Синтез различных классов интерферона человека в генетически сконструированных клетках микроорганизмов. Экспрессия генов, встроенных в плазмиду. Интерфероны, природа, способы получения и применения Метод получения интерферонов имеющий наибольшие преимущест

Интерферон относится к важным защитным белкам иммунной системы. Открыт при изучении интерференции вирусов, т. е. явления, когда животные или культуры клеток, инфицированные одним вирусом, становились нечувствительными к заражению другим вирусом. Оказалось, что интерференция обусловлена образующимся при этом белком, обладающим защитным противовирусным свойством. Этот белок назвали интерфероном.

Интерферон представляет собой семейство белков-гликопротеидов, которые синтезируются клетками иммунной системы и соединительной ткани. В зависимости от того, какими клетками синтезируется интерферон, выделяют три типа: α, β и γ-интерфероны.

Альфа-интерферон вырабатывается лейкоцитами и он получил название лейкоцитарного; бета-интерферон называют фибробластным, поскольку он синтезируется фибробластами - клетками соединительной ткани, а гамма-интерферон - иммунным, так как он вырабатывается активированными Т-лимфоцитами, макрофагами, естественными киллерами, т. е. иммунными клетками.

Интерферон синтезируется в организме постоянно, и его концентрация в крови держится на уровне примерно 2 МЕ/мл (1 международная единица - ME - это количество интерферона, защищающее культуру клеток от 1 ЦПД50 вируса). Выработка интерферона резко возрастает при инфицировании вирусами, а также при воздействии индукторов интерферона, например РНК, ДНК, сложных полимеров. Такие индукторы интерферона получили название интерфероногенов.

Помимо противовирусного действия интерферон обладает противоопухолевой защитой, так как задерживает пролиферацию (размножение) опухолевых клеток, а также иммуномодулирующей активностью, стимулируя фагоцитоз, естественные киллеры, регулируя антителообразование В-клетками, активируя экспрессию главного комплекса гистосовместимости.

Механизм действия интерферона сложен. Интерферон непосредственно на вирус вне клетки не действует, а связывается со специальными рецепторами клеток и оказывает влияние на процесс репродукции вируса внутри клетки на стадии синтеза белков.



Применение интерферона. Действие интерферона тем эффективнее, чем раньше он начинает синтезироваться или поступать в организм извне. Поэтому его используют с профилактической целью при многих вирусных инфекциях, например гриппе, а также с лечебной целью при хронических вирусных инфекциях, таких как парентеральные гепатиты (В, С, D), герпес, рассеянный склероз и др. Интерферон дает положительные результаты при лечении злокачественных опухолей и заболеваний, связанных с иммунодефицитами.

Интерфероны обладают видоспецифичностью, т. е. интерферон человека менее эффективен для животных и наоборот. Однако эта видоспецифичность относительна.

Получение интерферона. Получают интерферон двумя способами: а) путем инфицирования лейкоцитов или лимфоцитов крови человека безопасным вирусом, в результате чего инфицированные клетки синтезируют интерферон, который затем выделяют и конструируют из него препараты интерферона; б) генно-инженерным способом - путем выращивания в производственных условиях рекомбинантных штаммов бактерий, способных продуцировать интерферон. Обычно используют рекомбинантные штаммы псевдомонад, кишечной палочки со встроенными в их ДНК генами интерферона. Интерферон, полученный генно-инженерным способом, носит название рекомбинантного. В нашей стране рекомбинантный интерферон получил официальное название «Реаферон». Производство этого препарата во многом эффективнее и дешевле, чем лейкоцитарного.

Рекомбинантный интерферон нашел широкое применение в медицине как профилактическое и лечебное средство при вирусных инфекциях, новообразованиях и при иммунодефицитах.

23. Факторы специфического иммунитета при вирусных болезнях. Роль клеточного иммунитета в защите организма от вируса

Специфическая система иммунитета имеет свои центральные (костный мозг, тимус, фабрициева сумка у птиц, печень у млекопитающих) и периферические органы (селезенка, лимфатические узлы, лимфоидные ткани желудочно-кишечного тракта, а также кровь и лимфа, в которые поступают и непрерывно в них циркулируют все иммунокомпетентные клетки).

Органом иммунитета является лимфоидная ткань, а его основными исполнителями - макрофаги (а также другие антиген-представляющие клетки), различные популяции и субпопуляции Т- и В-лимфоцитов.

Основной мишенью действия иммунной системы являются антигены, подавляющее большинство которых имеет белковую природу.

Лимфоциты представлены двумя большими популяциями - В - и Т-клетками, которые ответственны за специфическое распознавание антигенов. Возникнув из общей исходной, так называемой стволовой клетки, и пройдя соответствующую дифференцировку в центральных органах иммунной системы, Т- и В-лимфоциты приобретают иммунокомпетентность, выходят в кровь и непрерывно циркулируют по организму, выполняя роль его эффективных защитников.

Т-лимфоциты обеспечивают клеточный тип иммунных реакций, а В-лимфоциты - гуморальный тип иммунного ответа.

Дифференцировка предшественников Т-лимфоцитов в иммунокомлетентные клетки («обучение») происходит в тимусе под влиянием гуморальных факторов, секретируемых тимусом; созревание В-лимфоцитов - у птиц в бурсе, у млекопитающих сначала в печени плода, а после рождения в костном мозге.

Зрелые В- и Т-лимфоциты приобретают способность распознавать чужеродные антигены. Они покидают костный мозг и тимус и заселяют селезенку, лимфатические узлы и другие скопления лимфатических клеток. Подавляющее большинство Т- и В-лимфоцитов циркулирует в крови и лимфе. Такая постоянная циркуляция обеспечивает контакт как можно большего числа соответствующих лимфоцитов с антигеном (вирусом).

Каждая В-клетка генетически запрограммирована на синтез антител к одному определенному антигену. Встретив и распознав этот антиген, В-клетки размножаются и дифференцируются в активные плазматические клетки, секретирующие антитела на данный антиген. Другая часть В-лимфоцитов, пройдя 2-3 цикла деления, превращается в клетки памяти, которые не способны к выработке антител. Они могут жить много месяцев и даже лет без деления, циркулируя между кровью и вторичными лимфоидными органами. Быстро распознают антиген при повторном его поступлении в организм, после чего клетки памяти приобретают способность к делению и превращаются в плазматические клетки - секретирующие антитела.

Таким же образом образуются клетки памяти из Т-лимфоцитов. Это можно назвать «резервом» иммунокомпетентных клеток.

Клетки памяти определяют продолжительность приобретенного иммунитета. При повторном контакте с данным антигеном они быстро превращаются в клетки-эффекторы. При этом В-клетки памяти обеспечивают синтез антител в более короткий срок, в большем количестве и в основном IgG. Установлено, что существуют Т-хелперы, которые определяют переключение классов иммуноглобулинов.

