. Она содержит фермент птиалин и имеет щелочную реакцию среды, за счет чего начинается первичный гидролиз полисахаридов, приводящий к образованию олигосахаридов (углеводов с небольшой величиной n).

Часть крахмала может превращаться даже в дисахариды, что можно заметить при длительном пережевывании хлеба (кислый черный хлеб становится сладким).

Пережеванная пища, обильно обработанная слюной и размельченная зубами, через пищевод в виде пищевого комка поступает в желудок, где подвергается воздействию желудочного сока с кислой реакцией среды, содержащего ферменты, воздействующие на белки и нуклеиновые кислоты. В желудке с углеводами практически ничего не происходит.

Затем пищевая кашица поступает в первый отдел кишечника (тонкий кишечник), начинающийся двенадцатиперстной кишкой. В нее поступает панкреатический сок (секрет поджелудочной железы), содержащий комплекс ферментов, способствующих и перевариванию углеводов. Углеводы превращаются в моносахариды, которые растворимы в воде и способны к всасыванию. Пищевые углеводы окончательно перевариваются в тонком кишечнике, а в той его части, где содержатся ворсинки, они всасываются в кровь и поступают в кровеносную систему.

С током крови моносахара разносятся к различным тканям и клеткам организма, но предварительно вся кровь проходит через печень (там она очищается от вредных продуктов обмена). В крови моносахара присутствуют преимущественно в виде альфа-глюкозы (но возможно наличие и других изомеров гексоз, например фруктозы).

Если глюкозы в крови меньше нормы, то часть гликогена, содержащегося в печени, гидролизуется до глюкозы. Избыточное содержание углеводов характеризует тяжелое заболевание человека - диабет.

Из крови моносахариды поступают в клетки, где большая их часть расходуется на окисление (в митохондриях), при котором синтезируется АТФ, содержащая энергию в «удобном» для организма виде. АТФ расходуется на различные процессы, которые требуют энергии (синтез нужных организму веществ, реализация физиологических и других процессов).

Часть углеводов пищи используется для синтеза углеводов данного организма, требующихся для формирования структур клетки, или соединений, необходимых для образования веществ других классов соединений (так из углеводов могут получиться жиры, нуклеиновые кислоты и т. д.). Способность углеводов превращаться в жиры является одной из причин возникновения ожирения - заболевания, влекущего за собой комплекс других заболеваний.

Следовательно, потребление избыточного количества углеводов вредно для человеческого организма, что необходимо учитывать при организации рационального питания.

В растительных организмах, являющихся автотрофами, обмен углеводов несколько иной. Углеводы (моносахара) синтезируются самим организмом из углекислого газа и воды с использованием солнечной энергии. Ди-, олиго- и полисахариды синтезируются из моносахаридов. Часть моносахаридов включается в синтез нуклеиновых кислот. Определенное количество моносахаридов (глюкозы) растительные организмы используют в процессах дыхания на окисление, при котором (как и в гетеротрофных организмах) синтезируется АТФ.

Гликолипиды и гликопротеины как структурно-функциональные компоненты клетки углеводов

Гликопротеины - это белки, содержащие олигосахаридные (гликановые) цепи, ковалентно присоединенные к полипептидной основе. Гликозаминогликаны представляют собой полисахариды, построенные из повторяющихся дисахаридных компонентов, которые обычно содержат аминосахара (глюкоза-мин или галактозамин в сульфированном или несульфированном виде) и уроновую кислоту (глюкуро-новую или идуроновую). Раньше гликозаминогликаны называли мукополисахаридами. Они обычно ковалентно связаны с белком; комплекс одного или более гликозаминогликанов с белком носит название протеогликана. Гликоконъюгаты и сложные углеводы-эквивалентные термины, обозначающие молекулы, которые содержат углеводные цепи (одну или более), ковалентно связанные с белком или липидом. К этому классу соединений относятся гликопротеины, протеогликаны и гликолипиды.

