Болезни, обусловленные нарушением синтеза функционирования белков. Нарушения обмена аминокислот. Классификация видов белкового синтеза и гормональная

Несмотря на то, что врожденные нарушения процесса метаболизма встречаются весьма редко, чтобы их возможно было рассматривать как причину развития эпилепсии, эпилептический приступ является частым признаком метаболических нарушений. Во время некоторых таких метаболических нарушений болезнь устраняется специальным лечением диетой и добавками.

Однако в большинстве случаев такое лечение не дает прогресса, и требуется назначать общепринятую классическую противоэпилептическую терапию, которая весьма часто становиться низкоэффективной. При этом не так часто типы эпилептических приступов являются особыми для тех или иных метаболических нарушений, и с помощью электроэнцефалографии обычно не фиксируются.

Для определения качественного диагноза, нужно иметь в виду другие симптоматические признаки и синдромы, а также не нужно исключать случаев, связанных с дополнительными методами .

Предлагается перечень наиболее значимых симптомов эпилептических приступов, обусловленных врожденными метаболическими нарушениями, нарушениями памяти, периодическими интоксикациями и весьма частыми нарушениями нейротрансмиттерных систем.

Так же не следует забывать о витамино-чувствительной эпилепсии и некоторые других метаболических нарушениях, возможно похожих по патогенезу, и важность их признаков для лечения и диагностики. И так классифицируем эпилепсию по метаболическим нарушениям: эпилепсия при врожденных нарушениях метаболизма, где приступы могут быть причиной недостатка энергозатрат, выраженными интоксикациями, периодическими нарушениями памяти, повреждениями нейротрансмиттерных систем со случаями отсутствия торможения или возбуждения, которые могут быть связаны с мальформациями сосудов мозга.

Сюда же относятся приступы связанные с энергетическим дефицитом, которые в свою очередь обусловлены гипоклемией, дефицитом в дыхательной цепочке, а так же дефицитом креатина и митохондриальными нарушениями. В свою очередь эпилептические приступы, связанные с токсическими нарушениями, обусловлены аминокислопатией, органическими ацидуриями, дефектами цикла мочевины.

В качестве примера рассмотрим нарушение метаболизма креатина, которое состоит из трех различных причин. Среди которых нарушение транспорта креатина в головной мозг вызванное нарушением сцепленного транспортера креатина, следующее — это нарушение синтеза креатина вследствие дефекта гуанидинацетат метилтрансфераза и заключительная причина это аргининглицин-амидинтрансфераза.

Однако только дефицит гуанидинацетат метилтрансфераза постоянно ассоциируется с эпилепсией, которая резистентная к общепринятой терапии.

Превентивное назначение добавок с креатином весьма часто приводит к улучшению состояния пациента. Но все же у некоторых пациентов понижение токсических составляющих гуанидинацетата путем ограничения количества употребления аргинина с добавками, которые содержат орнитин, позволило достичь возможности контролировать эпилептические приступы.

К этому следует добавить , которое имеет возможность практически полностью предотвратить появление неврологических симптомов. Современная медицина выделяет множество типов эпилептических приступов, которые в свою очередь также разнообразны.

Приступы есть симптомом для большого количества метаболических нарушений, встречающихся в эпилепсии. Весьма часто эпилептические приступы возникают только тогда, пока не назначена адекватная терапия, или же являются последствиями острого декомпенсированного нарушения метаболизма, к которым можно отнести, например, гипогликемия или гипераммониемия.

А в некоторых случаях эпилептический приступ является общим проявлением заболевания и могут вести к медикаментозно-резистентной эпилепсии, такой как например, синдром дефицита креатинина и дефицита гуанидинацетат метилтрансферазы.

В других случаях эпилепсию, вызванную метаболическими нарушениями предупреждают ранним назначением индивидуально подобранного «метаболического» лечения, которое используют после скринингового обследования пациентов, страдающих фенилкетонурией или дефицитом биотинидазы.

При таких расстройствах, как глютеновая ацидурия первого типа, «метаболическая» терапия назначается совместно со стандартными противоэпилептическими препаратами; но не следует забывать, что при многих метаболических нарушениях единственным средством для локализации эпилептических приступов будет монотерапия противоэпилептическими препаратами.

Известно, что белки подвергаются гидролизу под влиянием эндо- и экзопептидаз, образующихся в желудке, поджелудочной железе и кишечнике. Эндопептидазы (пепсин, трипсин и химотрипсин) вызывают расщепление белка в средней его частин до альбумоз и пептонов. Экзопептидазы (карбопептидаза, аминопептидаза и дипептидаза), образующиеся в поджелудочной железе и тонком кишечнике, обеспечивают отщепление концевых участков белковых молекул и продуктов их распада до аминокислот, всасывание которых происходит в тонком кишечнике с участием АТФ.

Нарушения гидролиза белков могут быть вызваны многими причинами: воспаление, опухоли желудка, кишечника, поджелудочной железы; резекции желудка и кишечника; общие процессы типа лихорадки, перегревания, гипотермии; при усилении перистальтики вследствие расстройств нейроэндокринной регуляции. Все вышеназванные причины ведут к дефициту гидролитических ферментов или ускорению перистальтики, когда пептидазы не успевают обеспечить расщепление белков.

Нерасщепленные белки поступают в толстый кишечник, где под влиянием микрофлоры начинаются процессы гниения, приводящие к образованию активных аминов (кадаверин, тирамин, путресцин, гистамин) и ароматических соединений типа индола, скатола, фенола, крезола. Эти токсические вещества обезвреживаются в печени путем соединения с серной кислотой. В условиях резкого усиления процессов гниения возможна интоксикация организма.

Нарушения всасывания обусловлены не только расстройствами расщепления, но и дефицитом АТФ, связанным с торможением сопряжения дыхания и окислительного фосфорилирования и блокадой данного процесса в стенке тонкого кишечника при гипоксии, отравлениях флоридзином, монойодацетатом.

Нарушения расщепления и всасывания белков, так же как и недостаточное поступление белков в организм, ведут к белковому голоданию, нарушению синтеза белка, анемии, гипопротеинемии, склонности к отекам, недостаточности иммунитета. В результате активации системы гипоталамус-гипофиз-кора надпочечников и гипоталамо-гипофизарно-тиреоидной системы увеличивается образование глюкокортикоидов и тироксина, которые стимулируют тканевые протеазы и распад белка в мышцах, желудочно-кишечном тракте, лимфоидной системе. Аминокислоты при этом могут служить энергетическим субстратом и, кроме того, усиленно выводятся из организма, обеспечивая формирование отрицательного азотистого баланса. Мобилизация белка является одной из причин дистрофии, в том числе в мышцах, лимфоидных узлах, желудочно-кишечном тракте, что усугубляет нарушение расщепления и всасывания белков.

При всасывании нерасщепленного белка возможна аллергизация организма. Так, искусственное вскармливание детей нередко ведет к аллергизации организма по отношению к белку коровьего молока и другим белковым продуктам. Причины, механизмы и последствия нарушений расщепления и всасывания белков представлены на схеме 8.

Схема 8. Нарушения гидролиза и всасывания белков
Нарушения гидролиза Нарушения всасывания
Причины Воспаление, опухоли, резекции желудка и кишечника, усиление перистальтики (нервные влияния, снижение кислотности желудка, прием недоброкачественной пищи)
Механизмы Дефицит эндопептидаз (пепсин, трипсин, химотрипсин) и экзопептидаз (карбо-, амино- и дипептидазы) Дефицит АТФ (всасывание аминокислот - активный процесс и происходит с участием АТФ)
Последствия Белковое голодание -> гипопротеинемия отеки, анемия; нарушение иммунитета -> склонность к инфекционным процессам; диарея, нарушение транспорта гормонов.

Активация катаболизма белков -> атрофия мышц, лимфоидных узлов, желудочно-кишечного тракта с последующим усугублением нарушений процессов гидролиза и всасывания не только белков, витаминов, но и других веществ; отрицательный азотистый баланс.

Всасывание нерасщепленного белка -> аллергизация организма.

При поступлении нерасщепленных белков в толстый кишечник усиливаются процессы бактериального расщепления (гниения) с образованием аминов (гистамин, тирамин, кадаверин, путресцин) и ароматических токсических соединений (индол, фенол, крезол, скатол)

Этот тип патологических процессов включает недостаточность синтеза, усиление распада белков, нарушения превращения аминокислот в организме.

  • Нарушение синтеза белка.

    Биосинтез белков происходит на рибосомах. С участием транспортной РНК и АТФ на рибосомах образуется первичный полипептид, в котором последовательность включения аминокислот определяется ДНК. Синтез альбуминов, фибриногена, протромбина, альфа- и бета-глобулинов происходит в печени; гамма-глобулины образуются в клетках ретикулоэндотелиальной системы. Нарушения синтеза белка наблюдаются при белковом голодании (в результате голодания или нарушения расщепления и всасывания), при поражении печени (расстройства кровообращения, гипоксия, цирроз, токсико-инфекционные поражения, дефицит анаболических гормонов). Важной причиной является наследственно обусловленное поражение В-системы иммунитета, при котором блокировано образование гамма-глобулинов у мальчиков (наследственные агаммаглобулинемии).

    Недостаточность синтеза белка приводит к гипопротеинемии, нарушению иммунитета, дистрофическим процессам в клетках, возможно замедление свертываемости крови из-за уменьшения фибриногена и протромбина.