Различают два варианта выдачи иммунного ответа в форме биосинтеза антител:

первичный ответ - после первой встречи организма с анти - 1 сном;

вторичный ответ - при повторном контакте с антигеном, через 2-3 нед.

Они различаются по следующим показателям: продолжительностью латентного периода; скоростью нарастания титра антител, общего количества синтезируемых антител; последовательностью синтеза иммуноглобулинов различных классов. Клеточные механизмы первичного и вторичного иммунных ответов также отличаются.

При первичном иммунном ответе отмечают: биосинтез антител после латентного периода продолжается 3- 3 дней; скорость синтеза антител относительно невелика; титр антител не достигает максимальных значений; первыми синтезируются IgM, затем IgG и позже IgA и IgE. Вторичный иммунный ответ характеризуется: латентный период - в пределах нескольких часов; скорость синтеза антител имеет логарифмический характер; титр антител достигает максимальных значений; синтезируется сразу IgG.

Вторичный иммунный ответ обусловлен клетками иммунной памяти.

Т-клетки имеют несколько популяций с различными функциями. Одни взаимодействуют с В-клетками, помогая им размножаться, созревать и образовывать антитела, а также активируют макрофаги - хелперные Т-клетки (Тх); другие угнетают иммунные реакции - супрессорные Т-клетки (Тс); третья популяция Т-клеток осуществляет разрушение клеток организма, зараженных вирусами или иными агентами. Этот тип активности назван цитотоксичностью, а сами клетки - цитотоксическими Т-клетками (Тц) или Т-киллерами (Тк).

Поскольку Т-хелперы и Т-супрессоры действуют как регуляторы иммунного ответа, эти два типа Т-лимфоцитов называют Т-клетками регуляторами.

Существенным фактором в противовирусном иммунитете являются макрофаги. Они не просто уничтожают чужеродные антигены, но и предоставляют антигенные детерминанты для запуска цепи иммунных реакций (презентируют). Поглощенные макрофагами антигены расщепляются на короткие фрагменты (антигенные детерминанты), которые связываются с молекулами белков главного комплекса гистосовместимости (ГКГС I, II) и транспортируются на поверхность макрофагов, где они распознаются Т-лимфоцитами (Тх, Тк) и В-лимфоцитами, что приводит к их активации и размножению.

Т-хелперы, активируясь, синтезируют факторы (медиаторы) для стимуляции В- и Т-лимфоцитов. Активированные Т-киллеры размножаются и образуется пул цитотоксических Т-лимфоцитов, способных обеспечить гибель клеток-мишеней, т. е. клеток, зараженных вирусом.

Главным свойством всех клеток-киллеров является то, что под их влиянием и клетке-мишени запускаются механизмы алоптоза (запрограммированной гибели клетки). Лизис клетки происходит после отсоединения киллера, что позволяет одному киллеру лидировать несколько клеток-мишеней. В процессе лизиса участвуют секретируемые лимфоцитами перфорины и гранзимы. Перфорин, встраиваясь в мембрану клетки, формирует в ней канал, через который в клетку проникает пода. Клетка разбухает и лизируется. Считают, что гранзимы обусловливают индукцию апоптоза.

Активированные В-лимфоциты размножаются и дифференцируются в плазматические клетки, которые синтезируют и секретируют антитела соответствующего класса (IgM, IgG, IgA, IgD, IgE).

Координированное взаимодействие макрофагов, Т- и В-лимфоцитов при встрече с антигеном обеспечивает как гуморальный, так и клеточный иммунный ответ. Для всех форм иммунного ответа требуется согласованное взаимодействие основных факторов иммунной системы: макрофагов, Т-, В-лимфоцитов, NK-клеток, системы интерферонов, комплемента, главной системы гистосовместимости. Взаимодействие между ними осуществляется с помощью разнообразных синтезируемых и секретируемых медиаторов.

Медиаторы, вырабатываемые клетками иммунной системы и участвующие в регуляции ее активности, получили общее название цитокинов (от греч. cytos - клетка и kineo - приводить в движение). Их подразделяют на монокины - медиаторы, продуцируемые моноцитами и макрофагами; лимфокины - медиаторы, секретируемые активированными лимфоцитами; лимфокины, которые химически идентифицированы и получены в чистом виде. В 1979 г. было предложено назвать их интерлейкинами. Они обозначаются номерами - 1, 2, 3, 4, 5 и т. д. Семейство интерлейкинов пополняется новыми представителями, которые осуществляют взаиморегуляцию иммунной, нервной и эндокринной систем. Все иммунокомпетентные клетки на своих мембранах несут уникальные рецепторы, с помощью которых они распознают и воспринимают сигналы от других иммунных клеток, перестраивают свой метаболизм, синтезируют или устраняют свои собственные рецепторы. Благодаря этому все клетки иммунной системы функционируют как хорошо отлаженная система.

24. Вирусные белки, их роль в серодиагностике. Специфические антитела. Характеристика иммуноглобулинов.

Белки вирусов

Локализация вирусных белков

Белки, связанные с жизненным циклом вируса, разделяют на белки, детерминируемые геномом вируса и белки, имеющие клеточное происхождение. В качестве примера клеточных белков, которые обнаружены в составе некоторых вирионов, могут быть приведены белок цитоскелета - актин, и ядерные белки - гистоны. Белки клеточного происхождения, участвующие в процессе репликации вируса, будут рассмотрены в разделе взаимодействия вируса с клеткой.

По месту локализации белки, детерминируемые вирусным геномом, разделяют на две группы:

1) структурные белки - это белки, входящие в состав ВЧ, их обозначают как VP;

2) неструктурные белки - это предшественники структурных белков, регуляторные белки и ферменты, обслуживающие процесс внутриклеточной репродукции вируса и не входящие в состав ВЧ. Их обозначают как NS-белки (схема).
Свойства вирусных белков

В состав вирионов входят белки с различной молекулярной массой (от 4 до 100 кД), состоящие из одной или нескольких полипептидных цепей. Количество этих белков также различно у разных вирусов. В состав нуклеокапсида ВТМ входит один белок. У других вирусов в состав вириона может входить несколько десятков белков, имеющих различные физико-химические свойства. Белки, формирующие капсид, нуклеокапсид и коровую оболочку, обладают одним общим свойством - способностью к самосборке.
В состав ВЧ могут входить низкомолекулярные белки, не участвующие в формировании капсида. Например, геномные белки пикорнавирусов и аденовирусов. Геномный белок ковалентно связан с нуклеиновой кислотой и участвует в ее репликации.

