Патологические анатомия и физиология (раздел находится в разработке). Патологическая анатомия (дистрофии) Причины развития жировой дистрофии


5. Паренхиматозные дистрофии (белковые, жировые, углеводные)

Паренхиматозные дистрофии возникают в клетках. Среди них выделяют белковые, жировые, углеводные дистрофии.

Белковые дистрофии . Их сущность состоит в том, что под влиянием патогенного фактора белки клетки уплотняются или становятся жидкими (причины: гипоксия, инфекции). Белковые дистрофии могут быть обратимыми и необратимыми .

  1. Зернистая дистрофия : в клетках сердца, печени, почек. Органы набухшие, тусклые, на разрезе как варёное мясо. Его ещё называют мутным набуханием . Происходит обратимое уплотнение белка . Цитоплазма выглядит зернистой.
  2. Гиалиново-капельная дистрофия (необратимая , более тяжёлый вид дистрофии): встречается в почках, печени, реже в миокарде. Глубоко изменяется белок, происходит его коагуляция, он уплотняется, сливается в капли. Функции органов при этой дистрофии значительно нарушаются. Встречается при гломерулонефритах, нефропатии, алкогольном циррозе.
  3. Гидропическая дистрофия (может быть обратимой , но чаще клетка гибнет): связана с нарушением белково-водного обмена. Возникает в эпителии кожи, кишечника, клетках печени, почек, сердца, коре надпочечников. Повышается проницаемость клеточных мембран, в клетку поступает вода, и образуются вакуоли. В ней повышается онкотическое давление. Клетка погибает. Внешний вид органов мало изменен. Функция органа значительно снижена.

Жировые дистрофии (липидозы ). Нарушение жирового обмена заключается в накоплении жира необычного для данных клеток состава или в тех клетках, в которых в норме жира нет. Жировые дистрофии чаще развиваются в сердце, печени и почках. Главная причина этих дистрофий - гипоксия . При всех заболеваниях, сопровождающихся гипоксией, в сердце, печени и почках развивается жировая дистрофия (при таких заболеваниях, как ишемия сердца, пороки; пневмонии, туберкулёз, эмфизема лёгких, инфекции) . Если причина, вызвавшая дистрофию, ликвидирована быстро, то возможно восстановление структур клеток . В противном случае клетки погибают, развивается склероз органа и нарушается его функция. Механизмы развития жировых дистрофий идентичны механизмам развития белковых дистрофий. Жировая дистрофия миокарда чаще развивается в результате декомпозиции. Сердце дряблое, миокард тусклый, на эндокарде жёлтые поперечные полоски. Такое сердце называют "тигровое сердце". Жировая дистрофия печени развивается по механизму инфильтрации. При инфекции и интоксикации (гепатит) преобладает дистрофия почек чаще по типу инфильтрации, но может быть и декомпозиция. Почки при жировой дистрофии увеличены, дряблые, на их поверхности серо-жёлтый крап.

Углеводные дистрофии . Нарушения обмена углеводов связаны с накоплением в тканях и клетках белково-полисахаридных комплексов; или с образованием этих веществ в клетках, где их нет в норме; или с изменением их химического состава. Наиболее важное значение имеет нарушение обмена гликогена, так как оно связано с развитием сахарного диабета. Больше всего гликогена в печени и мышцах. При сахарном диабете уменьшается количество инсулина, и в крови повышается содержание глюкозы. Уменьшение гликогена в печени приводит к инфильтрации липидами гепатоцитов - развивается жировая дистрофия. А большое количество глюкозы в моче приводит к инфильтрации эпителия почечных канальцев. Эпителий почечных канальцев повреждается или гибнет. Глюкопротеиды входят в состав многих веществ, в том числе слизистых (муцин, мукоиды). При нарушении обмена глюкопротеидов эти вещества накапливаются в эпителии желёз и густой слизью закрывают их протоки. Железы растягиваются, превращаются в полости, заполненные слизью. Эпителий желёз погибает, а слизистая атрофируется. Причиной нарушения обмена глюкопротеидов является воспаление слизистых оболочек.


Патологическая анатомия – это наука, которая изучает патоморфологию болезней на разных морфологических уровнях - макроскопическом, анатомическом, микроскопическом, электронно-микроскопическом и других уровнях структурной организации организма.

Патанатомия включает два раздела:

1. общая патанатомия;

2. частная патанатомия.

В общей патанатомии изучаются общепатологические процессы.

1. повреждение;

2. дисциркуляция;

3. воспаление;

4. компенсаторно-приспособительные процессы;

5. опухоли.

Повреждение или альтерация является универсальным общепатологическим процессом. Без повреждения нет болезней.

Повреждение касается всех уровней структурной организации.

Это- 8 уровней:

1. молекулярный;

2. ультраструктурный;

3. клеточный;

4. межклеточный;

5. тканевой;

6. органный;

7. системный;

8. организменный.

При повреждении структуры на разных уровнях в итоге имеет место снижение ее жизнедеятельности.

При изучении развития болезней вследствие повреждения структур выделяют два раздела патологии.

1. Этиология.

2. Патогенез.

Этиология это учение о причинах повреждения и болезней.

Патогенез это учение о механизмах развития повреждения и болезней.

Все этиологические факторы можно объединить в 7 групп:

1. Физические факторы: термические высокая и низкая температуры, механические, лучевые, электромагнитные колебания.

2. Химические: кислоты, щелочи, отравляющие вещества, соли тяжелых металлов и другие.