Биомедицинское значение

Почти все белки плазмы человека, кроме альбумина, представляют собой гликопротеины. Многие белки клеточных мембран содержат значительные количества углеводов. Вещества групп крови в ряде случаев оказываются гликопротеинами, иногда в этой роли выступают гликосфинголипиды. Некоторые гормоны (например, хорионический гонадотропин) имеют гликопротеиновую природу. В последнее время рак все чаще характеризуется как результат аномальной генной регуляции. Главная проблема онкологических заболеваний, метастазы, - феномен, при котором раковые клетки покидают место своего происхождения (например, молочную железу), переносятся с кровотоком в отдаленные части тела (например, в мозг) и неограниченно растут с катастрофическими последствиями для больного. Многие онкологи полагают, что метастазирование, по крайней мере частично, обусловлено изменениями в структуре гликоконъюгатов на поверности раковых клеток. В основе целого ряда заболевений (мукополисахаридозы) лежит недостаточная активность различных лизосомных ферментов, разрушающих отдельные гликоза-миногликаны; в результате один или несколько из них накапливаются в тканях, вызывая различные патологические признаки и симптомы. Одним из примеров таких состояний является синдром Хурлера.

Распространение и функции

Гликопротеины имеются у большинства организмов - от бактерий до человека. Многие вирусы животных также содержат гликопротеины, некоторые из этих вирусов интенсивно изучались, отчасти в силу удобства их использования для исследований.

Гликопротеины-это многочисленная группа белков с разнообразными функциями содержание в них углеводов варьирует от 1 до 85% и более (в единицах массы). Роль олигосахаридных цепей в функции гликопротеинов до сих пор точно не определена, несмотря на интенсивное изучение этого вопроса

Гликолипиды - сложные липиды, образующиеся в результате соединения липидов с углеводами. В молекулах гликолипидов есть полярные «головы» (углевод) и неполярные «хвосты» (остатки жирных кислот). Благодаря этому гликолипиды (вместе с фосфолипидами) входят в состав клеточных мембран.

Гликолипиды широко представлены в тканях, особенно в нервной ткани, в частности в ткани мозга. Они локализованы преимущественно на наружной поверхности плазматической мембраны, где их углеводные компоненты входят в число других углеводов клеточной поверхности.

Гликосфинголипиды, являющиеся компонентами наружного слоя плазматической мембраны, могут участвовать в межклеточных взаимодействиях и контактах. Некоторые из них являются антигенами, например антиген Форссмана и вещества, определяющие группы крови системы АВ0. Сходные олигосахаридные цепи обнаружены и у других гликопротеинов плазматической мембраны. Ряд ганглиозидов функционирует в качестве рецепторов бактериальных токсинов (например, холерного токсина, который запускает процесс активации аденилатциклазы).

Гликолипиды в отличие от фосфолипидов не содержат остатков ортофосфорной кислоты. В их молекулах к диацилглицерину гликозидной связью присоединяются остатки галактозы или сульфоглюкозы