    Увеличение синтеза белка обусловлено избыточной продукцией инсулина, андрогенов, соматотропина. Так, при опухоли гипофиза с вовлечением эозинофильных клеток образуется избыток соматотропина, что приводит к активации синтеза белка и усилению процессов роста. Если избыточное образование соматотропина происходит в организме с незавершенным ростом, то усиливается рост тела и органов, проявляющийся в виде гигантизма и макросомии. Если усиление секреции соматотропина происходит у взрослых, то увеличение синтеза белка приводит к росту выступающих частей тела (кистей, стоп, носа, ушей, надбровных дуг, нижней челюсти и т. д.). Это явление получило название акромегалии (от греч. acros - кончик, megalos - большой). При опухоли сетчатой зоны коры надпочечников, врожденном дефекте образования гидрокортизона, а также опухоли семенников усиливается образование адрогенов и активируется синтез белка, что проявляется в увеличении объема мускулатуры и раннем формировании вторичных половых признаков. Увеличение синтеза белка является причиной положительного азотистого баланса.

    Увеличение синтеза иммуноглобулинов происходит при аллергических и аутоаллергических процессах.

    В ряде случаев возможно извращение синтеза белка и образование белков, которые в норме не обнаруживаются в крови. Это явление получило название парапротеинемии. Парапротеинемия наблюдается при миеломной болезни, болезни Вальденстрема, некоторых гаммапатиях.

    При ревматизме, тяжелых воспалительных процессах, инфаркте миокарда, гепатите синтезируется новый, так называемый С-реактивный белок. Он не является иммуноглобулином, хотя его появление обусловлено реакцией организма на продукты повреждения клеток.

  • Усиление распада белков.

    При белковом голодании, изолированном увеличении образования тироксина и глюкокортикоидов (гипертиреоз, синдром и болезнь Иценко-Кушинга) активируются тканевые катепсины и распад белка прежде всего, в клетках поперечно-полосатой мускулатуры, лимфоидных узлов, желудочно-кишечного тракта. Образующиеся аминокислоты выделяются в избытке с мочой, что способствует формированию отрицательного азотистого баланса. Избыточная продукция тироксина и глюкокортикоидов проявляется также в нарушении иммунитета и повышенной склонности к инфекционным процессам, дистрофии различных органов (поперечно-полосатой мускулатуры, сердца, лимфоидных узлов, желудочно-кишечного тракта).

    Наблюдения показывают, что за три недели в организме взрослого человека белки обновляются наполовину путем использования аминокислот, поступивших с пищей, и за счет распада и ресинтеза. По данным Мак-Мюррей (1980), при азотистом равновесии ежедневно синтезируется 500 г белков, т. е. в 5 раз больше, чем поступает с пищей. Это может быть достигнуто за счет повторного использования аминокислот, в том числе и образующихся при распаде белков в организме.

    Процессы усиления синтеза и распада белков и их последствия в организме представлены в схемах 9 и 10.

    Схема 10. Нарушение азотистого равновесия
    Положительный азотистый баланс Отрицательный азотистый баланс
    Причины Увеличение синтеза и, как следствие, уменьшение выведения азота из организма (опухоли гипофиза, сетчатой зоны коры надпочечников). Преобладание распада белка в организме и, как следствие, выделение азота в большем количестве по сравнению с поступлением.
    Механизмы Усиление продукции и секреции гормонов, обеспечивающих синтез белка (инсулин, соматотропин, гормоны андрогенного действия). Увеличение продукции гормонов, стимулирующих катаболизм белка путем активации тканевых катепеи-нов (тироксин, глюкокортикоиды).
    Последствия Ускорение процессов роста, преждевременное половое созревание. Дистрофия, в том числе и желудочно-кишечного тракта, нарушение иммунитета.
  • Нарушения превращения аминокислот.

    В ходе межуточного обмена аминокислоты подвергаются трансаминированию, дезаминированию, декарбоксилированию. Трансаминирование направлено на образование новых аминокислот путем переноса аминогруппы на кетокислоту. Акцептором аминогрупп большинства аминокислот является альфа-кетоглютаровая кислота, которая превращается в глютаминовую. Последняя снова может отдавать аминогруппу. Этот процесс контролируется трансаминазами, коферментом которых является пиридоксальфосфат, производное витамина В 6 (пиридоксин). Трансаминазы содержатся в цитоплазме и митохондриях. Донатором аминогрупп является глютаминовая кислота, находящаяся в цитоплазме. Из цитоплазмы глютаминовая кислота поступает в митохондрии.

    Торможение реакций трансаминирования возникает при гипоксии, дефиците витамина В 6 , в том числе при подавлении сульфаниламидами, фтивазидом кишечной микрофлоры, которая частично синтезирует витамин В 6 , а также при токсико-инфекционных поражениях печени.

    При тяжелых повреждениях клеток с явлениями некроза (инфаркт, гепатит, панкреатит) трансаминазы из цитоплазмы поступают в большом количестве в кровь. Так, при остром гепатите, по данным Мак-Мюррея (1980), активность глютамат-алланинтрансферазы в сыворотке крови возрастает в 100 раз.

    Основным процессом, приводящим к разрушению аминокислот (деградации их), является безаминирование, при котором под влиянием ферментов аминооксидаз образуются аммиак и кетокислота, подвергающиеся дальнейшему превращению в цикле трикарбоновых кислот до С0 2 и Н 2 0. Гипоксия, гиповитаминозы С, РР, В 2 , В 6 блокируют распад аминокислот по этому пути, что способствует их увеличению в крови (аминоацидемия) и выделению с мочой (аминоацидурия). Обычно при блокаде дезаминирования часть аминокислот подвергается декарбоксилированию с образованием ряда биологически активных аминов - гистамина, серотонина, гама-амино-масляной кислоты, тирамина, ДОФА и др. Декарбоксилирование тормозится при гипертиреозе и избытке глюкокортикоидов.

В результате дезаминирования аминокислот образуется аммиак, который обладает сильно выраженным цито-токсическим эффектом, особенно для клеток нервной системы. В организме сформирован ряд компенсаторных процессов, обеспечивающих связывание аммиака. В печени из аммиака синтезируется мочевина, являющаяся сравнительно безвредным продуктом. В цитоплазме клеток аммиак связывается глютаминовой кислотой с образованием глютамина. Этот процесс получил название амидирования. В почках аммиак соединяется с ионом водорода и в виде солей аммония удаляется с мочой. Этот процесс, названный аммониогенезом, является одновременно важным физиологическим механизмом, направленным на поддержание кислотно-щелочного равновесия.

Таким образом, в результате дезаминирования и синтетических процессов в печени образуются такие конечные продукты азотистого обмена, как аммиак и мочевина. В ходе превращения в цикле трикарбоновых кислот продуктов межуточного обмена белков - ацетилкоэнзима-А, альфа-кетоглютарата, сукцинилкоэнзима-А, фумарата и оксалоацетата - образуются АТФ, вода и С0 2 .

Конечные продукты азотистого обмена выделяются из организма разными путями: мочевина и аммиак - преимущественно с мочой; вода с мочой, через легкие и потоотделением; С0 2 - преимущественно через легкие и в виде солей с мочой и потом. Эти небелковые вещества, содержащие азот, составляют остаточный азот. В норме его содержание в крови составляет 20-40 мг% (14,3-28,6 ммоль/л).

Основным феноменом нарушений образования и выведения конечных продуктов белкового обмена является увеличение небелкового азота крови (гиперазотемия). В зависимости от происхождения гиперазотемия подразделяется на продукционную (печеночную) и ретенционную (почечную).

Продукционная гиперазотемия обусловлена поражениями печени (воспаление, интоксикации, цирроз, расстройства кровообращения), гипопротеинемией. При этом синтез мочевины нарушается, и аммиак накапливается в организме, оказывая цитотоксический эффект.

Ретенционная гиперазотемия возникает при поражении почек (воспаление, расстройства кровообращения, гипоксия), нарушении оттока мочи. Это ведет к задержке и увеличению в крови остаточного азота. Данный процесс сочетается с активацией альтернативных путей выделения азотистых продуктов (через кожу, желудочно-кишечный тракт, легкие). При ретенционной гиперазотемии увеличение остаточного азота идет преимущественно за счет накопления мочевины.

Нарушения образования мочевины и выделения азотистых продуктов сопровождаются расстройствами водно-электролитного баланса, нарушением функций органов и систем организма, особенно нервной системы. Возможно развитие печеночной или уремической комы.

Причины гиперазотемии, механизмы и изменения в организме при этом представлены на схеме 11.

Схема 11. Нарушения образования и выведения конечных продуктов белкового обмена
ГИПЕРАЗОТЕМИЯ
Печеночная (продукционная) Почечная (ретенционная)
Причины Поражения печени (интоксикации, цирроз, расстройства кровообращения), белковое голодание Нарушение образования мочевины в печени
Механизмы Воспаление почек, расстройства кровообращения, нарушения оттока мочи Недостаточное выделение азотистых продуктов с мочой
Изменения в организме Последствия - Нарушение функции органов и систем, особенно нервной системы. Возможно развитие печеночной или уремической комы.

Механизмы компенсации - Амидирование в клетках, аммониогенез в почках, выделение азотистых продуктов альтернативными путями (через кожу, слизистые, желудочно-кишечный тракт)

Источник : Овсянников В.Г. Патологическая физиология, типовые патологические процессы. Учебное пособие. Изд. Ростовского университета, 1987. - 192 с.