3. Токсины - эндогенные и экзогенные яды.

4. Инфекции.

5. Дисциркуляция.

6. Нервно-трофические.

7. Метаболические - нарушение обмена веществ при голодании, авитаминозах, дисбалансе питания.

Патогенез

В этом разделе изучаются такие механизмы повреждения как характер действия повреждающего факторы, который может быть –

прямым и непрямым.

Прямой - это непосредственное разрушение структуры. Непрямой - разрушение через гуморальные, нервные, эндокринные, иммунные факторы.

Изучается также глубина и выраженность повреждения в зависимости от силы повреждающего фактора и реактивности структур организма.

Характеристика повреждения

Оно может быть обратимым и необратимым. В развитии повреждения проходит несколько этапов, когда повреждение от легких форм переходит к средне–тяжелым, тяжелым и, наконец, к гибели структуры. Гибель структуры обозначает термин некроз.

Разновидностью повреждения является дистрофия. Это такой вариант повреждения, когда структура частично разрушено, но еще сохранена и функционирует.

Дистрофия

Расшифровка термина: дис – расстройство, трофика питания. То есть прямой перевод означает расстройство питания.

Развернутое определение термина дистрофии.

Дистрофия это повреждение клеточных и тканевых структур в ответ на нарушение их трофики.

Трофика-это совокупность механизмов, обеспечивающих функциональную и структурную организацию клеток и тканей в целом.

Выделяют два типа трофических механизмов:

1. клеточные;

2. внеклеточные.

Клеточные механизмы включают структурные компоненты клеточной организации, обеспечивающие внутриклеточный обмен веществ. Клетка при этом представляется как саморегулирующая система, в которой задействованы органеллы цитоплазмы, гиалоплазма и ядро.

Внеклеточные механизмы представлены-

1. транспортными системами кровеносные и лимфатические сосуды;

2. эндокринная система;

3. нервная система.

Дистрофии могут быть результатом нарушения и клеточных и неклеточных механизмов трофики.

Потому можно говорить о 3 группах дистрофий в зависимости от нарушения деятельности тофических механизмов-

1. дистрофии вследствие нарушения клеточных механизмов трофики;

2. дистрофии вследствие нарушения работы транспортных систем;

3. дистрофии вследствие нарушения деятельности нервной и эндокринной систем.

При первой группе дистрофий основным патогенетическим звеном является ферментопатия.

Она может быть абсолютной отсутствие ферментов, относительной мало ферментов.

При ферментопатиях развиваются процессы накопления предшествующих метаболитов и блокировка последующих биохимических реакций.

Накопление метаболитов определяется термином тезаурисмозы - болезни накопления. От греческого слова тезаурос – запас.

Вторая группа дистрофий связана с нарушением деятельности транспортных систем, обеспечивающих подвоз продуктов питания и удаления вредных метаболитов.

Главным патогенетическим звеном при этом является гипоксия- снижение количества кислорода.

При третьей группе дистрофий имеет место нарушение деятельности нервной и эндокринных систем. Главным патогенетическим звеном в этом случае является недостаток биологических активных веществ – биоактиваторов - различных гормонов и медиаторов.

В развитии дистрофий отмечаются следующие морфогенетические и биохимические процессы -

1. инфильтрация- накопление белков, жиров, углеводов в клетках и вне клеток;

2. извращенный синтез- синтез необычных веществ;

3. трансформация – переход одних веществ в другие - белков в жиры, углеводов в жиры и так далее;

4. декомпозиция (фанероз) - распад белково-полисахаридных комплексов, белково-липопротедных комплексов.

Классификация дистрофий

В основу классификации положено 4 принципа:

1. морфологический;

2. биохимический;

3. генетический;

4. количественный.

По морфологическому принципу выделяют три вида дистрофий в зависимости от того, что поражается первично - паренхима клетки или мезенхима межклеточные структуры- строма сосуды.

1. Паренхиматозный - первично поражаются клетки.

2. Мезенхимальный – первично поражаются межклеточные структуры.

3. Смешанный – одновременное поражение и паренхимы и мезенхимы.

По биохимическому принципу выделяют дистрофии с нарушением белкового, жирового, углеводного, минерального, пигментного, нуклеопртеодного обменов.

По генетическому принципу выделяют дистрофии приобретенные и наследственные.

По количественному принципу выделяют дистрофии локальные и распространенные.

Основной принцип – морфологический. В рамках морфологической классификации работают и другие классификации.

В итоге можно говорить о 3 видах дистрофий:

1. Паренхиматозная дистрофия.

2. Мезенхимальная дистрофия.

3. Смешанная дистрофия.

Паренхиматозные дистрофии

По биохимическому принципу они делятся на:

1. белковые диспротеинозы;

2. жировые липидозы;

3. углеводные.

Диспротеинозы

В основе этих дистрофий лежит нарушение белкового обмена.

Выделяют 4 вида белковых дистрофий

1. Зернистая.

2. Гидропическая.

3. Гиалиновокапельная.

4. Роговая.

Зернистая дистрофия

Синонимы - тусклое, мутное набухание.

Термин зернистая - отражает гистологическую картину патологии. При этом виде дистрофий цитоплазма вместо гомогенной становится зернистой.

Термины - мутное, тусклое набухание отражают внешний вид поврежденного органа.

Суть патологии - под влиянием действия повреждающего фактора происходит увеличение митохондрий, которые придают цитоплазме зернистый вид.

В развитии дистрофии выделяют две стадии-

Компенсации;

Декомпенсации.