Наследственные нарушения обмена моносахаридов и дисахаридов

Галактоземия - наследственная патология обмена веществ, обусловленная недостаточностью активности ферментов, принимающих участие в метаболизме галактозы. Неспособность организма утилизировать галактозу приводит к тяжелым поражениям пищеварительной, зрительной и нервной системы детей в самом раннем возрасте. В педиатрии и генетике галактоземия относится к редким генетическим заболеваниям, встречающимся с частотой один случай на 10 000 - 50 000 новорожденных. Впервые клиника галактоземии была описана в 1908 году уребенка, страдавшего сильным истощением, гепато- и спленомегалией, галактозурией; при этом заболевание исчезло сразу после отмены молочного питания. Позднее, в 1956 г. ученый Герман Келкер определил, что в основе заболевания лежит нарушение метаболизма галактозы. Причины болезни Галактоземия является врожденной патологией, наследуемой по аутосомно-рецессивному типу, т. е. заболевание проявляется только в том случае, если ребенок наследует две копии дефектного гена от каждого из родителей. Лица, гетерозиготные по мутантному гену, являются носителями заболевания, однако у них тоже могут развиваться отдельные признаки галактоземии в легкой степени. Превращение галактозы в глюкозу (метаболический путь Лелуара) происходит при участии 3-х ферментов: галактоза-1-фосфатуридилтрансферазы (GALT), галактокиназы (GALK) и уридиндифосфат-галактозо-4-эпимеразы (GALE). В соответствии с дефицитом этих ферментов различают 1 (классический вариант), 2 и 3 тип галактоземии.Выделение трех типов галактоземии не совпадает с порядком действия ферментов в процессе метаболического пути Лелуара. Галактоза поступает в организм с пищей, а также образуется в кишечнике в процессе гидролиза дисахарида лактозы. Путь метаболизма галактозы начинается с ее превращения под действием фермента GALK в галактозо-1-фосфат. Затем при участии фермента GALT галактозо-1-фосфат преобразуется в УДФ-галактозу (уридилдифосфогалактозу). После этого с помощью GALE метаболит превращается в УДФ - глюкозу (уридилдифосфоглюкозу).При недостаточности одного из названных ферментов (GALK, GALT или GALE) концентрация галактозы в крови значительно повышается, в организме накапливаются промежуточные метаболиты галактозы, которые вызывают токсическое поражение различных органов: ЦНС, печени, почек, селезенки, кишечника, глаз и др. Нарушение метаболизма галактозы и составляет суть галактоземии. Наиболее часто в клинической практике встречается классический (1 тип) галактоземии, обусловленный дефектом фермента GALT и нарушением его активности. Ген, кодирующий синтез галактоза-1-фосфатуридилтрансферазы, находится воколоцентромерном участке 2-ой хромосомы. По тяжести клинического течения выделяют тяжелую, среднюю и легкую степени галактоземии. Первые клинические признаки галактоземии тяжелой степени развиваются очень рано, в первые дни жизни ребенка. Вскоре после кормления новорожденного грудным молоком или молочной смесью возникает рвота и расстройство стула (водянистый понос), нарастает интоксикация. Ребенок становится вялым, отказывается от груди или бутылочки; у него быстро прогрессируют гипотрофия и кахексия. Ребенка могут беспокоить метеоризм, кишечные колики, обильное отхождение газов.В процессе обследования ребенка с галактоземией неонатологом выявляется угасание рефлексов периода новорожденности. При галактоземии рано появляется стойкая желтуха различной степени выраженности и гепатомегалия, прогрессирует печеночная недостаточность. К 2-3 месяцу жизни возникают спленомегалия, цирроз печени, асцит. Нарушения процессов свертывания крови приводит к появлению кровоизлияний на коже и слизистых оболочках. Дети рано начинают отставать в психомоторном развитии, однако степень интеллектуальных нарушений при галактоземии не достигает такой тяжести, как при фенилкетонурии. К 1-2 месяцам у детей с галактоземией выявляется двусторонняя катаракта. Поражение почек при галактоземии сопровождается глюкозурией, протеинурией, гипераминоацидурией. В терминальной фазе галактоземии ребенок погибает от глубокого истощения, тяжелой печеночной недостаточности и наслоения вторичных инфекций. При галактоземии средней тяжести также отмечается рвота, желтуха, анемия, отставание в психомоторном развитии, гепатомегалия, катаракта, гипотрофия. Галактоземия легкой степени характеризуется отказом от груди, рвотой после приема молока, задержкой речевого развития, отставанием ребенка в массе и росте. Однако даже при легком течении галактоземии продукты обмена галактозы токсическим образом воздействуют на печень, приводя к ее хроническим заболеваниям.