Витамины при эпилепсии просто необходимы для организма, укрепления и поддержания иммунитета, однако нужно знать какие из них нужно употреблять.

Витамины являются веществами, необходимыми для нормальной жизнедеятельности больных эпилепсией. Однако при этом эпилепсия требует контролируемого приема витаминов.

Почему нужно принимать витамины Во-первых, некоторые наследственные болезни обмена веществ могут провоцировать развитие эпилептических приступов. К примеру, нарушение обмена витамина В6 (пиридоксина), которое продиагностировано при рождении ребенка, при помощи биотического исследования крови, может быть причиной возникновения судорожных приступов детского раннего возраста (называет их пиридоксин).

Во-вторых, разнообразные противоэпилептические препараты при продолжительном употреблении могут влиять на уровень таких витаминов как Е, D, C, В22, В6, В2, биотин, бета-каротин, фолиевая кислота в организме.

Помимо этого, исследования последних лет предполагает, что дефицит данных витаминов в организме больных, которые страдают эпилепсией, может повлиять на развитие некоторых поведенческих нарушений.

Как правильно принимать витамины Но при эпилепсии является спорным и заместительный постоянный прием витаминов, а бесконтрольное употребление витаминов в качестве самолечения и по несогласованной схеме лечения (комбинированная витаминотерапия или монотерапия, длительность витаминотерапии, суточная доза витаминных препаратов и т. д.) с врачом является просто недопустимым.

Витамины при эпилепсии нужно принимать под тщательным контролем. Об этом следует помнить, потому что при несбалансированном или продолжительном приеме некоторых витаминов может снижаться эффективность противоэпилептических препаратов, также возможно провоцирование эпилептических приступов (к примеру, бесконтрольный и длительный прием препаратов фолиевой кислоты).

Витамины для беременных, страдающих эпилепсией Однако, в это же время, выписывание фолиевой кислоты женщинам детородного возраста, которые страдают эпилепсией, и которые принимают препараты карбамазепина или вальпроевой кислоты, показано для профилактики тератогенных эффектов противоэпилептических препаратов на плод и для снижения рисков не вынашивания беременности или рождения малыша с врожденным порок развития.

Какие витамины используются при лечении эпилепсии?

Витамин В2 (рибофлавин, лактофлавин) Один из наиболее важных водорастворимых витаминов, кофермент многих биохимических процессов. Витамин B2 необходим для образования эритроцитов, антител, для регуляции роста и репродуктивных функций в организме. Он также необходим для здоровой кожи, ногтей, роста волос и, в целом, для здоровья всего организма, включая функцию щитовидной железы. Также витамин B2 способствует усвоению пиридоксина (витамина B6).

Дефицит рибофлавина, прежде всего, отражается на тканях, богатых капиллярами и мелкими сосудами (например, ткань головного мозга). При дефиците витамина В2 частым проявлением может быть церебральная недостаточность разной степени выраженности, проявляющаяся ощущением общей слабости, головокружением, снижением тактильной и болевой чувствительности, повышением сухожильных рефлексов и др. Потребность в рибофлавине увеличивается при повышенных физических нагрузках, а также при приеме антагонистов рибофлавина — оральных контрацептивов и некоторых противоэпилептических препаратов. Поэтому диета, богатая рибофлавином, или витаминотерапия могут назначаться больным эпилепсией.

К пищевым продуктам с высоким содержанием рибофлавина относятся печень, почки, дрожжи, яичный белок, сыр, рыба, миндаль, шампиньоны, белые грибы, лисички, творог, брокколи, гречневая крупа, мясо, молоко, зародыши зерновых культур, горох, листовые зеленые овощи. В небольшим количестве рибофлавин содержится в очищенном рисе, макаронных изделиях, белом хлебе, фруктах и овощах.

Человеческий организм не накапливает рибофлавин «про запас», и любой избыток выводится вместе с мочой (при передозировке рибофлавина моча окрашивается в ярко-желтый цвет).

Витамин В5 (пантотеновая кислота) Необходим для обмена жиров, углеводов, аминокислот, синтеза жизненно важных жирных кислот, холестерина, гистамина, ацетилхолина, гемоглобина. Пантотеновая кислота получила свое название от греческого «пантотен», что означает «всюду», из-за чрезвычайно широкого ее распространения. Пантотеновая кислота, попадая в организм, превращается в пантетин, который входит в состав кофермента А, который играет важную роль в процессах окисления и ацетилирования. Витамин В5 необходим для нормального поглощения и метаболизма фолиевой кислоты (витамина В9).

Витамин В1 (тиамин) повышает эффективность использования витамина В5.

Гомопантотеновая кислота является природным гомологом пантотеновой кислоты (витамина В5) и представляет собой соединение, в котором?-аланин заменен?-аминомасляной кислотой (ГАМК). Она довольно широко распространена в растительном и животном мире и содержится в головном мозге в количестве 0,5-1% от общего содержания ГАМК в тканях Причиной дефицита витамина В5 могут быть малое содержание в пище белков, жиров, витамина С, витаминов группы В, заболевания тонкого кишечника с синдромом мальабсорбции, а также длительное применение некоторых противоэпилептических препаратов (например, барбитуратов), многих антибиотиков и сульфаниламидов. Концентрация витамина падает от воздействия кофеина и алкоголя. При алкогольном отравлении и при солнечных ожогах может быть состояние близкое к авитаминозу В5.

Симптомы недостатка витамина В5: усталость, депрессия, расстройство сна, повышенная утомляемость, головные боли, тошнота, мышечные боли, жжение, покалывание, онемение пальцев ног, жгучие, мучительные боли в нижних конечностях, преимущественно по ночам, покраснение кожи стоп, диспепсия, снижение сопротивляемости организма к инфекциям (частое возникновение острых респираторных заболеваний).

Суточная потребность человека в витамине В5 удовлетворяется при нормальном смешанном питании, так как пантотеновая кислота содержится в очень многих продуктах животного и растительного происхождения (гречневая и овсяная крупы, горох, чеснок, икра рыб, яичный желток, зеленые части растений, молоко, морковь, цветная капуста, хлеб с отрубями и т. д.). В наиболее концентрированном виде она содержится в пивных дрожжах и пчелином маточном молочке. Кроме того, витамин В5 синтезируется кишечной флорой.

Побочные эффекты при приеме пантотеновой кислоты очень редки, изредка может быть диспепсия. Передозировка витамина В5 возможна при длительном использовании не только монопрепаратов, но и при бесконтрольном использовании поливитаминных комплексов с высокими дозами витамина.

Витамин В6 Витамин В6 – это общее название трех веществ: пиридоксина, пиридоксаля, пиридоксамина, а также их фосфатов, среди которых наиболее важен пиридоксальфосфат. В человеческом организме любое из этих веществ превращается в фосфорилированную форму пиридоксина — пиридоксальфосфат, который принимает участие в образовании эритроцитов, участвует в процессах усвоения нервными клетками глюкозы, необходим для белкового обмена и трансаминирования аминокислот. Пиридоксальфосфат обеспечивает процессы декарбоксилирования, переаминирования, дезаминирования аминокислот, участвует в синтезе белка, ферментов, гемоглобина, простагландинов, обмене серотонина, катехоламинов, глутаминовой кислоты, гамма-аминомаслянной кислоты (ГАМК), гистамина, улучшает использование ненасыщенных жирных кислот, снижает уровень холестерина и липидов в крови, улучшает сократимость миокарда, способствует превращению фолиевой кислоты в ее активную форму, стимулирует гемопоэз. Достаточное количество витамина В6 необходимо для нормального функционирования печени.

Возможные последствия дефицита витамина В6: судороги, депрессия, раздражительность, повышение уровня тревожности; дерматит на лице, над бровями, около глаз, иногда на шее и в области волосистой части головы, сухие дерматиты в области носогубной складки, себорея, глоссит, хейлит с вертикальными трещинами губ, стоматит; снижение аппетита, тошнота и рвота (особенно у беременных), конъюнктивы, полиневриты, снижение популяции Т-лимфоцитов.

Диетотерапия с высоким содержанием пиридоксина или курсы витаминотерапии могут быть назначены эпилептологом при вторичных дефицитах пиридоксина и лекарственных гепатопатиях, вызванных длительным приемом различных противоэпилептических препаратов (например, препаратов вальпроевой кислоты). Поэтому пиридоксин может быть включен в комбинированную потенцированную терапию противоэпилептическими препаратами. Однако бесконтрольно высокие дозы пиридоксина или длительный его прием могут снижать эффективность противоэпилептической терапии. Потребность в пиридоксине повышается при приеме антидепрессантов и оральных контрацептивов, во время стресса и повышенных нагрузок, а также у лиц, употребляющих алкоголь и курильщиков. Кортикостероидные гормоны (гидрокортизон и др.) также могут приводить к вымыванию витамина В6, а при приеме эстрогенсодержащих препаратов возникает выраженный дефицит витамина В6.

Кроме того, витамин В6 назначается в высоких дозировках при наследственных нарушениях обмена пиридоксина с развитием пиридоксин-зависимых судорожных припадков, которые дебютируют у детей раннего возраста.

К пищевым продуктам с высоким содержанием пиридоксина относятся неочищенные зерна злаковых, листовая зелень, дрожжи, гречневая и пшеничная крупы, рис, бобовые, морковь, авокадо, бананы, грецкие орехи, патока, капуста, кукуруза, картофель, соя, мясо, рыба, устрицы, печень трески и крупного рогатого скота, почки, сердце, яичный желток.