На стадии компенсации митохондрии увеличены, но не повреждены.

На стадии декомпенсации митохондрии увеличены и несколько повреждены.

Однако повреждение митохондрий легкое. При прекращении действия повреждающего фактора они полностью восстанавливают свою структуру.

Микроскопически отмечается в цитоплазме клеток разных органов гепатоцитах, эпителии почечных канальцев, миокардиоцитах зернистость цитоплазы. Состояние митохондрий раскрывают только электронно-микроскопические исследования.

Макроскопический вид органов:

Почка несколько увеличена в размерах, на разрезе тусклая, мутная.

Печень дряблая, края печени закруглены.

Сердце - дряблое, миокард тусклый, мутный, цвета вареного мяса.

Причины зернистой дистрофии:

1. нарушение кровоснабжения органов;

2. инфекции;

3. интоксикации;

4. физические, химические факторы;

5. нарушение нервной трофики.

Значение и исход- процесс обратим, но при продолжении действия повреждающего фактора зернистая дистрофия переходит в более тяжелый вид дистрофий.

Клиническое значение определяется масштабом дистрофии и локализацией. При тотальном поражении миокарда может наступить сердечная недостаточность.

Гидропическая дистрофия

Или водянистая. Характеризуется появлением жидких вакуолей в цитоплазме.

Локализация - эпителий кожи, гепатоциты, эпителий почечных канальцев, миокардиоциты, нервные клетки, клетки коры надпочечников и клетки других органов.

Макроскопия - картина неспецифична.

Микроскопия - обнаруживаются вакуоли, заполненные тканевой жидкостью.

Электронная микроскопия - свидетельствует, что тканевая жидкость накапливается прежде всего в митоходриях, структура которых полностью разрушается и от них остаются пузырьки, заполненные тканевой жидкостью.

В случаях выраженной гидропической дистрофии на месте клетки остается одна большая вакуоль, заполненная цитоплазматической жидкостью. В этом варианте дистрофии все органеллы цитоплазмы клетки разрушаются, а ядро оттесняется на периферию. Такой вариант гидропической дистрофии носит название - баллонная дистрофия.

Исход гидропической дистрофии, особенно баллонной неблагоприятен. Клетка может в последующем погибнуть. А функция поврежденного органа существенно снижается.

Причины гидропической дистрофии – инфекции, интоксикации, гипопротеинемия при голодании, и другие этиологические факторы повреждения.

Гиалиново-капельная дистрофия

Суть процесса - появление в цитоплазме клеток глыбок белка как результат разрушения органелл.

Локализация почки, печень и другие органы.

Причины - вирусные инфекции, алкогольные интоксикации, длительное применение эстрогенов и прогестерона с целью предохранения беременности.

Значение- функция клеток и в целом органа резко снижаются. Поврежденная клетка в дальнейшем погибает.

Роговая дистрофия

Выражается в избыточном появлении рогового вещества в ороговевающем эпидермисе или в местах, где процессы ороговения в норме отсутствуют.

Процесс может быть местным и общим.

1. пороки развития кожи ихтиоз - рыбья чешуя - врожденная патология, при которой на значительной поверхности кожи отмечается ороговение эпидермиса;

2. хроническое воспаление;

3. авитаминоз;

4. вирусная инфекция.

Исход часто необратим для пораженной клетки - она гибнет. Но в целом болезнь можно излечить в случае прекращения действия причинного фактора.

Значение - местные очаги повышенного ороговения особого клинического значения не имеют. Но иногда из очагов поражения на слизистой лейкоплакии- белые пятна - может возникать рак.

Распространенный врожденный вариант роговой дистрофии ихтиоз - несовместим с жизнью. Больные быстро погибают.

Болезни накопления при нарушении метаболизма аминокислот также относятся белковым паренхиматозным дистрофиям.

Наиболее часто отмечается 3 вида патологии:

1. Фенилкетонурия.

2. Гомоцистинурия.

3. Тирозиноз.

Фенилкетонурия

Фенилкетонурия - заболевание связано с дефицитом фермента- фенил-аланин – 4 гидролаза. При это отмечается накопление фенил-пировиноградной кислоты.

Клиника: слабоумие, судорги, дефекты пигментации светлые волосы, голубые глаза, дерматиты, экземы, мышиный запах. Отмечаются также - эпилептиформные припадки, повышенная возбудимость, агрессивность, потемнение мочи.

Патоморфология:

1. Демиелинизация волокнистой глии центральной нервной системы.

2. Жировая дистрофия печени.

3. Ангиоматоз.

4. Гипоплазия тимуса.

5. Исчезновение нервных клеток головного мозга.

6. Сосудистая патология глаз.

Гомоцистинурия (цистиноз)

1. умственная отсталость;

2. подвывих хрусталика;

3. тромбоэмболия;

4. судороги.

Патоморфология: дистрофия и некроз клеток головного мозга, печени, почек, дисплазия костной ткани.

Тирозиноз

В основе болезни лежит дефицит тирозинтрансаминазы. Поражаются центральная нервная система, печень, почки, кости. Часто сочетается с цистинозом. Редкая патология.

Липидозы

Липиды явлются одним из компонентов белково-липидных комплексов, составляющих основу клеточных мембран.

Типы липидов:

1. Фосфатиды - присутствуют везде, особенно их много в центральной нервной системе.

2. Стериды - эфиры жирных кислот + циклические спирты (стерины). Широко распространенный класс веществ, играющих большую роль в организме (холестерин, холестероиды).