Локализация вирусных белков

Сложные белки представлены гликопротеинами (обозначают как gp) и липопротеинами . Наличие гликопротеина определяет присутствие в вирионе углеводного компонента, который может быть представлен олигосахаридами маннозного типа, галактозой, N-ацетилглюкозамином или нейраминовой кислотой. Вирусные гликопротеины, как правило, экспонированы на наружной поверхности ВЧ и выполняют три основные функции: обеспечивают связывание вириона с клеточным рецептором (функция прикрепительного белка), обладают фузионной активностью (обеспечивают слияние мембран) и определяют антигенные свойства вирусов. В то же время, вирусные гликопротеины могут быть и неструктурными белками и, оставаясь в интегральной форме в мембране шероховатого эндоплазматического ретикулюма (ШЭР), выполнять функции транслоказ, обеспечивая транспорт вирусных компонентов в его просвет.
Вирусные липопротеины представлены белками, ацилированными, как правило, миристиновой кислотой. Остатки жирных кислот, соединенные с молекулой белка, выполняют функцию липофильного якоря.
Вирусные белки-ферменты могут входить в состав вирусной частицы или являться неструктурными белками и появляться в клетке после экспрессии вирусного генома. Наиболее оснащенным ферментами является вирион вируса оспы, который имеет практически полный набор энзимов, необходимых для независимой внутриклеточной репликации вируса. В то же время, мелкие просто организованные изометрические вирусы с позитивным РНК-геномом могут не иметь никаких ферментов в составе вириона.
Функционально активные белки вирусов представлены, в первую очередь, ферментами нуклеинового обмена, обеспечивающими сложные механизмы репликации/транскрипции вирусного генома; ферментами, осуществляющими посттрансляционный процессинг и модификацию белков, и ферментами, участвующими в проникновении вирионов в клетку хозяина.
Первая группа ферментов наиболее многочисленна и включает как аналоги клеточных ферментов, так и вирус-специфические ферменты.

ДНК-зависимая ДНК-полимераза - осуществляет синтез ДНК на матрице ДНК (вирус оспы).

ДНК-зависимая РНК-полимераза - осуществляет синтез мРНК на матрице ДНК (вирус оспы).

РНК-зависимая РНК-полимераза - осуществляет синтез РНК на матрице РНК. Выполняет функции транскриптазы и репликазы. Впервые обнаружена в 1970 г. Балтимором у вируса везикулярного стоматита. Входит в состав вирионов или является NS-белком РНК-содержащих вирусов.

Обратная транскриптаза или ревертаза или РНК-зависимая ДНК-полимераза осуществляет синтез ДНК на матрице РНК. Впервые открыта в 1970 г. у ретровирусов Темином и Мизутани.
Хеликаза - осуществляет расплетете двухнитевой структуры ДНК. Кроме этого хеликазы обладают нуклеотидтрифосфат-зависимой РНК-хеликазной активностью, которая включает три процесса: связывание дезоксинуклеотидтрифосфата, его гидролиз и за счет этой энергии расплетение двухнитевой РНК.

мРНК-модифицирующие ферменты : поли-А-полимераза - аденилирует 3"-конец РНК за счет энергии АТФ; Кэп-энзим и метилтрансферазный комплекс - катализирует образование на 5"-конце кэп-структуры.

АТФ-аза, ГТФ-аза - осуществляют гидролиз соответствующих энергетических субстратов.

Рибонуклеаза Н - разрушает РНК, находящуюся в дуплексе с ДНК. Вторая группа вирусных ферментов - ферменты белкового обмена.

Здесь мы приведем лишь некоторые из них:

Протеиназы - ферменты, участвующие в посттрансляционном процессинге полипротеинов. Являются NS-белками РНК-содержащих вирусов;

Протеинкиназы - ферменты, фосфорилирующие структурные белки вирионов. Обнаружены в составе вируса везикулярного стоматита, вируса бешенства, альфавирусов и ретровирусов.

Примерами ферментов, участвующих в проникновении вирусов в клетку, являются лизоцим бактериофагов и нейраминидаза вируса гриппа.

В процессе формирования приобретенного инфекционного иммунитета важная роль принадлежит антителам (анти - против, тело - русское слово, т. е. вещество). И хотя чужеродный антиген блокируется специфическими клетками организма и подвергается фагоцитозу, активное действие на антиген возможно лишь при наличии антител.

Антитела - специфические белки, иммуноглобулины, образующиеся в организме под воздействием антигена и обладающие свойством специфически с ним связываться и отличающиеся от обычных глобулинов наличием активного центра.

Антитела являются важным специфическим фактором защиты организма против возбудителей болезней и генетически чужеродных веществ и клеток.
Антитела образуются в организме в результате инфицирования (естественная иммунизация), или вакцинации убитыми и живыми вакцинами (искусственная иммунизация), или контакта лимфоидной системы с чужеродными клетками, тканями (трансплантанты) либо с собственными поврежденными клетками, ставшими аутоантигенами.
Антитела относятся к определенной фракции белка, главным образом к a -глобулинам, обозначаемым IgY.

Антитела делятся на группы:

  • первая - небольшие молекулы с константой седиментации 7S (a-глобулины);
  • вторая - большие молекулы с константой седиментации 19 S (a - глобулины).

Молекула антитела включает четыре полипептидные цепи, состоящие из аминокислот. Две из них тяжелые (м.м. 70000 дальтон) и две легкие (м.м. 20000 дальтон). Легкие и тяжелые цепи связаны между собой дисульфидными мостиками. Легкие цепи являются общими для всех классов и подклассов. Тяжелые цепи имеют характерные особенности строения у каждого класса иммуноглобулинов.
В молекуле антитела имеются активные центры, располагающиеся на концах полипептидных цепей и специфически реагирующие с антигеном. Неполные антитела одновалентны (антидетерминанта одна), полные имеют две, реже более антидетерминантны.