Самолечение и необоснованное назначение витамина В6 недопустимо, при передозировке пиридоксина могут развиться аллергические реакции в виде крапивницы, повышения кислотности желудочного сока, онемение и покалывание в области рук и ног вплоть до потери чувствительности (экзогеннотоксический полинейропатический синдром). Избыточные (высокие) дозы витамина В6 могут привести к тяжелому токсическому эффекту.

Витамин В7 (биотин, витамин Н, кофермент R) Водорастворимый витамин, являющийся кофактором в метаболизме жирных кислот, лейцина и в процессе глюконеогенеза. Биотин улучшает функциональное состояние нервной системы. Он помогает также усваивать белок и в обмене веществ является важным союзником других витаминов группы В, таких как фолиевая и пантотеновая кислоты и витамин В12. Кроме того, он участвует в разложении жирных кислот и в сжигании жира. Так же биотин продуцирует полезная микрофлора кишечника, однако вопрос о количестве витамина, которое мы получаем из этого источника, остается дискуссионным.

Небольшой риск дефицита биотина, возможно, существует у людей, которые долгое время живут на внутривенном питании. Если человек получает длительное лечение противоэпилептическими препаратами, антибиотиками или употребляет алкоголь, синтез биотина может резко сократиться из-за гибели полезных кишечных бактерий, что делает дополнительный прием необходимым.

При недостатке биотина наблюдаются: нервозность, раздражительность, поражения кожи, бледный гладкий язык, сонливость, вялость, депрессия, болезненность и слабость мышц, артериальная гипотония, высокий уровень холестерина и сахара в крови, анемия, потеря аппетита и тошнота, ухудшение состояния волос, замедляется рост. Наиболее богаты биотином дрожжи, томаты, шпинат, соя, яичный желток, грибы, печень, молоко, цветная капуста.

Витамин В9 (фолиевая кислота) Водорастворимый витамин, необходимый для роста и развития кровеносной и иммунной систем. Человек не синтезируют фолиевую кислоту, получая ее вместе с пищей, либо благодаря синтезу микрофлорой кишечника. Фолиевая кислота содержится в зеленых овощах с листьями, в бобовых, в хлебе из муки грубого помола, дрожжах, печени, входит в состав меда. Фолиевая кислота необходима для создания и поддержания в здоровом состоянии новых клеток, поэтому ее наличие особенно важно в периоды быстрого развития организма - на стадии раннего внутриутробного развития и в раннем детстве.

Назначение фолиевой кислоты показано женщинам детородного возраста, страдающим эпилепсией и принимающим препараты вальпроевой кислоты и карбамазепина, с целью профилактики тератогенного эффекта противоэпилептических препаратов на плод и снижения риска невынашивания беременности (самопроизвольный выкидыш) или рождения ребенка с врожденными пороками развития невральной трубки, сердца и урогенитального тракта, а также хромосомных аномалий.

В этом случае назначение фолиевой кислоты, подбор дозы и схемы лечения осуществляют врачи неврологи-эпилептологи, нейрогенетики или медицинские генетики под контролем уровня фолиевой кислоты в крови и наличия/отсутствия мутации генов, дополнительно нарушающих метаболизм фолатов в организме женщины (например, мутации гена метилентетрагидрофолатредуктазы).

Решение вопроса о выборе витаминотерапии у женщин, планирующих беременность, или беременных должно быть индивидуализированным и обязательно обсуждено с лечащим врачом неврологом-эпилептологом, поскольку длительный и бесконтрольный приемов препаратов фолиевой кислоты приводит к гипервитаминозу и провокации эпилептических приступов.

Витамин B23 (карнитин) Представляет собой аминокислоту, обнаруженную во всех тканях организма. L-карнититн относится к основным незаменимым веществам, поскольку выполняет главную роль в транспорте жирных кислот в митохондрии («энергетической» станции клеток), где жирные кислоты расщепляются с образованием энергии, необходимой для работы всего организма. Самостоятельно жирные кислоты не способны проникать внутрь митохондрий, поэтому от содержания L-карнитина в клетках зависит эффективность энергетического обмена. Биологической активностью обладает только L-карнитин. D-карнитин не оказывает положительного влияния на организм и мешает усвоению L-карнитина, усиливая карнитиновую недостаточность.

Четверть суточной потребности карнитина вырабатывается в нашем организме из лизина и метионина, витаминов (С, ВЗ и B6) и железа. Недостаток любого из этих веществ приводит к дефициту карнитина. Остальные 75% суточной потребности карнитина человек должен получать с продуктами питания. Название «карнитин» (от латинского слова «caro» – мясо) указывает на основной источник этой аминокислоты. Больше всего карнитина содержится в мясе, птице, морепродуктах. В зернах, фруктах и овощах карнитин содержится в небольших количествах.

Уровень витамина карнитина в плазме крови может снижаться у больных эпилепсией, принимающих препараты вальпроевой кислоты (депакин, конвулекс, конвульсофин и др.) как в монотерапии, так и в комбинации с другими противоэпилептическими препаратами (фенобарбиталом, фенитоином или карбамазепином), а также при кетогенной диете. Поэтому назначение витамина В23 иногда используется в сочетании с приемом противоэпилептических препаратов или на фоне кетогенной диеты.

Одним из показаний применения L-карнитина являются наследственные митохондриальные заболевания, в клиническую картину которых входят эпилептические приступы. Болезни митохондрий сопровождаются глубокими нарушениями в энергетическом обмене, что приводит к развитию лактатацидоза и накоплению токсических продуктов метаболизма. L-карнитин воздействует на процессы биоэнергетики клетки посредством коррекции узловых звеньев энергетического метаболизма. Особенностью терапии является необходимость длительного (в отдельных случаях пожизненного) применения карнитина и назначение доз, превышающих физиологические. Обобщенный опыт наблюдения в клинике за больными с болезнями митохондрий (карнитиновая недостаточность, заболевания, связанные с дефектами дыхательной цепи) показывает, что препараты на основе карнитина весьма эффективны и способствуют либо регрессу клинических проявлений болезни, либо уменьшению их интенсивности Основными признаками дефицита L-карнитина являются: быстрая утомляемость, сонливость и мышечная слабость; гипотония; подавленность; у детей – отставание в физическом и психомоторном развитии; у школьников – снижение успеваемости; нарушение функции сердца и печени.

При низкой эффективности диетотерапии, витамин В23 назначается в виде биологически активных добавок к пище или лекарственных препаратов. Дозировки карнитина должны подбираться лечащим врачом неврологом-эпилептологом для каждого конкретного случая, в зависимости от индивидуальных особенностей пациента, состояния здоровья, питания и уровня физических нагрузок.

При бесконтрольном или длительном приеме витамина В23 могут развиться нежелательные лекарственные реакции: повышенная активность, проблемы с засыпанием, тошнота, рвота, спазмы в животе и диарея (понос); реже — неприятный запах тела и другие желудочно-кишечные симптомы.

Витамин С (аскорбиновая кислота) Необходим для нормального функционирования соединительной и костной ткани, выполняет биологические функции восстановителя и кофермента некоторых метаболических процессов, рассматривается в качестве антиоксиданта. Аскорбиновая кислота участвует в образовании коллагена, серотонина из триптофана, образовании катехоламинов, синтезе кортикостероидов, участвует в превращении холестерина в желчные кислоты.

Витамин С необходим для детоксикации в гепатоцитах при участии цитохрома P450, поэтому может назначаться на фоне длительного приема противоэпилептических препаратов, метаболизирующихся в печени с целью профилактики или уменьшения степени выраженности препарат-индуцированной гепатопатии (например, при длительном приеме препаратов вальпроевой кислоты, фенитоина, карбамазепина, окскарбазепина и др.). Витамин С сам нейтрализует супероксид-анион радикал до перекиси водорода, восстанавливает убихинон и витамин Е, стимулирует синтез интерферона, тем самым участвуя в иммуномодулировании. В природе значительные количества аскорбиновой кислоты содержатся в плодах цитрусовых, а также многих овощах. Наиболее богаты аскорбиновой кислотой плоды киви, шиповника, красного перца, цитрусовых, черной смородины, лук, томаты, листовые овощи (например, салат и капуста).

Витаминотерапия должна осуществляться под контролем лечащего врача (невролога-эпилептолога), поскольку передозировка витамина C может вызывать раздражение мочевого тракта, кожный зуд, понос.

Витамин D (эргокальциферол – витамин D2, холекальциферол – витамин D3) Регулирует обмен кальция и фосфора в организме. Если у человека гиповитаминоз D, то из организма выводится большое количество солей кальция и фосфора, при этом костная ткань, которая является почти единственным местом их накопления, начинает быстро терять эти элементы. Развивается остеопороз и остеопения, кости становятся мягкими, искривляются и легко ломаются. Человек получает витамин D двумя путями: с пищей и из собственной кожи, где он образуется под действием ультрафиолетовых лучей.

Дефицит витамина D с развитием остеопороза, остеопении и остеомаляции показан в результате многочисленных исследований у больных эпилепсий, длительно принимающих препараты группы карбамазепина (финлепсина, тегретола, карбалептина и др.), окскарбазепина (трилептала), фенитоина, а также (реже) при длительном приеме высоких доз препаратов вальпроевой кислоты. Поэтому витамин D может назначаться эпилептологом совместно с приемом противоэпилептических препаратов в виду коротких и повторных курсов в индивидуально подобранных дозировках.