3. Сфинголипиды: сфингомиелины, цереброзиды, ганглиозиды. Их особенно много в центральной нервной системе.

4. Воска - класс веществ, близкий к жирам.

В цитоплазме отмечаются и нейтральные жиры, основным депо которых является жировая ткань. Они представляют собой соединения глицерина(щелочь) и жирных кислот(кислоты). Гистохимически нейтральные жиры выявляются на замороженных срезах с помощью окраски судан 3. Окрашиваются в ярко красный цвет.

Паренхиматозная жировая дистрофия

Локализуется там же, где и белковая дистрофия. Обе дистрофии часто сочетаются.

Макроскопический вид пораженных органов имеет свои особенности.

Сердце - увеличено в объеме, желудочки расширены (дилятация), миокард дряблый, глинистого вида. Под эндокардом видны желтые полосы. Эта картина получила название тигровое сердце.

Печень увеличена, тестоватой консистенции, охряно-желтого цвета, при разрезе на лезвии ножа остаются скопления в виде налета жира.

Почки увеличены, дряблые, отмечаются желтоватые мелкие пятна под капсулой и на разрезе.

Микроскопическая картина- в цитоплазме кардиомиоцитов, эпителия почечных канальцев, гепатоцитов определяются включения жира в виде мелких, средних и крупных капель. Биохимический состав их сложен. Это могут быть нейтральные жиры, жирные кислоты, фосфолипиды, холестериды.

Причины паренхиматозных липидозов:

1. тканевая гипоксия (особенно часто в миокарде);

2. инфекции - туберкулез, нагноительные процессы, сепсис, вирусы, алкоголь;

3. интоксикации - фосфор, мышьяк, соли тяжелых металлов, алкоголь;

4. авитаминозы;

5. голодание - алиментарная дистрофия.

Исходные варианты:

1. при незначительно выраженном процессе - патология обратима;

2. в случаях очень выраженного процесса может наступить гибель клетки - некроз.

Значение - снижение функции органов вплоть до развития недостаточности, особенно опасно и скоротечно протекает повреждение миокарда. Развивается сердечная недостаточность и смерть больного.

Наследственные липидозы

Самый частый вариант болезней накопления.

Виды патологии:

1. Ганглиозидозы.

2. Сфингомиелинозы.

3. Глюкоцереброзидозы.

4. Лейкодистрофии.

1. Ганглиозидозы – различают 7 видов ганлиозидозов в зависимости от вариантов ферментопатий. Болезнь может проявляться в детском и юношеском возрасте. Особенно тяжело протекает заболевание в ранне-детском варианте. Оно получило название амавротическая идиотия Тея – Сакса. Симптомы болезни - слепота (амавроз), дистрофия и гибель нервных клеток головного мозга с развитием слабоумия (идиотия). Смерть детей наступает в 2- 4 года.

2. Сфингомиелинозы - дефицит фермента сфингомиелиназы с накоплением сфингомиелинов в клетках головного мозга, печени, селезенки, лимфатических узлах. Патоморфология болезни характеризуется появлением пенистых клеток – клеток в цитоплазме которых накапливаются сфингомиелины, которые при обработке в спиртах и эфирах в процессе приготовления гистологических срезов растворились. А на месте их в цитоплазме остались пустоты, что и обусловливает пенистый вид цитоплазмы этих клеток.

Клинические симптомы в классическом варианте болезни (болезнь Нимана-Пика): начало - 5-6 месяц жизни, слабоумие, похудание, увеличение печени и селезенки, приступы удушья, напоминающие приступы бронхиальной астмы, гипертермические кризы (повышение температуры).

3. Глюкоцереброзидоз (болезнь Гоше).

Главное - дефицит глюкоцереброзидазы и накопление глюкоцереброзидов в цитоплазме клеток разных органов.

Патанатомия – дистрофия печени, увеличение селезенки, распространенная дистрофия и гибель нервных клеток коры головного мозга. Геморрагический синдром - кровоизлияния в разных органах.

1. хроническое течение;

2. гепатоспленомегалия;

3. гперпигментация;

4. слабоумие.

Варианты болезни:

1. хронический висцеральный: начинается в детстве и кончается гибелью больного в возрасте 20-50 лет;

2. острый раннедетский, нейровисцеральный тип – смерть наступает в возрасте 2 лет;

3. подострый юношеский- начинается в юношеском возрасте (18-20 лет) и через несколько лет кончается гибелью больного.

4. Лейкодистрофии.

Группа заболеваний, при которых происходит деструкция белого вещества головного и спинного мозга (лейко - белый; дистрофия- разрушение, повреждение).

Это наследственная патология, генетически обусловленная.

Клиника- нарушение деятельности головного и спинного мозга, в том числе и слабоумие, параличи, нарушение деятельности сердца.

Углеводные паренхиматозные дистрофии

Углеводы - особый класс биохимических соединений.

В живых тканях выделяют следующие виды сложных углеводов (полисахаридов):

1. Гликоген.

2. Мукополисахариды.

3. Глюкопротеиды.

Поэтому выделяют следующие виды углеводных паренхиматозных дистрофий:

1. Гликогенозы.

2. Мукополисахаридозы.

3. Глюкопротеидозы.

Гликогенозы

Они могут быть наследственными и приобретенными.

Приобретенный особенно часто имеет место при сахарном диабете, когда происходит уменьшение гликогена в гепатоцитах, как результат его повышенного распада и превращения в глюкозу, которая накапливается в крови, лимфе и тканевой жидкости. Отмечается также повышенная глюкозурия (выход глюкозы в мочу).