Отличие специфических иммуноглобулинов в строении тяжелых цепей, в пространственном рисунке антидетерминант. Согласно классификации Всемирной организации здравоохранения (ВОЗ), различают пять классов основных иммуноглобулинов: IgG циркулируют в крови, составляют 80% всех антител. Проходят через плаценту. Молекулярная масса 160000. Размер 235 х 40А o . Важны как специфический фактор иммунитета. Обезвреживают антиген путем его корпускуляризации (преципитации, осаждения, агглютинации), что облегчает фагоцитоз, лизис, нейтрализацию. Способствуют возникновению аллергических реакций замедленного типа. По сравнению с другими иммуноглобулинами IgG относительно термоустойчив - выдерживает нагревание при 75 o С 30 мин.
Ig M, - циркулирует в крови, составляя 5-10% всех антител. Молекулярная масса 950000, константа седиментации 19 S, функционально пятивалентен, первым появляется после заражения или вакцинации животного. Ig M не участвует в аллергических реакциях, не проходит через плаценту. Действует на грамположительные бактерии, активизирует фагоцитоз. К классу Ig M относят антитела групп крови человека - А, В, О.
Ig A, - включает два вида: сывороточный и секреторный. Сывороточный Ig A имеет молекулярную массу 170000, константа седиментации 7 S. Не обладает способностью преципитировать растворимые антигены, принимает участие в реакции нейтрализации токсинов, термоустойчив, синтезируется в селезенке, лимфатических узлах и в слизистых оболочках и поступает в секреты - слюну, слезную жидкость, бронхиальный секрет, молозиво.
Секреторный Ig A (S Ig A) характеризуется наличием структурного добавочного компонента, представляет собой полимер, константа седиментации 11 S и 15 S, молекулярная масса 380000, синтезируется в слизистых оболочках. Биологическая функция S Ig A заключается в основном в местной защите слизистых оболочек, например при заболеваниях желудочно-кишечного тракта или дыхательного. Обладают бактерицидностью и опсоническим эффектом.
Ig D, - концентрация в сыворотке крови не более 1%, молекулярная масса 160000, константа седиментации 7 S. Ig D обладает активируемой активностью, не связывается с тканями. Отмечено увеличение его содержания при миеломной болезни человека.
Ig E, - молекулярная масса 190000, константа седиментации 8,5 S. Ig E термолабилен, прочно связывается с клетками тканей, с тканевыми базофилами, принимает участие в реакции гиперчувствительности немедленного типа. Ig E играет защитную роль при гельминтозах и протозойных болезнях, способствует усилению фагоцитарной активности макрофагов и эозинофилов.
Антитела лабильны к температуре 70 0 С, и спирты денатурируют их. Активность антитела нарушается при изменении (отключении) pH среды, электролитов и др.
Все антитела имеют активный центр - площадь участка в 700 А o , что составляет 2% поверхности антитела. Активный центр состоит из 10-20 аминокислот. Чаще всего в них присутствуют тирозин, лизин, триптофан. К положительно заряженным гаптенам антитела имеют отрицательно заряженную группировку - СООН - . К гаптенам, заряженным отрицательно, присоединяется группировка NH 4 + .
Антитела обладают способностью отличать один антиген от другого. Они взаимодействуют только с теми антигенами (за редким исключением), против которых они выработаны и подходят к ним по пространственной структуре. Эта способность антитела получила название комплиментарности.
Специфичность антитела обусловлена химической структурой, пространственным рисунком антидетерминант. Она связана с первичной структурой (чередованием аминокислот) белковой молекулы антитела.
Тяжелые и легкие цепи иммуноглобулинов обусловливают специфичность активного центра.
В последнее время обнаружено, что существуют антитела против антител. Они останавливают действие обычных антител. На основе этого открытия возникает новая теория - сетевая регуляция иммунной системы организма.
Теория образования антител затрагивает ряд вопросов из различных смежных дисциплин (генетики, биохимии, морфологии, цитологии, молекулярной биологии), стыкующихся в настоящее время с иммунологией. Существует несколько гипотез синтеза антител. Наибольшее признание получила клонально-селекционная гипотеза Ф. Бернета. Согласно ей, в организме присутствует более 10000 клонов лимфоидных и иммунологически компетентных клеток, способных реагировать с различными антигенами или их детерминантами и вырабатывать антитела. Допускается, что клоны таких клеток способны вступать в реакцию с собственными белками, в результате чего уничтожаются. Так погибают клетки, образующие антиагглютинины против А - антигена у организмов с группой крови А и анти - В - агглютины с группой крови В.
Если эмбриону ввести какой- либо антиген, то аналогичным образом он уничтожает соответствующий клон клеток, и новорожденный в течение всей последующей жизни будет толерантным к данному антигену. Теперь у новорожденного осталось только "свое", либо попавшее извне "чужое", которое распознается мезенхимными клетками, на поверхности которых имеются соответствующие рецепторы "флажки" - антидетерминанты. По мнению Ф. Бернета, мезенхимная клетка, получившая антигенное раздражение, дает начало популяции дочерних клеток, которые вырабатывают специфические (соответствующие антигену) антитела. Специфичность антител зависит от степени их взаимодействия с антигеном.
В формировании комплекса антиген-антитело участвуют возникающие между ионными группами кулоновские силы и силы притяжения Ван-Дер-Ваальса, полярные силы и силы Лондона, межатомные ковалентные связи.
Известно, что взаимодействуют они как целые молекулы. Поэтому на одну молекулу антигена приходится значительное количество молекул антител. Они создают слой толщиной до 30 А o . Комплекс антиген-антитело разъединим с сохранением первоначальных свойств молекул. Первая фаза соединения антитела с антигеном неспецифическая, невидимая, характеризуется абсорбцией антитела на поверхности антигена или гаптена. Протекает при температуре 37 o С за несколько минут. Вторая фаза специфическая, видимая, завершается феноменом агглютинации, преципитации или лизиса. В этой фазе необходимо присутствие электролитов, а в некоторых случаях и комплемента.
Несмотря на обратимость процесса, комплексообразование между антигеном и антителом играет положительную роль в защите организма, которая сводится к опсонизации, нейтрализации, иммобилизации и ускоренной элиминации антигенов.

По характеру воздействия на антиген различают антитела:

  1. коагулирующие (преципитины, агглютинины), облегчают фагоцитоз;
  2. лизирующие (комплементсвязывающие: бактериолизисы, цитолизисы, гемолизисы), вызывают растворение антигена;
  3. нейтрализующие (антитоксины), лишают антиген токсичности.

Реакция антиген-антитело может быть для организма полезной, вредной или индифферентной. Положительное влияние реакции в том, что она нейтрализует яды, бактерии, облегчая фагоцитоз, преципитирует белки, лишая их токсичности, лизирует трепонемы, лептоспиры, животные клетки
Комплекс антиген-антитело может быть причиной лихорадки, расстройства клеточной проницаемости, интоксикации Может возникнуть гемолиз, анафилактический шок, крапивница, сенная лихорадка, бронхиальная астма, аутоиммунное расстройство, отторжение трансплантата, аллергические реакции
В иммунной системе нет готовых структур, вырабатывающих антитела и осуществляющих реакции иммунитета Антитела образуются в ходе иммуногенеза.

Самыми первыми, кто всерьёз заинтересовался генной инженерией , были фармацевтические фирмы. Они быстро поняли, что, благодаря новым технологиям, можно получать практически любые белки и в больших количествах.