Однако самолечение витамином D опасно. Эргокальферол (витамин D2) очень токсичен, плохо выводится из организма, что приводит к кумулятивному эффекту. Основные симптомы передозировки: тошнота, обезвоживание, гипотрофия, вялость, повышение температуры тела, мышечная гипотония, сонливость, сменяющаяся резким беспокойством, судорогами. Холекальциферол (витамин D3) менее токсичен, но даже при его профилактическом применении необходимо иметь в виду возможность передозировки (накопления в организме – кумуляции), особенно у детей (не следует назначать этот витамин более 10-15 мг в год).

Во время лечения витамином D (особенно при приеме комбинированных препаратов витамина D с кальцием, например КальциемД3 и др.) обязателен биохимический контроль содержания кальция, а также активных метаболитов витамина D в крови и моче. Биохимический контроль также обязателен при одновременном назначении витамина D с противоэпилептическими препаратами с преимущественно почечным путем элиминации, например: препаратами топирамата (топамаксом, топсавером, ториалом и др.), поскольку возрастает риск нефролитиаза — формирования камней мочевыводящих путей. У взрослых больных, страдающих эпилепсией и сопутствующей артериальной гипертонией, следует помнить о риске передозировки (кумуляции) витамина D при его сочетании с приемом гипотензивных препаратов – тиазидных диуретиков. Дифенин и барбитураты снижают эффективность витамина D.

При повышенной чувствительности и передозировке витамина D могут наблюдаться гиперкальциемия, гиперкальциурия и симптомы, ими обусловленные, - нарушения сердечного ритма, тошнота, рвота, головная боль, слабость, раздражительность, снижение массы тела, сильная жажда, учащенное мочеиспускание, образование почечных камней, нефрокальциноз, кальциноз мягких тканей, анорексия (отсутствие аппетита), артериальная гипертензия, запоры, почечная недостаточность.

При хроническом отравлении витамином D - деминерализация костей, отложение кальция в почках, сосудах, сердце, легких, кишечнике, нарушение функции органов, что может привести к смертельному исходу.

Витамин Е (токоферол) Витамин Е (токоферол) объединяет ряд ненасыщенных спиртов-токоферолов, из которых наиболее активным является альфа-токоферол. Витамин Е участвует в обеспечении адекватной репродуктивной функции, улучшает микроциркуляцию крови, необходим для регенерации тканей, полезен при синдроме предменструального напряжения и лечении фиброзных заболеваний груди. Он обеспечивает нормальную свертываемость крови и заживление, снижает риск образования келоидных рубцов после ранений, снижает артериальное давление, способствует предупреждению развития катаракты (помутнения хрусталика глаза), снимает судороги мышц ног (крампи), поддерживает здоровье нервов и скелетных мышц, предотвращает анемию. В качестве антиоксиданта витамин Е защищает клетки от повреждения, замедляя окисление липидов (жиров) и формирование свободных радикалов, замедляет процессы старения, снижает риск развития болезни Альцгеймера.

Пищевыми источниками витамина Е являются растительные масла (подсолнечное, хлопковое, кукурузное), семечки яблок, орехи (миндаль, арахис), турнепс, зеленые листовые овощи, злаковые, бобовые, яичный желток, печень, молоко, овсянка, соя, пшеница и ее проростки. Травы, богатые витамином Е: одуванчик, люцерна, льняное семя, крапива, овес, лист малины, плоды шиповника.

Первым и наиболее ранним признаком, проявляющимся довольно быстро при недостаточном поступлении с пищей витамина Е и избыточном поступлении ненасыщенных жирных кислот, является мышечная дистрофия. В печени при авитаминозе Е описаны некрозы, жировая дистрофия, расширение синусоидов, уменьшение содержания гликогена. Могут страдать репродуктивная система и миокард.

Витамин Е может быть включен в комбинированную потенцированную терапию противоэпилептическими препаратами, поскольку усиливает их противосудорожный эффект, уменьшает риск развития и степень нарушения менструального цикла на фоне длительного приема препаратов вальпроевой кислоты, снижает угрозу прерывания беременности, уменьшает выраженность климактерического вегетативного синдрома. Роль витамина Е в снижении риска катамениальных приступов, ассоциированных с синдромом предменструального напряжения у женщин детородного (фертильного) возраста, изучена недостаточно.

Самолечение витамином Е недопустимо, поскольку требуется его индивидуальная и медленная титрация дозы, начиная с минимальных дозировок, под контролем лечащего врача невролога-эпилептолога. Дополнительный прием токоферола может вызвать повышение артериального давления и сывороточных триглицеридов, может уменьшить потребность в инсулине при сопутствующем инсулинзависимом сахарном диабете. При длительном приеме витамина Е целесообразен дополнительный биохимический скрининг уровня токоферола в сыворотке крови для исключения его кумуляции и снижения риска развития интоксикации.

Последствия нарушения общего синтеза белка

Длительное и значительное понижение синтеза белка приводит к развитию дистрофических и атрофических нарушений в различных органах и тканях вследствие недостаточного обновления структурных белков. Замедляются процессы регенерации. В детском возрасте тормозятся рост, физическое и умственное разви-

тие. Снижается синтез различных ферментов и гормонов (СТГ, антидиуретический и тиреоидный гормоны, инсулин и др.), что приводит к эндокринопатиям, нарушению других видов обмена (углеводного, водно-солевого, основного). Понижается содержание белков в сыворотке крови в связи со снижением их синтеза в гепатоцитах. Вследствие этого в крови уменьшается онкотическое давление, что способствует развитию отеков. Уменьшается продукция антител и других защитных белков и, как следствие, снижается иммунологическая реактивность организма. В наиболее выраженной степени эти расстройства возникают в результате длительного нарушения усвоения белков пищи при различных хронических заболеваниях органов пищеварения, а также при длительном белковом голодании, особенно если оно сочетается с дефицитом жиров и углеводов. В последнем случае повышается использование белка в качестве источника энергии.

Причины и механизм нарушения синтеза отдельных белков. В большинстве случаев эти нарушения имеют наследственную природу. В основе их лежит отсутствие в клетках информационной РНК (иРНК), специфической матрицы для синтеза какого-либо определенного белка, или нарушение ее структуры вследствие изменения структуры гена, на котором она синтезируется. Генетические нарушения, например замена или потеря одного нуклеотида в структурном гене, приводят к синтезу измененного белка, нередко лишенного биологической активности.

К образованию аномальных белков могут привести отклонения от нормы в структуре иРНК, мутации транспортной РНК (тРНК), вследствие чего к ней присоединяется несоответствующая аминокислота, которая и будет включаться в полипептидную цепь при ее сборке (например, при образовании гемоглобина).

Процесс трансляции является сложным, совершающимся при участии ряда ферментов, и нарушение функции какого-либо из них может привести к тому, что та или другая иРНК не передаст закодированную в ней информацию.

Нарушение синтеза отдельных белков-ферментов или структурных белков лежит в основе различных наследственных болезней (гемоглобинозы, альбинизм, фенилкетонурия, галактоземия, гемофилия и многие другие - см. раздел 5.1). Нарушение какой-либо ферментативной функции чаще всего связано не с отсутствием соответствующего белка - фермента, а с образованием патологически измененного неактивного продукта.

Причины, механизм и последствия повышенного распада тканевых белков. Наряду с синтезом в клетках организма постоянно происходит деградация белков под действием протеиназ. Обновление белков за сутки у взрослого человека составляет 1-2% общего количества белка в организме и связано преимущественно с деградацией мышечных белков, при этом 75-80% освободившихся аминокислот вновь используется для синтеза.

Азотистый баланс - интегральный показатель общего уровня белкового обмена, это суточная разница между поступающим и выделяющимся из организма азотом,

У здорового взрослого человека процессы распада и синтеза белка уравновешены, т.е. имеется азотистое равновесие. При этом суточная деградация белка составляет 30-40 г.

Азотистый баланс может быть положительным или отрицательным.

Положительный азотистый баланс: поступление в организм азота превышает его выведение, т.е. синтез белка преобладает над его распадом. Отмечается при регенерации тканей, в период выздоровления после тяжелых болезней, при беременности, в детском возрасте, при гиперпродукции СТГ, при полицитемии.

При патологии распад белка может превалировать над синтезом и азота поступает в организм меньше, чем выделяется (отрицательный азотистый баланс).

Причинами отрицательного азотистого баланса являются: инфекционная лихорадка; обширные травмы, ожоги и воспалительные процессы; прогрессирующий злокачественный опухолевый рост, эндокринные заболевания (сахарный диабет, гипертиреоз, гиперкортицизм); тяжелый эмоциональный стресс; обезвоживание, белковое голодание, лучевая болезнь; гиповитаминозы А, С, В 1 , В 2 , В 6 , РР, дефицит фолиевой кислоты. В механизме усиленного распада белков при многих из перечисленных состояний лежит повышенная продукция катаболических гормонов.

Следствием отрицательного азотистого баланса являются дистрофические изменения в органах, похудание, в детском возрасте - задержка роста и умственного развития.

Общее представление о нарушении белкового обмена можно получить при изучении азотистого равновесия организма и окружающей среды.

Нарушения азотистого равновесия

Нарушение азотистого равновесия проявляется в виде положительного или отрицательного азотистого баланса.

Положительный азотистый баланс - такое состояние, когда из организма выводится меньше азота, чем поступает с пищей. Наблюдается оно во время роста организма, при беременности, а также после голодания, при избыточной секреции анаболических гормонов (соматотропный гормон, андрогены и др.) и при назначении их с лечебной целью.