А также накопление гликогена в эпителии почечных канальцев как результат усиленной инфильтрации глюкозы в эпителий почечных канальцев.

Наследственные гликогенозы

Это группа болезней, при которых не происходит полного расщепления гликогена вследствие дефицита ферментов. Гликоген накапливается в цитоплазме гепатоцитов, миокардиоцитов, в эпителии почечных канальцев, скелетной мускулатуре, в клетках кроветворной ткани.

Клинико-патоморфологические варианты болезни:

1. Паренхиматозный: поражаются печень и почки.

2. Мышечно-сердечный: поражаются скелетная мускулатура и сердце.

3. Паренхиматозно-мышечно-сердечный: поражаются печень, почки, скелетная мускулатура, миокард.

4. Паренхиматозно-кроветворный: поражаются печень, почки, селезенка, лимфатические узлы.

Патоморфология: органы увеличены в размерах, особенно печень, селезнка, цвет органов - бледный. Микроскопически отмечается увеличение клеток в размерах и накопление гликогена.

Биохимические особенности - в клетках может накапливаться обычный гликоген, длинный гликоген и короткий гликоген.

Мукополисахаридозы

Подробное описание в разделе мезенхимальные дистрофии.

Глюкопротеидозы

1. Приобретенные.

2. Наследственные.

1. Приобретенные.

Слизистая дистрофия

Коллоидная дистрофия

Слизистая дистрофия-накопление слизистых масс в цитоплазме клеток. Отмечается при респираторных инфекциях, бронхиальной астме в эпителии бронхов, в раковых клетках при слизистом раке желудка. Макроскопически – признаки ослизнения, микроскопически - появление перстневидных клеток (клеток цитоплазма которых заполнена слизью, а ядро оттеснено на периферию и сплющено, почему клетка напоминает перстень).

Коллоидная дистрофия отмечается при коллоидном зобе и коллоидном раке. Исход процесса – обратное развитие или гибель клетки с последующими склерозом и атрофией.

2. Наследственные.

Особая болезнь – муковисцидоз.

Мукос- слизь, вискус- птичий клей.

Главное: накопление густой вязкой слизи, которая вырабатывется эпителием слизистых органов дыхания и желудочно - кишечного тракта. В результате происходит образование кист и развитие воспалительных процессов и некроза.

Жизнедеятельность любой ткани осуществляется в результате постоянного обмена веществ, в некоторых случаях нарушения метаболизма вызывают качественные изменения в тканях или органе; при этом в клетке и межуточном веществе увеличивается содержание естественных метаболитов или появляются вещества иного химического или физического состава. Такие изменения носят название дистрофии. Дистрофия относится к наиболее древним процессам филогенеза и сопровождает многие патологические процессы и заболевания детей и взрослых. Таким образом, дистрофический процесс универсален и является общепатологической категорией. Он может развертываться на различных уровнях организации живого: органе, ткани, клетки и клеточных ультраструктур. Многообразие причин (алиментарные, инфекционные и токсические, нейроэндокринные расстройства, пороки развития различных систем) нарушает регуляторную деятельность центральной нервной и иммунной системы, что изменяет нормальный метаболизм белков, жиров, углеводов и витаминов.

На занятии предлагается изучить структурно-патогенетические изменения в органах и тканях при диспротеинозах, липидозах и углеводных дистрофиях; разобрать морфогенетические аспекты развития того или иного вида паренхиматозных дистрофий; обратить внимание на редкие случаи врожденных болезней накопления.

Терминология

Дистрофия (dys-нарушение, trophe-питаю) - морфологическое выражение нарушения тканевого и клеточного метаболизма.

Декомпозиция (фанероз) - распад жиро-белковых комплексов мембранных структур паренхиматозной клетки или белково-полисахаридных комплексов соединительной ткани.

Денатурация - нарушение нативной структуры белка под воздействием каких-либо факторов.

Коагуляция (coagulata - свертывание,сгущение) - переход коллоидного раствора в состояние золя или геля.

Колликвация (сollikuatio - расплавлять) - размягчение, расплавление тканей.

Гликогеноз - наследственная углеводная дистрофия, в основе которой лежат нарушения обмена гликогена.

Ихтиоз (ichtyosis - рыбья чешую) - повышенное ороговение значительных участков кожи.

Лейкоплакия - очаги ороговения слизистых оболочек.

Тезаурисмозы (tesauros - запас) - болезни, связанные с накоплением метаболитов в клетках и тканях.

ПОВРЕЖДЕНИЕ

Под термином повреждение или альтерация (от лат. alteratio - изменение) в патологической анатомии принято понимать изменения структуры клеток, межклеточного вещества, тканей и органов, которые сопровождаются снижением уровня их жизнедеятельности или ее прекращением. В группу повреждений включены такие общепатологические процессы как дистрофии и некроз, а также атрофия. Последняя, представляя собой один из вариантов адаптации организма к изменившимся условиям жизнедеятельности под влиянием неблагоприятных факторов, отнесена в эту группу на основании того, что, по сути, является гипобиотическим процессом.

Причины, способные вызвать повреждение, могут действовать непосредственно или опосредованно (через гуморальные и рефлекторные влияния). Они очень разнообразны. Характер и степень повреждения зависят от природы и силы повреждающего фактора, структурно-функциональных особенностей органа или ткани, а также от реактивности организма. В одних случаях возникают поверхностные и обратимые изменения, касающиеся обычно лишь ультраструктур, в других - глубокие и необратимые, которые могут завершиться гибелью не только клеток и тканей, но иногда и целых органов.