Что такое белок? Это рабочая молекула клетки. Она играет огромную роль в регуляции тех процессов, которые идут в организме. Почти все гормоны представляют собой небольшие белковые молекулы. Они содержат несколько десятков аминокислотных остатков.

До генной инженерии производство гормонов было чрезвычайно сложным делом. Людям просто повезло с инсулином, так как он являлся животным белком, взятым у свиньи или крупного рогатого скота, и мог служить заменой гормона человека. Но в большинстве случаев такое просто невозможно. А вот, благодаря генной инженерии, за короткий срок были получены штаммы бактерий, способные вырабатывать самые разнообразные человеческие гормоны.

Для примера можно рассмотреть гормон роста. Организм может его не вырабатывать в результате генетического дефекта. В этом случае человек становится карликом. Чтобы такое предотвратить, ребёнку необходимо вводить этот важнейший гормон. В прежние времена получить его можно было лишь из человеческих трупов. В наше же время он широко производится в лабораторных условиях.

Что же касается уже упомянутого инсулина, то он нужен в первую очередь людям, страдающим сахарным диабетом. Этот недуг распространён достаточно широко. Те, кто им страдает, в основной массе обходится животным инсулином. Но у отдельных больных он вызывает аллергию. Им нужен не животный, а человеческий инсулин. На сегодняшний день этот вопрос решён.

Интерферон

Большим достижением стала возможность получения человеческого интерферона. Интерферон - белок, который обладает чрезвычайно эффективным антивирусным действием. Самое же главное - его универсальность. Этот белок эффективен против самых разнообразных вирусов. По своей сути он является точно таким же средством для вирусов, как антибиотики для бактерий. Но есть одно важное отличие.

Антибиотик подавляет бактерию лишь в том случае, если у неё нет гена устойчивости. А для интерферона характерна видовая специфика. В человеческом организме подавлять вирусную инфекцию способен лишь человеческий интерферон, в некоторых случаях можно использовать обезьяний.

Но до недавнего времени наладить получение человеческого интерферона не удавалось. Специалисты не могли даже определить аминокислотную последовательность этого белка. Однако генно-инженерная фармакология, практически, в течение года кардинально всё изменила.

Получение интерферона

Из клеток крови, заражённых вирусной инфекцией, выделили интерфероновую мРНК. С помощью ревертазы (фермент, ведущий синтез ДНК по матрице РНК) синтезировали ген интерферона и внедрили его в плазмиду . Так был получен бактериальный штамм, способный вырабатывать искусственный интерферон. По нему определили аминокислотную последовательность. А уже по ней построили нуклеотидную последовательность гена, который был синтезирован. Его также встроили в плазмиду, и получился ещё один штамм, вырабатывающий нужный белок.

Что касается искусственного интерферона, то он оказался чрезвычайно эффективным противовирусным средством. Был осуществлён следующий опыт. Взяли 8 обезьян и разделили их на 2 группы. Всем животным ввели вирус энцефаломиокардита. К этому вирусу у животных иммунитета не было. Поэтому они были обречены на смерть.

Одна контрольная группа животных погибла по прошествию нескольких дней после заражения. А второй группе за несколько часов до заражения и затем несколько раз после заражения вводили искусственный интерферон. Все 4 обезьяны остались живы. В настоящее время данным препаратом лечат вирусные заболевания, гепатит и венерические болезни, вызываемые папилломой.

Вакцинация

Вакцинация - чрезвычайно эффективное средство по предупреждению вирусных эпидемий. Как правило, для вакцинации используются убитые вирусы. У них выведены из строя РНК, а вот белки сохранены. Убитые вирусы попадают в организм, а тот вырабатывает антитела. Если в дальнейшем в организм смогут попасть живые вирусы, то иммунная система их узнает и убьёт выработанными антителами.

Благодаря вакцинации, были ликвидированы такие страшные инфекции как оспа и чума. В Средние века от них умирали миллионы людей. Однако существуют вирусы, от которых не удаётся избавиться. Сюда можно отнести ВИЧ, вирус гриппа, а для животных вирус ящура. В данных случаях вакцинация либо вообще ничего не даёт, либо приводит к частичному успеху.

Причина заключается в изменчивости вирусов. Это означает, что в их белках происходят замены аминокислот, и эти вирусы становятся неузнаваемыми для иммунной системы человека. Соответственно, каждый год приходится проводить новую вакцинацию. Однако это чревато негативными факторами.

Когда вакцинацию проводят в огромных масштабах, то трудно гарантировать, что все вводимые в организм вирусные частицы убиты. Поэтому есть вероятность, что такое мероприятие может обернуться не спасением, а эпидемией.

А вот посредством генно-инженерной фармакологии можно получить идеальную безвредную вакцину. Для этого бактерию заставляют вырабатывать белок оболочки вируса. В этом случае вакцина вообще не содержит в себе инфицированных РНК, поэтому она уже изначально не может возбудить болезнь. А вот пробудить иммунитет может.

Такая вакцина была получена и опробована. Специалисты провели опыты с белком оболочки вируса ящура. Испытания дали определённые позитивные результаты, но не такие эффективные, как ожидалось вначале. Иммунизация такой вакцины в 1000 раз хуже, чем если использовать убитый вирус.

Вакцина против оспы

Рассматривая вопрос производства вакцин, нельзя не сказать об использовании живой вакцины против оспы. Эта история по праву заслуживает всяческого уважения. Началась она в то время, когда оспа свирепствовала на территории Европы и уносила миллионы жизней.

В то время все врачи искали средство, способное победить страшное заболевание. В 1798 году это удалось английскому врачу Эдварду Дженнеру. Он обратил внимание на тот факт, что доярки иногда заражались от коров лёгкой формой оспы. Данное заболевание было не смертельным, и женщины выздоравливали. Но зато в дальнейшем они уже не болели той оспой, от которой гибли люди.

Эдвард Дженнер начал специально заражать людей коровьей оспой. И таким образом защитил их от настоящей смертельной оспы. Так английский врач положил начало вакцинации (латинское слово vaccinus - коровья).

Коровий и человеческий вирус оспы разные, но у них много общего. Но самое главное то, что отдельные белки на поверхности коровьего вируса, который получил название вируса осповакцины, абсолютно схожи с аналогичными белками на поверхности человеческого вируса. Вот поэтому иммунная система, приведённая в боевую готовность в результате прививки вируса осповакцины, прекрасно защищает организм и от смертельного вируса оспы.

Следует заметить, что осповакцина оказалась уникальным средством для эпидемиологии. Данный вирус для человека абсолютно безвреден и чрезвычайно эффективен. В 1977 году ВОЗ объявила, что с оспой на планете покончено. А ведь она уносила десятки миллионов человеческих жизней.