Анаболическое действие гормонов заключается в усилении процессов синтеза белка по сравнению с его распадом. Таким действием обладают следующие" гормоны.

Соматотропный гормон усиливает окисление жира и мобилизацию нейтрального жира и ведет, таким образом, к достаточному освобождению энергии, необходимой для процессов синтеза белка.

Половые гормоны усиливают процессы синтеза белка.

Инсулин облегчает переход аминокислот через клеточные мембраны внутрь клеток и, таким образом, способствует синтезу белка и ослабляет глюконеогенез. Недостаток инсулина ведет к снижению синтеза белка и к увеличению глюконеогенеза.

Отрицательный азотистый баланс - состояние, когда из организма выводится больше азота, чем поступает с пищей. Отрицательный азотистый баланс развивается при голодании, протеинурии, инфекционных заболеваниях, травмах, термических ожогах, хирургических операциях, при избыточной секреции или назначении катаболических гормонов (кортизол, тироксин и др.).

Катаболическое действие гормонов заключается в усилении процессов распада белков по сравнению с процессами синтеза. Таким действием обладают следующие гормоны.

Тироксин увеличивает количество активных сульфгидрильных групп в структуре некоторых ферментов - активируются тканевые катепсины и усиливается их протеолитическое действие. Тироксин повышает активность аминооксидаз - увеличивается дезаминирование некоторых аминокислот. При гипертиреозе у больных развивается отрицательный азотистый баланс и креатинурия.

При дефиците гормонов щитовидной железы, например при гипотиреозе, недостаточность катаболического действия гормона проявляется в виде положительного азотистого баланса и накопления креатина.

Глюкокортикоидные гормоны (кортизол и др.) усиливают распад белков. Расход белков увеличивается на нужды глюконеогенеза; при этом также замедляется синтез белка.

Обмен белков может быть нарушен на разных этапах превращений принятых с пищей белковых веществ. Можно выделить следующие нарушения:

  • 1) при поступлении, переваривании и всасывании белков в желудочно-кишечном тракте;
  • 2) при синтезе и распаде белков в клетках и тканях организма;
  • 3) при межуточном обмене аминокислот;
  • 4) на конечных этапах белкового обмена;
  • 5) в белковом составе плазмы крови.

Нарушения поступления, переваривания и всасывания белков в желудочно-кишечном тракте

Расстройства секреции отдельных протеолитических ферментов желудочного тракта, как правило, не вызывают серьезных нарушений белкового обмена. Так, полное прекращение секреции пепсина с желудочным соком не отражается на степени расщепления белков в кишечнике, но существенно влияет на скорость его расщепления и появления отдельных свободных аминокислот.

Отщепление отдельных аминокислот в желудочно-кишечном тракте происходит неравномерно. Так, тирозин и триптофан в норме отщепляются от белков уже в желудке, а другие аминокислоты - лишь под действием протеолитических ферментов кишечного сока. Состав аминокислот в содержимом кишечника в начале и конце кишечного переваривания различен.

Аминокислоты могут поступать в систему воротной вены в различном соотношении. Относительный дефицит даже одной незаменимой аминокислоты затрудняет весь процесс биосинтеза белков и создает относительный избыток других аминокислот с накоплением в организме промежуточных продуктов обмена этих аминокислот.

Подобные нарушения обмена, связанные с запаздыванием отщепления тирозина и триптофана, возникают при ахилии и субтотальной резекции желудка.

Нарушение всасывания аминокислот может возникнуть при патологических изменениях стенки тонкого кишечника, например при воспалении, отеке.

Нарушения синтеза и распада белка

Синтез белка происходит внутри клеток. Характер синтеза зависит от генетического набора на хромосомах в ядре клетки. Под воздействием генов, специфических для каждого вида белка в каждом организме, активируются ферменты, и в ядре клетки происходит синтез информационной рибонуклеиновой кислоты (и-РНК). и-РНК является зеркальной копией дезоксирибонуклеиновой кислоты (ДНК), находящейся в ядре клетки.

Синтез белка происходит в цитоплазме клетки на рибосомах. Под воздействием и-РНК на рибосомах синтезируется матричная РНК (м-РНК), которая является копией и-РНК и содержит закодированную информацию о виде и последовательности расположения аминокислот в молекуле синтезируемого белка.

Для включения аминокислот в молекулу белка в соответствии с матрицей (м-РНК) необходима их активация. Функция активации аминокислот выполняет фракция РНК, называемая растворимой, или транспортной (т-РНК). Активация аминокислот сопровождается их фосфорилированием. Присоединение аминокислот посредством т-РНК к определенным группировкам нуклеотидов м-РНК осуществляется при дефосфорилировании их за счет энергии гуанизинтрифосфата. Синтезированный белок выполняет специфическую функцию в клетке или транспортируется из клетки и выполняет свою функцию как белок крови, антитело, гормон, фермент.

Регуляция синтеза белка в клетке генетически обусловлена наличием не только структурных генов, ведающих последовательностью расположения оснований нуклеотидов при синтезе и-РНК, но и дополнительных регулирующих генов. В регуляции синтеза белка в клетке принимают участие еще по крайней мере два гена - ген-оператор и регулирующий ген.
Регулирующий ген ведает синтезом репрессора, который является ферментом и тормозит в конечном итоге деятельность структурных генов и образование и-РНК.
Ген-оператор, или оперирующий ген, непосредственно подчиняется действию репрессора, вызывающего в одном случае репрессию, а в другом - дерепрессию: появление синтеза ряда ферментов, синтезирующих и-РНК. Оперирующий ген составляет единое целое со структурными генами, образуя так называемый оперон.
Репрессивное вещество может находиться в двух состояниях: активном и неактивном. В активном состоянии репрессор действует на оперирующий ген, прекращает его воздействия на структурные гены и в конечном итоге прекращает синтез и-РНК и синтез белка.
Активаторы репрессора носят название корепрессоров. Ими могут быть как определенная концентрация регулируемого белка, так и факторы, образовавшиеся в результате действия этого белка.

Регуляция синтеза белка осуществляется следующим образом. При недостатке белка в клетке прекращается действие репрессора на оперон. Увеличивается синтез и-РНК и м-РНК. и на рибосомах начинается синтез белковых молекул. Концентрация белка увеличивается. Если синтезированный белок недостаточно быстро метаболизируется, его количество продолжает нарастать. Определенная концентрация этого белка, или факторов, образовавшихся под его действием, может служить корепрессором синтеза, активируя репрессор. Прекращается влияние оперирующего гена на структурные гены и прекращается в конечном итоге синтез белка. Его концентрация снижается и т. д.

При нарушении регуляции синтеза белка могут возникать патологические состояния, связанные как с избыточным синтезом, так и с недостаточным синтезом белка.

Синтез белка может быть нарушен под действием различных внешних и внутренних болезнетворных факторов:

  • а) при неполноценности аминокислотного состава белков;
  • б) при патологических мутациях генов, связанных как с появлением патогенных структурных генов, так и с отсутствием нормальных регулирующих и структурных генов;
  • в) при блокировании гуморальными факторами ферментов, ведающих процессами репрессии и дерепрессии синтеза белка в клетках;
  • г) при нарушении соотношения анаболических и катаболических факторов, регулирующих синтез белка.

Отсутствие в клетках даже одной незаменимой аминокислоты прекращает синтез белка.

Биосинтез белка может нарушаться не только при отсутствии отдельных незаменимых аминокислот, но и при нарушении соотношения между количеством незаменимых аминокислот, поступающих в организм. Потребность в отдельных незаменимых аминокислотах связана с их участием в синтезе гормонов, медиаторов, биологически активных веществ.

Недостаточное поступление в организм незаменимых аминокислот вызывает не только общие Нарушения синтеза белка, но и избирательно нарушает синтез отдельных белков. Недостаток незаменимой аминокислоты может сопровождаться характерными для нее нарушениями.

Триптофан . При длительном исключении из пищевого рациона у крыс развивается васкуляризация роговицы и катаракта. У детей ограничение триптофана в пище сопровождается снижением концентрации плазменных белков.

Лизин . Отсутствие в пище сопровождается у людей появлением тошноты, головокружения, головной боли и повышенной чувствительности к шуму.

Аргинин . Отсутствие в пище может привести к угнетению сперматогенеза.

Лейцин . Относительный избыток его по сравнению с другими незаменимыми аминокислотами у крыс угнетает рост из-за соответствующего нарушения усвоения изолейцина.

Гистидин . Недостаток его сопровождается снижением концентрации гемоглобина.

Метионин . Исключение его из пищи сопровождается жировым перерождением печени, обусловленным недостатком лабильных метильных групп для синтеза лецитина.

Валин . Недостаток его ведет к задержке роста, похуданию, развитию кератозов.

Заменимые аминокислоты существенно влияют на потребность в незаменимых аминокислотах. Например, потребность в метионине определяется содержанием цистина в диете. Чем больше в пище цистина, тем меньше расходуется метионина для биологического синтеза цистина. Если в организме скорость синтеза заменимой аминокислоты становится недостаточной, появляется повышенная потребность в ней.

Некоторые заменимые аминокислоты становятся незаменимыми, если они не поступают с пищей, так как организм не справляется с быстрым их синтезом. Так, недостаток цистина ведет к торможению роста клеток даже при наличии всех остальных аминокислот в среде.