Большое количество экзогенных повреждающих факторов, включая инфекционные и токсические (алкоголь, наркотики, тяжелые металлы) агенты, вмешиваясь непосредственно в различные биохимические процессы клетки и межклеточных структур, вызывают в них как морфологические, так и функциональные изменения (стереотипные ответные реакции).

Точный момент, при достижении которого повреждение (дистрофия) становится необратимым, приводящим к смерти клетки (некрозу), является неизвестным.

Некроз - это местная смерть, то есть гибель клеток и тканей при жизни организма. Он сопровождается необратимыми биохимическими и структурными изменениями. Некротизированные клетки прекращают функционировать. Если некроз достаточно обширный, то он клинически проявляется в виде болезни (инфаркт миокарда, ишемический инсульт).

К несмертельным повреждениям клетки можно отнести дистрофии .

ДИСТРОФИЯ

Под трофикой понимают совокупность механизмов, определяющих метаболизм и структурную организацию ткани (клетки), которые необходимы для выполнения специализированной функции.

Дистрофия (от греч. dys - нарушение и trophо - питаю) - это количественные и качественные структурные изменения в клетках и/или межклеточном веществе органов и тканей, обусловленные нарушением обменных процессов.

При дистрофиях в результате нарушения трофики в клетках или в межклеточном веществе накапливаются различные продукты обмена (белки, жиры, углеводы, минералы, вода). Морфологическая сущность дистрофий выражается в:

1) увеличении или уменьшении количества каких-либо веществ, содержащихся в организме в норме (например, увеличение количества жира в жировых депо);

2) изменение качества, то есть физико-химических свойств веществ, присущих организму в норме (например, изменение тинкториальных свойств коллагеновых волокон при мукоидном набухании и фибриноидных изменениях);

3) появление обычных веществ в необычном месте (например, накопление жировых вакуолей в цитоплазме клеток паренхиматозных органов при жировой дистрофии);

4) появление и накопление новых веществ, которые не присущи для него в норме (например, белка амилоида). Таким образом, дистрофия является морфологическим выражением нарушений метаболизма клеток и тканей .

Среди механизмов поддержания нормальной трофики выделяют клеточные и внеклеточные.

Клеточные механизмы обеспечиваются структурной организацией клетки и ее ауторегуляцией, обеспечивающейся генетическим кодом. Внеклеточные механизмы трофики обеспечиваются транспортными (кровь, лимфа) и интегративными (нервная, эндокринная, гуморальная) системами ее регуляции.

Непосредственной причиной развития дистрофий могут служить :

1. Различные факторы, повреждающие ауторегуляцию клетки, среди них:

А. Токсические вещества (в том числе токсины микроорганизмов).

В. Физические и химические агенты: высокая и низкая температуры, определенные химические вещества (кислоты, щелочи, соли тяжелых металлов, многие органические вещества), ионизирующая радиация.

С. Приобретенная или наследственная ферментопатия (энзимопатия).

D. Вирусы. Цитопатогенные вирусы могут вызывать лизис клетки путем непосредственного прямого включения в клеточные мембраны. Другие вирусы могут встраиваться в клеточный геном и вызывать соответствующее нарушение белкового синтеза в клетке. Некоторые вирусы могут вызывать лизис клеточных мембран опосредованно путем иммунного ответа, вызванного вирусными антигенными детерминантами на поверхности инфицированной клетки.

2. Нарушения функции энергетических и транспортных систем, обеспечивающих метаболизм и структурную сохранность тканей (клеток), при которых имеет место:

A. Гипогликемия: Макроэргические связи АТФ представляют собой наиболее эффективный источник энергии для клетки. АТФ производится путем окислительного фосфорилирования АДФ; эта реакция связана с окислением восстановленных веществ в дыхательной цепи ферментов. Глюкоза - основной субстрат для производства энергии в большинстве тканей и единственный источник энергии в мозговых клетках. Низкий уровень глюкозы в крови (гипогликемия) приводит к недостаточному производству молекул аденозинтрифосфата (АТФ), что наиболее выражено в головном мозге.

B. Гипоксия: Недостаток кислорода в клетках (гипоксия) может возникать при: (1) обструкции дыхательных путей или болезни, предотвращающей оксигенацию крови в легких; (2) ишемии, или нарушении тока крови в тканях в результате общих или местных нарушений циркуляции крови; (3) анемии (то есть, при снижении уровня гемоглобина в крови), что приводит к снижению транспорта кислорода кровью; (4) нарушении структуры гемоглобина (например, при отравлении угарным газом (СО)), при этом образуется метгемоглобин, не способный к переносу кислорода; это приводит к такому же результату, что и при анемии.

3. Нарушения эндокринной и нервной регуляции:

А. Заболевания эндокринных органов (тиреотоксикоз, диабет, гиперпаратиреоз и т.д.)

В. Болезни центральной и периферической нервной систем (нарушенная иннервация, опухоли головного мозга).

Морфогенез дистрофий. Среди механизмов, ведущих к развитию характерных для дистрофий изменений, различают инфильтрацию, декомпозицию (фанероз), извращенный синтез и трансформацию.

Инфильтрация - избыточное проникновение продуктов обмена из крови и лимфы в клетки или межклеточное вещество и/или нарушение включения их в метаболизм с последующим накоплением. Например, инфильтрация белком эпителия проксимальных канальцев почек при нефротическом синдроме, инфильтрация липопротеидами интимы аорты и крупных артерий при атеросклерозе.