Но надобность в вакцине против оспы не пропала. Сотрудники Института здравоохранения США решили посредством генно-инженерной фармакологии изменить эффективный вирус так, чтобы он защищал не только от оспы, но ещё и от гепатита.

В молекулу ДНК вируса осповакцины был встроен ген поверхностного белка вируса гепатита. При этом он был снабжён эффективным промотором (часть ДНК, с которой связывается РНК-полимераза для начала синтеза мРНК). После этого провели опыты на кроликах. Они показали, что при вакцинации таким вирусом в крови вырабатывается белок гепатита, но тут же в ответ появляются антитела, способные противостоять этому заболеванию.

Данный метод помог создать целую группу вакцин против различных вирусных заболеваний, наблюдаемых как у человека, так и у животных. За основу была взята осповакцина. В её ДНК встраивали соответствующие гены поверхностных белков. В настоящее время генно-инженерная фармакология взяла данную методику на вооружение. Она развивается чрезвычайно успешно. Ей пророчат большое будущее в борьбе со многими вирусными болезнями .

Установлено, что интерфероны синтезируются в клетке сначала в виде предшественников, содержащих на N-конце полипептидной цепи сигнальный пептид, который затем отщепляется и, в результате, образуется зрелый интерферон, обладающий полной биологической активностью. Бактерии не содержат ферментов, способных отщепить сигнальный пептид с образованием зрелого белка. Для того чтобы бактерии синтезировали зрелый интерферон, следует ввести в плазмиду только ту часть гена, которая его кодирует, и удалить часть гена, кодирующую сигнальный пептид. Процедура требует соблюдения следующих условий :

Ген интерферона должен содержать три участка расщепления рестриктазой Sau 3A1, из которых один находится рядом с сигнальной частью.

Неполное расщепление гена этим ферментом позволяет выделить фрагмент гена, содержащий нуклеотидную последовательность, кодирующую зрелый интерферон.

Триплет ATG, кодирующий цистеин, отщепляется ферментом вместе с сигнальной частью.

Для восстановления полинуклеотидной последовательности полного гена химически был синтезирован фрагмент ДНК, содержащий этот триплет, а также примыкающий к нему триплет ATG-точка инициации синтеза белка.

Этот фрагмент присоединили к изолированной части зрелого гена, в результате был восстановлен полный ген зрелого интерферона.

Реконструированный ген ввели в плазмиду таким образом, что с ним оказался рядом участок ДНК-промотор, обеспечивающий начало синтеза мРНК.

Экстракты из E. Coli, содержащие такую плазмиду, обладали противовирусной активностью.

Синтезированный генно-инженерным способом интерферон был выделен, очищен, и его физико-химические свойства оказались близкими свойствам интерферона, полученного из крови доноров. Удалось получить бактерии , способные синтезировать до 5 мг интерферона на 1 л бактериальной суспензии, содержащей примерно 10 11 бактериальных клеток, что в 5000 раз превосходит то количество интерферона, которое можно извлечь из 1 литра крови доноров.

В настоящее время гены интерферонов клонированы в дрожжи и клетки высших эукариот, способных осуществлять гликолизирование.

В 1991 году в США впервые для синтеза лейкоцитарного интерферона человека были употреблены генетически сконструированные клетки дрожжей Saccharomyces cerevisiae. Полученнаяэффективная экспрессия гена LeIF и замена бактерий клетками дрожжей позволили увеличить производство интерферона в 10 раз.

В России в 1994 году был осуществлён полный синтез гена α- И размером примерно 600 н. п. (нуклеотидных пунктов) в Институте биоорганической химии под руководством Н. М. Колосова.

Несмотря на успехи, достигнутые в области получения интерферонов с помощью генно-инженерных технологий и их применения для лечения различных вирусных заболеваний, в том числе онкологических, предстоит решить ещё многие вопросы, касающиеся расшифровки механизмов их биосинтеза и взаимодействия с другими веществами.


Схема биологического действия интерферона представлена на рисунке 8.34.

Рис. 8.34. Механизм действия интерферона

Механизм действия интерферона можно свести к следующим основным этапам:

1. Связываясь с клеточными рецепторами, интерфероны инициируют синтез ферментов 5"-олигоаденилансинтетазы и протеинкиназы за счёт инициации транскрипции соответствующих генов;

2. Оба фермента проявляют свою активность в присутствии двухцепочных ДНК, являющихся продуктами репликации многих вирусов;

3. Фермент 5"-олигоаденилансинтетаза катализирует синтез 2" 5"-олигоаденилатов (из АТР), которые активируют клеточную рибонуклеазу;

4. Протеинкиназа фосфорилирует и тем самым активирует фактор инициации трансляции IF 2. В результате этих событий ингибируется биосинтез белка и размножение вируса (деградация иРНК и рРНК) в инфицированной клетке, что вызывает её лизис.


Интерферон относится к важным защитным белкам иммунной системы. Открыт при изучении интерференции вирусов, т. е. явления, когда животные или культуры клеток, инфицированные одним вирусом, становились нечувствительными к заражению другим вирусом. Оказалось, что интерференция обусловлена образующимся при этом белком, обладающим защитным противовирусным свойством. Этот белок назвали интерфероном.

Интерферон представляет собой семейство белков-гликопротеидов, которые синтезируются клетками иммунной системы и соединительной ткани. В зависимости от того, какими клетками синтезируется интерферон, выделяют три типа: α, β и γ-интерфероны.

Альфа-интерферон вырабатывается лейкоцитами и он получил название лейкоцитарного; бета-интерферон называют фибробластным, поскольку он синтезируется фибробластами - клетками соединительной ткани, а гамма-интерферон - иммунным, так как он вырабатывается активированными Т-лимфоцитами, макрофагами, естественными киллерами, т. е. иммунными клетками.

Интерферон синтезируется в организме постоянно, и его концентрация в крови держится на уровне примерно 2 МЕ/мл (1 международная единица - ME - это количество интерферона, защищающее культуру клеток от 1 ЦПД 50 вируса). Выработка интерферона резко возрастает при инфицировании вирусами, а также при воздействии индукторов интерферона, например РНК, ДНК, сложных полимеров. Такие индукторы интерферона получили название интерфероногенов.

Помимо противовирусного действия интерферон обладает противоопухолевой защитой, так как задерживает пролиферацию (размножение) опухолевых клеток, а также иммуномодулирующей активностью, стимулируя фагоцитоз, естественные киллеры, регулируя антителообразование В-клетками, активируя экспрессию главного комплекса гистосовместимости.

Механизм действия интерферона сложен. Интерферон непосредственно на вирус вне клетки не действует, а связывается со специальными рецепторами клеток и оказывает влияние на процесс репродукции вируса внутри клетки на стадии синтеза белков.