Нарушения регуляции синтеза белка - антител - может наблюдаться при некоторых аллергических заболеваниях. Так, в иммунокомпетентных клетках (клетки лимфоидного ряда), продуцирующих антитела, обычно репрессирована выработка аутоантител. В процессе эмбрионального развития при смене фаз (стадия нервной трубки, листков мезенхимы) происходит дерепрессия синтеза аутоантител. В тканях определяются аутоантитела, которые участвуют в рассасывании тканей прежних фаз развития эмбриона. Такая смена активности репрессоров происходит несколько раз. Во взрослом организме синтез аутоантител репрессирован. Так, например, репрессирован синтез аутоантител к антигенам собственных эритроцитов. Если, в зависимости от группы крови в эритроцитах находится агглютининоген А, то в плазме крови отсутствуют α-агглютинины, выработка которых надежно репрессирована. На этой основе возможна трансплантация крови и кроветворной ткани (костного мозга).

К некоторым тканям (хрусталик глаза, нервная ткань, тестикулы) выработка аутоантител не репрессирована, но эти ткани в силу своих анатомических и функциональных особенностей изолированы от иммунокомпетентных клеток и в норме выработки аутоантител не происходит. При нарушении анатомической изоляции (повреждение) начинается выработка аутоантител и возникают аутоаллергические заболевания.

Нарушения обмена аминокислот

Нарушения дезаминирования . Окислительное дезаминирование осуществляется в результате последовательных превращений аминокислот в реакциях переаминирования и дезаминирования:

Аминокислоты при участии специфических трансаминаз вначале переаминируются с α-кетоглютаровой кислотой. Образуется кетокислота и глютамат. Глютамат под действием дегидрогеназы подвергается окислительному дезаминированию с освобождением аммиака и образованием α-кетоглютарата. Реакции обратимы. Таким образом образуются новые аминокислоты. Включение а-кетоглютаровой кислоты в цикл Кребса обеспечивает включение аминокислот в энергетический обмен. Окислительное дезаминирование определяет и образование конечных продуктов белкового обмена.

С переаминированием связано образование аминосахаров, порфиринов, креатина и дезаминирование аминокислот. Нарушение переаминирования возникает при недостатке витамина В6, так как его форма - фосфопиридоксаль - является активной группой трансаминаз.

Соотношение субстратов переаминирования определяет направление реакции. При нарушении мочевинообразования происходит ускорение переаминирования.

Ослабление дезаминирования возникает при снижении активности ферментов - аминооксидаз и при нарушении окислительных процессов (гипоксия, гиповитаминозы С, РР, В 2).

При нарушении дезаминирования аминокислот увеличивается выделение аминокислот с мочой (аминоацидурия), уменьшается мочевинообразование.

Нарушения декарбоксилирования . Декарбоксилирование аминокислот сопровождается выделением СО 2 и образованием биогенных аминов:

В животном организме декарбоксилированию подвергаются лишь некоторые аминокислоты с образованием биогенных аминов: гистидин (гистамин), тирозин (тирамин), 5-гидрокситриптофан (серотонин), глютаминовая кислота (γ-аминомасляная кислота) и продукты дальнейших превращений тирозина и цистина: 3,4-диоксифенилаланин (ДОФА, окситирамин) и цистеиновая кислота (таурин) (рис. 47).

Биогенные амины проявляют свое действие уже при малых концентрациях. Накопление аминов в больших концентрациях представляет серьезную опасность для организма. В нормальных условиях амины быстро устраняются под действием аминоксидазы, которая окисляет их в альдегиды:

При этой реакции образуется свободный аммиак. Инактивация аминов достигается также путем их связывания с белками.

Накопление биогенных аминов в тканях и крови и проявление их токсического действия возникает; при усилении активности декарбоксилаз, торможении активности оксидаз и нарушении связывания их с белками.

При патологических процессах, сопровождающихся угнетением окислительного дезаминирования, превращение аминокислот в большей степени происходит путем декарбоксилирования с накоплением биогенных аминов.

Нарушения обмена отдельных аминокислот . Существует ряд наследственных заболеваний человека, связанных с врожденными дефектами обмена отдельных аминокислот. Эти нарушения обмена аминокислот связаны с генетически обусловленным нарушением синтеза белковых групп ферментов, осуществляющих превращения аминокислот (табл. 24).

Нарушения обмена фенилаланина (фенилкетонурия) . Причиной заболевания является недостаток фермента - фенилаланингидроксилазы в печени, вследствие чего блокировано превращение фенилаланина в тирозин (рис. 48). Концентрация фенилаланина в крови достигает 20-60 мг% (в норме около 1,5 мг%). Продукты его, метаболизма, в частности кетокислота - фенилпируват, оказывают токсическое воздействие на нервную систему. Нервные клетки коры головного мозга разрушаются и замещаются разрастанием микроглиальных элементов. Развивается фенилпировиноградная олигофрения. Фенилпируват появляется в моче и дает зеленую окраску с трихлорным железом. Эта реакция проводится у новорожденных и служит для ранней диагностики фенилкетонурии.

При развитии заболевания уже в 6-месячном возрасте у ребенка отмечаются признаки недостаточного умственного развития, просветление цвета кожи и волос, общее возбуждение, усиление рефлексов, повышение тонуса мышц и основного обмена, эпилепсия, микроцефалия и др.

Просветление цвета кожи и волос развивается из-за недостаточной выработки меланина, так как в результате накопления фенилаланина блокируется метаболизм тирозина.

Развивается недостаточность синтеза катехоламинов, снижается уровень других свободных аминокислот в плазме крови. Увеличивается выделение кетоновых тел с мочой.

Исключение фенилаланина из диеты ведет к снижению содержания фенилаланина и его производных в крови и препятствует развитию фенил-кетонурии.

Нарушение обмена гомогентизиновой кислоты (продукта метаболизма тирозина) - алкаптонурия - возникает при недостатке фермента - оксидазы гомогентизиновой кислоты (рис. 49).

При этом гомогентизиновая кислота не переходит в малеилацетоуксусную кислоту (не происходит разрыва гидрохинонового кольца). В нормальных условиях гомогентизиновая кислота в крови не определяется. При недостаточности фермента гомогентизиновая кислота появляется в крови и выводится из организма с мочой. Отмечается характерное потемнение мочи, особенно в щелочной среде.

Отложение производных гомогентизиновой кислоты в тканях вызывает пигментацию соединительной ткани - охроноз. Пигмент откладывается в суставных хрящах, в хрящах носа, ушных раковинах, в эндокарде, крупных кровеносных сосудах, почках, легких, в эпидермисе. Алкаптонурии часто сопутствует почечнокаменная болезнь.

Нарушение обмена тирозина - альбинизм . Причиной заболевания является недостаток фермента тирозиназы в меланоцитах - клетках, синтезирующих пигмент меланин (рис. 50).

При отсутствии меланина кожа приобретает молочно-белый цвете белесым оволосением (альбинизм), наблюдаются светобоязнь, нистагм, просвечивание радужной оболочки, снижение остроты зрения. Солнечное облучение вызывает воспалительные изменения кожи - эритему.

Альбинизм может сопровождаться глухотой, немотой, эпилепсией, полидактилией и олигофренией. Интеллект таких больных чаще нормальный.

Нарушения обмена гистидина . Мастоцитоз - наследственная болезнь, сопровождаемая усиленной пролиферацией тучных клеток. Причиной заболевания считают повышение активности гистидинде-карбоксилазы - фермента, катализирующего синтез гистамина. Гистамин накапливается в печени, селезенке и других органах. Болезнь характеризуется поражениями кожи, Нарушениями сердечной деятельности и функции желудочно-кишечного тракта. Отмечается повышенная экскреция с мочой гистамина.

Гипераминацидурии . Возникают при нарушении реабсорбции аминокислот в почечных канальцах (почечная гипераминоацидурия, например цистиноз, цистинурия) или при увеличении концентрации аминокислот в крови (внепочечная гипераминоацидурия, например фенилкетонурия, цистатионурия).

Цистиноз . Наблюдается при врожденном дефекте реабсорбции в канальцах почек цистина, цистеина и других нециклических аминокислот. Экскреция аминокислот с мочой может увеличиваться при этом в 10 раз. Экскреция цистина и цистеина возрастает в 20-30 раз. Цистин откладывается в почках, селезенке, коже, печени. Цистиноз сопровождается глюкозурией, гиперкалиурией, протеинурией и полиурией.

При цистинурии экскреция цистина может увеличиваться до 50 раз по сравнению с нормой, сопровождаясь угнетением реабсорбции лизина, аргинина и орнитина в почечных канальца^. Уровень цистина в крови не превышает нормы. Не обнаружено нарушений в межуточном обмене этих аминокислот. Повышенная экскреция аминокислот может привести к нарушениям синтеза белка и белковой недостаточности.

Нарушения конечных этапов белкового обмена

Нарушения мочевинообразования. Конечными продуктами распада аминокислот являются аммиак, мочевина, СО 2 и Н 2 О. Аммиак образуется во всех тканях в результате дезаминирования аминокислот. Аммиак токсичен, при его накоплении повреждается протоплазма клеток. Для связывания аммиака и его обезвреживания существуют два механизма: в печени образуется мочевина, а в других тканях аммиак присоединяется к глютаминовой кислоте (амидирование) - образуется глютамин. В дальнейшем глютамин отдает аммиак для синтеза новых аминокислот, превращения которых завершаются образованием мочевины, выделяемой с мочой. Из всего азота мочи на долю мочевины приходится 90% (аммиака около 6%).