Декомпозиция (фанероз) - распад сложных в химическом отношении веществ. Например, распад липопротеидных комплексов и накопление в клетке жира в свободном состоянии (жировая дистрофия кардиомиоцитов при дифтерийной интоксикации). Распад полисахаридно-белковых комплексов лежит в основе фибриноидных изменений соединительной ткани при ревматических болезнях.

Трансформация - переход одного вещества в другое. Такова, например, трансформация углеводов в жиры при сахарном диабете, усиленная полимеризация глюкозы в гликоген и др.

Извращенный синтез - это синтез в клетках или в тканях веществ, не встречающихся в них в норме. К ним относятся: синтез аномального белка амилоида в клетке и образование аномальных белково-полисахаридных комплексов амилоида в межклеточном веществе, синтез белка алкогольного гиалина гепатоцитом, синтез гликогена в эпителии узкого сегмента нефрона при сахарном диабете.

Характерная морфология дистрофий выявляется, как правило, на тканевом и клеточном уровнях, причем для доказательства связи дистрофии с нарушениями того или иного вида обмена требуется применение гистохимических методов. Без установления качества продукта нарушенного обмена нельзя верифицировать тканевую дистрофию, т.е. отнести ее к белковым, жировым, углеводным или другим дистрофиям. Изменения органа при дистрофии (размер, цвет, консистенция, структура на разрезе) в одних случаях представлены исключительно ярко, в других - отсутствуют и лишь микроскопическое исследование позволяет выявить их специфичность.

В классификации дистрофий придерживаются нескольких принципов. Выделяют дистрофии:

I. В зависимости от локализации нарушений обмена:

1) паренхиматозные;

2) стромально-сосудистые;

3) смешанные.

II. По преобладанию нарушений того или иного вида обмена:

1) белковые;

2) жировые;

3) углеводные;

4) минеральные.

III. В зависимости от влияния генетических факторов:

1) приобретенные;

2) наследственные.

IV. По распространенности процесса:

2) местные.

ПАРЕНХИМАТОЗНЫЕ ДИСТРОФИИ

Паренхиматозные дистрофии - это структурные изменения в высокоспециализированных в функциональном отношении клетках, связанные с нарушением обмена веществ. Поэтому при паренхиматозных дистрофиях преобладают нарушения клеточных механизмов трофики. Различные виды паренхиматозных дистрофий отражают недостаточность определенного физиологического (ферментативного) механизма, обеспечивающего выполнение клеткой специализированной функции (гепатоцит, нефроцит, кардиомиоцит и т.д.). В связи с этим в разных органах (печень, почки, сердце и т.д.) при развитии одного и того же вида дистрофии участвуют различные пато- и морфогенетические механизмы.

Механизм повреждений клетки сводится к следующему:

A. Вначале происходят внутриклеточное накопление воды и электролиз, обусловленные нарушением функции энергозависимой К + -Na + -АТФазы в клеточной мембране. В результате приток К + , Na + и воды в клетку ведет к “облачному” или “мутному” набуханию, что является ранним и обратимым (реверсивным) результатом повреждения клетки (этот эффект обусловлен набуханием цитоплазматических органелл, рассеянных в клетке). Происходят также изменения во внутриклеточных концентрациях других электролитов (особенно K + , Ca 2+ и Mg 2+), поскольку их концентрации также поддерживаются активностью энергозависимых процессов в клеточной мембране. Эти нарушения концентрации электролитов могут вести к беспорядочной электрической активности (например, в миокардиоцитах и нейронах) и ингибированию ферментов.

B. За притоком ионов натрия и воды следует набухание цитоплазматических органелл. При набухании эндоплазматического ретикулума происходит отделение рибосом, что приводит к нарушению синтеза белка. Митохондриальное набухание, которое является общим признаком для большого количества различных типов повреждений, вызывает физическое разобщение окислительного фосфорилирования.
С. В условиях гипоксии клеточный метаболизм изменяется от аэробного к анаэробному гликолизу. Преобразование ведет к производству молочной кислоты и вызывает уменьшение внутриклеточной pH. Хроматин конденсируется в ядре, происходит дальнейшее разрушение мембран органелл. Разрушение лизосомальных мембран ведет к выходу лизосомальных ферментов в цитоплазму, которые повреждают жизненно важные внутриклеточные молекулы.

В зависимости от нарушений того или иного вида обмена паренхиматозные дистрофии делят на белковые (диспротеинозы), жировые (липидозы) и углеводные.

ПАРЕНХИМАТОЗНЫЕ БЕЛКОВЫЕ ДИСТРОФИИ (ДИСПРОТЕИНОЗЫ)

Большая часть белков цитоплазмы (простых и сложных) находится в соединении с липидами, образуя липопротеидные комплексы. Эти комплексы составляют основу мембран митохондрий, эндоплазматической сети, пластинчатого комплекса и других структур. Помимо связанных белков в цитоплазме клетки содержатся и свободные белки.