Применение интерферона . Действие интерферона тем эффективнее, чем раньше он начинает синтезироваться или поступать в организм извне. Поэтому его используют с профилактической целью при многих вирусных инфекциях, например гриппе, а также с лечебной целью при хронических вирусных инфекциях, таких как парентеральные гепатиты (В, С, D), герпес, рассеянный склероз и др. Интерферон дает положительные результаты при лечении злокачественных опухолей и заболеваний, связанных с иммунодефицитами.

Интерфероны обладают видоспецифичностью, т. е. интерферон человека менее эффективен для животных и наоборот. Однако эта видоспецифичность относительна.

Получение интерферона . Получают интерферон двумя способами: а) путем инфицирования лейкоцитов или лимфоцитов крови человека безопасным вирусом, в результате чего инфицированные клетки синтезируют интерферон, который затем выделяют и конструируют из него препараты интерферона; б) генно-инженерным способом - путем выращивания в производственных условиях рекомбинантных штаммов бактерий, способных продуцировать интерферон. Обычно используют рекомбинантные штаммы псевдомонад, кишечной палочки со встроенными в их ДНК генами интерферона. Интерферон, полученный генно-инженерным способом, носит название рекомбинантного. В нашей стране рекомбинантный интерферон получил официальное название «Реаферон». Производство этого препарата во многом эффективнее и дешевле, чем лейкоцитарного.

Рекомбинантный интерферон нашел широкое применение в медицине как профилактическое и лечебное средство при вирусных инфекциях, новообразованиях и при иммунодефицитах.



Интерферон относится к важным защитным белкам иммунной системы. Открыт при изучении интерференции вирусов, т. е. явления, когда животные или культуры клеток, инфицированные одним вирусом, становились нечувствительными к заражению другим вирусом. Оказалось, что интерференция обусловлена образующимся при этом белком, обладающим защитным противовирусным свойством. Этот белок назвали интерфероном.

Интерферон представляет собой семейство белков-гликопротеидов, которые синтезируются клетками иммунной системы и соединительной ткани. В зависимости от того, какими клетками синтезируется интерферон, выделяют три типа: α, β и γ-интерфероны.

Альфа-интерферон вырабатывается лейкоцитами и он получил название лейкоцитарного; бета-интерферон называют фибробластным, поскольку он синтезируется фибробластами - клетками соединительной ткани, а гамма-интерферон - иммунным, так как он вырабатывается активированными Т-лимфоцитами, макрофагами, естественными киллерами, т. е. иммунными клетками.

Интерферон синтезируется в организме постоянно, и его концентрация в крови де­ржится на уровне примерно 2 МЕ/мл (1 меж­дународная единица - ME - это количество интерферона, защищающее культуру клеток от 1 ЦПД 50 вируса). Выработка интерферона резко возрастает при инфицировании вирусами, а также при воздействии индукторов интерферона, например РНК, ДНК, сложных полимеров. Такие индукторы интерферона получили название интерфероногенов.

Помимо противовирусного действия интерферон обладает противоопухолевой защитой, так как задерживает пролиферацию (размножение) опухолевых клеток, а также иммуномодулирующей активностью, стимулируя фагоцитоз, естественные киллеры, регулируя антителообразование В-клетками, активируя экспрессию главного комплекса гистосовместимости.

Механизм действия интерферона сложен. Интерферон непосредственно на вирус вне клетки не действует, а связывается со специальными рецепторами клеток и оказывает влияние на процесс репродукции вируса внутри клетки на стадии синтеза белков.

Применение интерферона . Действие интерферона тем эффективнее, чем раньше он начинает синтезироваться или поступать в организм извне. Поэтому его используют с профилактической целью при многих вирусных инфекциях, например гриппе, а также с лечебной целью при хронических вирусных инфекциях, таких как парентеральные гепатиты (В, С, D), герпес, рассеянный склероз и др. Интерферон дает положительные результаты при лечении злокачественных опухолей и заболеваний, связанных с иммунодефицитами.



Интерфероны обладают видоспецифичностью, т. е. интерферон человека менее эффективен для животных и наоборот. Однако эта видоспецифичность относительна.

Получение интерферона . Получают интерферон двумя способами: а) путем инфи­цирования лейкоцитов или лимфоцитов крови человека безопасным вирусом, в результате чего инфицированные клетки синтезируют интерферон, который затем выделяют и конс­труируют из него препараты интерферона; б) генно-инженерным способом - путем выращивания в производственных условиях рекомбинантных штаммов бактерий, способных продуцировать интерферон. Обычно используют рекомбинантные штаммы псевдомонад, кишечной палочки со встроенными в их ДНК генами интерферона. Интерферон, получен­ный генно-инженерным способом, носит название рекомбинантного. В нашей стране рекомбинантный интерферон получил официальное название «Реаферон». Производство этого препарата во многом эффективнее и дешевле, чем лейкоцитарного.

Рекомбинантный интерферон нашел широкое применение в медицине как профилактическое и лечебное средство при вирусных инфекциях, новообразованиях и при иммунодефицитах.

Антигены. Определение. Понятие о полноценных и неполноценных антигенах. Требования, предъявляемые к антигенам. Понятия об антигенных свойствах микроорганизмов. Антигенная структура бактерий.

Антигены (от лат. anti - против, genos - род) – генетически чужеродные вещества, которые при введении во внутреннюю среду организма способны вызывать иммунный ответ в виде образования антител или иммунных Т-лимфоцитов и взаимодействовать с ними. Основные свойства антигена - иммуногенность и специфичность. Антигенами являются структурные и химические элементы клеток и продукты их метаболизма.

Антигенами называют чужеродные для организма вещества коллоидной структуры, которые при попадании в его внутреннюю среду способны вызывать ответную специфическую иммунологическую реакцию, проявляющуюся, в частности, в образовании специфических антител, появлении сенсибилизированных лимфоцитов или в возникновении состояния толерантности к этому веществу.



Вещества, являющиеся антигенами, должны быть чужеродны для организма, макромолекулярны, находиться в коллоидном состоянии, поступать в организм парентерально, т.е. минуя желудочно-кишечный тракт, в котором обычно происходит расщепление вещества и потеря его чужеродности. Под чужеродностью антигенов следует понимать определенную степень химического различия между антигеном и макромолекулами организма, во внутреннюю среду которого, но попадает.

Антигенные свойства связаны с величиной молекулярной массы макромолекулы. Чем выше молекулярная масса вещества, тем выше его антигенность. Вместе с тем неверно считать, что высокая молекулярная масса является обязательным свойством антигена. Так, глюкогон, вазопрессин – ангиотензин также обладают антигенными свойствами.