Фруктоземия

Фруктоземия - это наследственное генетическое заболевание, заключающееся в непереносимости фруктозы (фруктового сахара, содержащегося во всех фруктах, ягодах и некоторых овощах, а также в мёде). При фруктоземии в организме человека мало или практически нет ферментов(энзимов, органических веществ белковой природы, ускоряющих химические реакции, происходящие в организме), принимающих участие в ращеплении и усвоении фруктозы. Заболевание, как правило, обнаруживается в первые недели и месяцы жизни ребенка или с того момента, когда ребенок начинает получать соки и пищу, содержащую фруктозу: сладкий чай, фруктовые соки, овощные и фруктовые пюре. Фруктоземия передается по аутосомно-рецессивному типу наследования (заболевание проявляется, если у обоих родителей есть заболевание). Мальчики и девочки болеют одинаково часто.

Причины болезни

В печени имеется недостаточное количество специального фермента (фруктозо-1-фосфат-альдолазы), который преобразовывает фруктозу. В результате продукты обмена (фруктозо-1-фосфат) накапливаются в организме (печени, почках, слизистых оболочках кишечника) и оказывают повреждающее действие. При этом установлено, что фруктозо-1-фосфат никогда не откладывается в клетках мозга и хрусталике глаза. Симптомы заболевания проявляются после употребления в пищу фруктов, овощей или ягод в любом виде (соки, нектары, пюре, свежие, замороженные или сушеные), а также мёда. Тяжесть проявления зависит от количества употребления продуктов.

Вялость, бледность кожных покровов. Повышенное потоотделение. Сонливость. Рвота. Диарея (частый объемный (большие порции) жидкий стул). Отвращение к сладкой пище. Гипотрофия (дефицит (недостаточность) массы тела) развивается постепенно. Увеличение размеров печени. Асцит (скопление жидкости в брюшной полости). Желтуха (пожелтение кожных покровов) - развивается иногда. Острая гипогликемия (состояние, при котором значительно снижается уровень глюкозы (сахара) в крови) может развиться при одномоментном употреблении большого количества продуктов, содержащих фруктозу. Характеризуется: Дрожанием конечностей; судорогами (приступообразными непроизвольными сокращениями мышц и крайней степенью их напряжения); Потерей сознания вплоть до комы (отсутствия сознания и реакции на любые раздражители; состояние представляет опасность для жизни человека).

Заключение


Значение углеводов в питании человека весьма велико. Они служат важнейшим источником энергии, обеспечивая до 50-70 % общей калорийности рациона.

Способность углеводов быть высокоэффективным источником энергии лежит в основе их "сберегающего белок" действия. Хотя углеводы не принадлежат к числу незаменимых факторов питания и могут образовываться в организме из аминокислот и глицерина, минимальное количество углеводов суточного рациона не должно быть ниже 50-60 г.

С нарушением обмена углеводов тесно связан ряд заболеваний: сахарный диабет, галактоземия, нарушение в системе депо гликогена, нетолерантность к молоку и т.д. Следует отметить, что в организме человека и животного углеводы присутствуют в меньшем количестве (не более 2% от сухой массы тела), чем белки и липиды; в растительных организмах за счет целлюлозы на долю углеводов приходится до 80% от сухой массы, поэтому в целом в биосфере углеводов больше, чем всех других органических соединений вместе взятых Таким образом: углеводы играют огромную роль в жизни живых организмов на планете ученые считают, что примерно когда появилось первое соединение углевода, появилась и первая живая клетка.


Литература


1. Биохимия: учебник для вузов/ под ред. Е.С.Северина - 5-е изд., - 2009. - 768 с.

2. Т.Т. Березов, Б.Ф. Коровкин «Биологическая химия».

3. П.А. Верболович «Практикум по органической, физической, коллоидной и биологической химии».

4. Ленинджер А. Основы биохимии // М.: Мир, 1985

5. Клиническая эндокринология. Руководство / Н. Т. Старкова. - издание 3-е, переработанное и дополненное. - Санкт-Петербург: Питер, 2002. - С. 209-213. - 576 с.

6. Детские болезни (том 2) - Шабалов Н.П. - учебник, Питер, 2011

Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.



Понравилась статья? Поделитесь ей
Наверх