Синтез мочевины происходит в печени в цитруллинаргининорнитиновым цикле (рис. 51). Существуют заболевания, связанные с наследственным дефектом ферментов мочевинообразования.

Аргининсукцинатурия . Заключается в гипераминоацидурии (аргининоянтарная кислота) и в олигофрении. Причина - дефект фермента аргининосукцинатлиазы.

Аммонийемия . В крови увеличена концентрация аммиака. Повышена экскреция глютамина с мочой. Причина заболевания - блокирование карбамилфосфатсинтетазы и орнитинкарбамоилтрансферазы, катализирующих связывание аммиака и образование орнитина в цикле мочевинообразования.

Цитруллинурия . Концентрация цитруллина в крови может увеличиваться сверх нормы в 50 раз. С мочой экскретируется до 15 г цитруллина в сутки. Причина - наследственный дефект аргининсукцинат-синтетазы.

Активность ферментов синтеза мочевины нарушается и при заболеваниях печени (гепатиты, застойный цирроз), гипопротеинемиях, угнетении окислительного фосфорилирования. В крови и тканях накапливается аммиак - развивается аммонийная интоксикация.

Наиболее чувствительны к избытку аммиака клетки нервной системы. Кроме непосредственного повреждающего действия аммиака на нервные клетки, аммиак связывается глютаматом, в результате чего он выключается из обмена. При ускорении переаминирования аминокислот с α-кето-глютаровой кислотой, она не включается в цикл Кребса, ограничивается окисление пировиноградной и уксусной кислот и они превращаются в кетоновые тела. Снижается потребление кислорода. Развивается коматозное состояние.

Нарушения обмена мочевой кислоты . Подагра. Мочевая кислота - конечный продукт обмена аминопуринов (аденин и гуанин) у человека. У рептилий и птиц мочевая кислота является конечным продуктом обмена всех азотистых соединений. В крови у человека обычно содержится 4 мг% мочевой кислоты. При избыточном потреблении продуктов, богатых пуриновыми нуклеотидами и аминокислотами, из которых в организме синтезируются пуриновые основания (печень, почки), в организме увеличивается количество мочевой кислоты. Концентрация ее возрастает также при нефритах, лейкемиях. Возникает гиперурекемия.

Иногда гиперурекемия сопровождается отложением солей мочевой кислоты в хрящах, сухожильных влагалищах, ночках, коже и мышцах, так как мочевая кислота плохо растворима. Вокруг отложений кристаллических уратов возникает воспаление - создается грануляционный вал, окружающий омертвевшие ткани, образуются подагрические узлы. Урекемия может сопровождаться выпадением солей мочевой кислоты в мочевых путях с образованием конкрементов.

Патогенез подагры не ясен. Предполагают, что заболевание носит наследственный характер и связано с нарушением факторов, поддерживающих мочевую кислоту в растворимом состоянии. Эти факторы связаны с обменом мукополисахаридов и мукопротеидов, которые образуют центр кристаллизации. При нарушении функции печени (интоксикация) увеличивается отложение уратов в тканях и выделение уратов с мочой.

Нарушения белкового состава крови

Гипопротеинемия - уменьшение общего количества белка в крови, возникающее главным образом за счет уменьшения альбуминов.

В механизме возникновения гипопротеинемии основными патогенетическими факторами являются приобретенные ими наследственно обусловленные нарушения синтеза белков крови, выход сывороточных белков из кровеносного русла без последующего возврата в сосуды и разжижение крови.

Нарушения синтеза белков крови зависят от ослабления синтетических процессов в организме (голодание, нарушение усвоения пищевых белков, авитаминозы, истощение организма вследствие длительной инфекционной интоксикации или злокачественных новообразований и пр.).

Синтез белков крови может снижаться и при нарушении функции органов и тканей, продуцирующих эти белки. При заболеваниях печени (гепатиты, цирроз) снижается содержание в плазме крови альбумина, фибриногена, протромбина. Встречаются наследственные дефекты синтеза тех или иных белковых фракций крови, например наследственные формы: афибриногенемия и агаммаглобулинемия. Выраженная недостаточность синтеза гамма-глобулина связана с полным отсутствием у таких больных плазматических клеток во всех тканях и значительным уменьшением количества лимфоцитов в лимфатических узлах.

Выход белков из кровеносного русла наблюдается при:

  • а) кровопотерях, ранениях, больших кровоизлияниях;
  • б) плазмо-потерях, в частности ожогах;
  • в) повышении проницаемости стенки капилляров, например при воспалении и венозном застое.

При обширных воспалительных процессах падает в крови содержание альбуминов вследствие их выхода из сосудов в интерстициальное пространство (рис. 52). Большое количество альбуминов обнаруживается также в асцитической жидкости при портальной гипертонии и сердечной недостаточности.

Гипоальбуминемия может возникать при нарушении процессов реабсорбции белка в почках, например при нефрозах.

При гипопротеинемии вследствие уменьшения содержания альбуминов падает онкотическое давление крови, что приводит к возникновению отеков.

При абсолютном понижении количества альбуминов в крови нарушается связывание и транспорт катионов (кальция, магния), гормонов (тироксина), билирубина и других веществ, что сопровождается рядом функциональных расстройств.

При дефиците гаптоглобина, белка из фракции α 2 -глобулинов, нарушается связывание и транспорт гемоглобина, освобождающегося при физиологическом гемолизе эритроцитов, и гемоглобин теряется с мочой.

Падение синтеза антигемофильного глобулина из фракции β 2 -глобулинов приводит к кровоточивости.

При недостатке трансферрина, относящегося к β 1 -глобулинам, нарушается перенос железа.

Основным последствием гипо- или агаммаглобулинемии является снижение иммунитета из-за нарушения выработки антител (γ-глобулинов). В то же время отсутствует реакция на гомологичные трансплантаты (не образуются антитела к чужеродной ткани и возможно ее приживление).

Гиперпротеинемия . Чаще развивается относительная гиперпротеинемия с повышением концентрации белков в крови, хотя абсолютное их количество не увеличивается. Такое состояние возникает при сгущении крови вследствие потери организмом воды.

Абсолютная гиперпротеинемия, как правило, связана с гиперглобулинемией. Например, увеличение содержания γ-глобулинов характерно для инфекционных заболеваний, когда происходит интенсивная продукция антител. Гипергаммаглобулинемия может возникать как компенсаторная реакция на недостаток в крови альбуминов. Например, при хронических заболеваниях печени (цирроз) нарушается синтез альбуминов; количество белков в крови не уменьшается, а возрастает за счет интенсивного синтеза γ-глобулинов. При этом могут образовываться неспецифические γ-глобулины.



Преобладание глобулинов над альбуминами изменяет альбуминово-глобулиновый коэффициент крови в сторону его уменьшения (в норме равен 2-2,5).

При некоторых патологических процессах и заболеваниях изменяется в крови процентное соотношение отдельных белковых фракций, хотя общее содержание белка существенно не изменяется. Например, при воспалении увеличивается концентрация защитного белка пропердина (от лат. perdere - разрушать). Пропердин в сочетании с комплементом обладает бактерицидными свойствами. В его присутствии подвергаются лизису бактерии и некоторые вирусы. Содержание пропердина в крови уменьшается при ионизирующей радиации.

Парапротеинемия . Значительная гиперпротеинемия (до 12- 15% и более белка в крови) отмечается при появлении большого количества аномальных глобулинов. Типичным примером изменения синтеза глобулинов является миелома (плазмоцитома). Миелома - разновидность лейкозов (парапротеинемический ретикулоз).

При γ-миеломе ненормальные глобулины синтезируются опухолевыми клонами плазматических клеток, которые поступают в периферическую кровь, составляя 60% и более от общего числа лейкоцитов. Патологический миеломный белок не обладает свойством антител. Он имеет малый молекулярный вес, проходит через почечный фильтр, откладывается в почках, способствуя в 80% случаев развитию почечной недостаточности. При миеломе резко ускоряется РОЭ (60-80 мм в час) вследствие преобладания глобулинов над альбуминами.

Существует заболевание макроглобулинемия Вальденстрема, характеризующееся опухолевидным разрастанием клеток лимфоидного ряда и повышенной продукцией макроглобулинов с молекулярным весом выше 1 000 000. Макроглобулины приближаются к глобулинам группы М (JqM); в норме их имеется не более 0,12%. При описываемом заболевании содержание их достигает 80% от общего количества белка в плазме, вязкость крови увеличивается в 10-12 раз, что затрудняет работу сердца.

Нарушение обмена при самых различных заболеваниях может сопровождаться появлением в крови совершенно новых белков. Например, в острой фазе ревматизма, при стрептококковой, пневмококковой инфекциях, инфаркте миокарда в сыворотке крови найден С-реактивный белок (С-реактивным он назван потому, что дает реакцию преципитации с С-полисахаридом пневмококков). С-реактивный белок при электрофорезе перемещается между α- и β-глобулинами; к антителам не относится. По-видимому, его появление отражает реакцию ретикулоэндотелиальной системы на продукты распада тканей.

К необычному белку крови относится также криоглобулин, который в электрическом поле передвигается с γ-глобулинами. Криоглобулин способен выпадать в осадок при температуре ниже 37°. Он появляется при миеломе, нефрозе, циррозе печени, лейкоцитах и других заболеваниях. Наличие криоглобулина в крови больных опасно, так как при сильном местном охлаждении белок выпадает в осадок, что способствует образованию тромбов и некрозу тканей.



Понравилась статья? Поделитесь ей
Наверх