Принято различать полноценные антигены, неполноценные антигены (гаптены) и полугаптены.

Полноценными антигенами называют такие, которые вызывают образование антител или сенсибилизацию лимфоцитов и способны реагировать с ними как в организме, так и в лабораторных реакциях. Свойствами полноценных антигенов обладают белки, полисахариды, высокомолекулярные нуклеиновые кислоты и комплексные соединения этих веществ.

Неполноценные антигены, или гаптены, сами по себе не способны вызывать образование антител или сенсибилизацию лимфоцитов. Это свойство появляется лишь при добавлении к ним полноценных антигенов («проводников»), а среди образующихся антител или сенсибилизированных лимфоцитов часть специфична к «проводнику», а часть – к гаптену.

Полугаптенами называют сравнительно простые вещества, которые при поступлении во внутреннюю среду организма могут химически соединяться с белками этого организма и придавать им свойства антигенов. К этим веществам могут принадлежать и некоторые лекарственные препараты (йод, бром, антипирин и др.).

Молекула антигена состоит из двух неравных частей. Активная (малая часть) с носит название антигенной детерминанты (эпитоп) и определяет антигенную специфичность. Антигенные детерминанты расположены в тех местах молекулы антигена, которые находятся в наибольшей связи с микроокружением. В белковой молекуле, например, они могут располагаться не только на концах полипептидной цепи, но и в других ее частях. Антигенные детерминанты содержат в своем составе по крайней мере три аминокислоты с жесткой структурой (тирозин, триптофан, фенилаланин). Специфичность антигена связана также с порядком чередования аминокислот полипептидной цепи и комбинацией их положений по отношению друг к другу. Количество антигенных детерминант у молекулы антигена определяет его валентность. Она тем выше, чем больше относительная молекулярная масса молекулы антигена.

Остальная (неактивная) часть молекулы антигена, как полагают, играет роль носителя детерминанты и способствует проникновению антигена во внутреннюю среду организма, его пиноцитозу или фагоцитозу, клеточной реакции на проникновение антигена, образование медиаторов межклеточного взаимодействия в иммунном ответе (Т-лимфоциты имеют рецепторы к носителю, В- к антигенной детерминанте).

Соответственно анатомическим структурам бактериальной клетки различают Н-антигены (жгутиковые, если бактерия их имеет), К-антигены (располагаются на поверхности клеточной сткнки), О-антигены (связан с клеточной стенкой бактерий), антигены экскретируемые бактериями в окружающую их среду (белки-экзотоксины, полисахариды капсул).

Среди многочисленных антигенов микробной клетки различают такие, которые присущи только данному типу микробов (типовые антигены), данному виду (видовые антигены), а также общие для группы (семейства) микроорганизмов (групповые антигены).

Таким образом, бактериальная клетка (как и микроорганизмы других царств микробов – вирусы, простейшие, грибки) представляют собой сложный комплекс многочисленных антигенов. При ее попадании во внутреннюю среду макроорганизма на многие из этих антигенов будут образовываться свои специфические антитела. Одни антигены индуцируют образование едва заметного количества антител (титр), другие – быстрое и значительное антителообразование. Соответственно этому различают «слабые» и «сильные» антигены.

Не все антигены бактериальной клетки в равной степени участвуют в индукции невосприимчивости (иммунитета) к повторному попаданию в макроорганизм патогенных микробов того же вида. Способность антигена индуцировать иммунитет называют иммуногенностью, а такой антиген – иммуногеном. Установлено также, что определенные антигены некоторых микроорганизмов могут вызывать развитие различных типов гиперчувствительности (аллергии). Такие антигены называют аллергенами.

По структуре вирусной чстицы различают несколько групп антигенов: ядерные, капсидные и суперкапсидные. Антигенный состав вириона зависит от строения самой вирусной частицы. Антигенная специфичность простоорганизованных вирусов связана с рибо- и дезоксинуклеопротеинами. У сложноорганизованных вирусов часть антигена связана с нуклеокапсидом, а другая локализуется во внешней оболочке – суперкапсиде.

Иммуногенность - способность индуцировать иммунный ответ.

Специфичность - способность антигена вступать в реакции взаимодействия со специфичными к нему антителами или активированными (примированными) лимфоцитами, что приводит к нейтрализации этого антигена.

Иммуногенность определяется:

Чужеродностью , т.е. вещество должно распознаваться иммунной системой как «не свое». При этом чем меньше выражено генетическое родство между организмом и вводимым веществом, тем лучшим иммуногеном оно является;

Молекулярной массой , которая должна быть не менее 5-10 кД. Чем больше молекулярная масса антигена, тем сильнее будет иммунный ответ;

Химической природой . Антигены могут быть белками, полисахаридами, полипептидами, фосфолипидами, нуклеиновыми кислотами и др.

В зависимости от химической природы и молекулярной массы антигены могут быть полными и неполными

(гаптены).

Полные антигены (иммуногены) индуцируют специфический иммунный ответ и вступают в реакции взаимодействия с антителами и активированными Т-лимфоцитами. Это высокомолекулярные вещества - белки, полисахариды, гликопротеины, липополисахариды, липопротеины, нуклеопротеины и корпускулярные формы (микроорганизмы, чужеродные клетки и др.). Антигены могут быть экзогеными или эндогенными. Эндогенные АГ - собственные клетки организма с измененным геномом и образуемые ими продукты (аутоантигены).

Гаптены - это простые химические соединения малой молекулярной массы: дисахара, липиды, пептиды, нуклеиновые кислоты и др. Они не обладают иммуногенностью, но имеют высокий уровень специфичности при взаимодействии с продуктами иммунного ответа (антителами и Т-лимфоцитами). Если гаптен соединить с белком, он приобретает свойство иммуногенности (т. е. становится полным). Специфичность этого комплекса определяется гаптеном

Полугаптены

Проантигены

Полугаптены образуются при соединении неорганических веществ (йод, бром, азот и др.) с белком. Такие комплексы могут вызывать образование антител, специфичных к неорганическим соединениям.

Проантигены являются аллергенами-гаптенами или неантигенными веществами (сульфаниламиды, антибиотики, фенолфталеин и др.). При соединении с белками макроорганизма они способны вызывать состояние сенсибилизации и развитие аллергических реакций.

Полугаптены образуются при соединении неорганических веществ (йод, бром, азот и др.) с белком. Такие комплексы могут вызывать образование антител, специфичных к неорганическим соединениям.

Проантигены являются аллергенами-гаптенами или неантигенными веществами (сульфаниламиды, антибиотики, фенолфталеин и др.). При соединении с белками макроорганизма они способны вызывать состояние сенсибилизации и развитие аллергических реакций.



Понравилась статья? Поделитесь ей
Наверх