Сущность паренхиматозных диспротеинозов состоит в изменении физико-химических и морфологических свойств белков клетки: они подвергаются либо коагуляции, то есть свертыванию с увеличением количества химических связей (например, S-S мостиков между полипептидными цепями), либо, наоборот, колликвации (разжижению) (от слова liquor - жидкость), то есть распаду полипептидных цепей на фрагменты, что ведет к гидратации цитоплазмы. После повреждения любой этиологии в клетке сразу увеличивается синтез белков целого семейства - это, так называемые белки температурного (теплового) шока. Среди белков температурного шока наиболее изучен убиквитин, который, как предполагается, защищает другие белки клетки от денатурации. Убиквитин играет роль "домашней хозяйки" по наведению порядка в клетке. Соединяясь с поврежденными белками он способствует их утилизации и восстановлению структурных компонентов внутриклеточных органелл. При тяжелом повреждении и избыточном накоплении комплексы убиквитин-белок могут формировать цитоплазматические включения (например, тельца Маллори в гепатоцитах - убиквитин/кератин; тельца Луи в нейронах при болезни Паркинсона - убиквитин/нейрофиламенты).

К паренхиматозным белковым дистрофиям со времен Р.Вирхова многие патологи причисляли и продолжают причислять так называемую зернистую дистрофию , которую сам Р.Вирхов обозначил как “мутное набухание”. Так принято обозначать процесс, при котором в цитоплазме клеток паренхиматозных органов появляется выраженная зернистость. При этом клетки имеют вид мутных, набухших. Сами органы увеличиваются в размерах, становятся дряблыми и тусклыми на разрезе, как бы ошпаренные кипятком.

Предполагалось, что зернистость, наблюдаемая в клетках, обусловлена накоплением в клетке зерен белка. Однако электронномикроскопическое и гистоферментохимическое изучение «зернистой дистрофии» показало, что в ее основе лежит не накопление белка в цитоплазме, а либо гиперплазия (т.е. увеличение количества) ультраструктур клеток паренхиматозных органов как выражение функционального напряжения этих органов в ответ на различные воздействия; гиперплазированные ультраструктуры клетки выявляются при светооптическом исследовании как белковые гранулы, либо увеличение размеров ультраструктур за счет их набухания при повышенной проницаемости мембран.

В одних паренхиматозных клетках (кардиомиоциты, гепатоциты) происходит гиперплазия и набухание митохондрий и эндоплазматического ретикулума, в других, например, в эпителии извитых канальцев, гиперплазия лизосом, поглощающих низкомолекулярные (в проксимальном отделе) и высокомолекулярные (в дистальном отделе) белки. Клиническое значение мутного набухания во всех его разновидностях различно. Но даже выраженные его морфологические проявления, что доказано при помощи биопсий паренхиматозных органов, обычно не влекут за собой недостаточности органа, а сопровождаются некоторым снижением функции органа. Это проявляется приглушенностью тонов сердца, появлением следов белка в моче, снижением силы сокращения мышц. В принципе это процесс обратимый. Вместе с тем необходимо помнить, что если причина, вызвавшая развитие зернистой дистрофии, не устранена, наступает деструкция липопротеидных комплексов мембранных структур клетки и развиваются более тяжелые паренхиматозные белковые и жировые дистрофии.

В настоящее время к паренхиматозным белковым дистрофиям (диспротеинозам) относят гиалиново-капельную, гидропическую и роговую. Однако следует подчеркнуть, что роговая дистрофия по механизму своего развития не связана с предыдущими.

ГИАЛИНОВО-КАПЕЛЬНАЯ ДИСТРОФИЯ

При гиалиново-капельной дистрофии в цитоплазме появляются крупные гиалиноподобные белковые глыбки и капли, сливающиеся между собой и заполняющие тело клетки. В основе этой дистрофии лежит коагуляция белков цитоплазмы с выраженной деструкцией ультраструктурных элементов клетки - фокальный коагуляционный некроз.

Этот вид диспротеиноза часто встречается в почках, реже - в печени, и совсем редко - в миокарде. Внешний вид органов при этой дистрофии не имеет каких- либо характерных черт. Макроскопические изменения характерны для тех заболеваний, при которых встречается гиалиново-капельная дистрофия.

В почках при микроскопическом исследовании накопление крупных зерен белка ярко-розового цвета - гиалиновых капель - находят в нефроцитах. При этом наблюдается деструкция митохондрий, эндоплазматической сети, щеточной каемки.

В основе гиалиново-капельной дистрофии нефроцитов лежит недостаточность вакуолярно-лизосомального аппарата эпителия проксимальных и дистальных извитых канальцев , в норме реабсорбирующего белки.

Поэтому этот вид дистрофии нефроцитов очень часто встречается при нефротическом синдроме и отражает реабсорбционную недостаточность извитых канальцев в отношении белков. Этот синдром является одним из проявлений многих заболевании почек, при которых первично поражается гломерулярный фильтр (гломерулонефрит, амилоидоз почек, парапротеинемиическая нефропатия и др.).

В печени при микроскопическом исследовании в гепатоцитах находят глыбки и капли белковой природы - это алкогольный гиалин, представляющий собой на ультраструктурном уровне нерегулярные агрегаты микрофибрилл и гиалиновые неправильной формы включения (тельца Маллори). Образование этого белка и телец Маллори служит проявлением извращенной белково-синтетической функции гепатоцита и выявляется постоянно при алкогольном гепатите.

Исход гиалиново-капельной дистрофии неблагоприятен: она завершается необратимым процессом, ведущим к тотальному коагуляционному некрозу клетки.

Функциональное значение этой дистрофии очень велико - происходит резкое снижение функции органа. С гиалиново-капельной дистрофией эпителия почечных канальцев связаны появление в моче белка (протеинурия) и цилиндров (цилиндрурия), потеря белков плазмы (гипопротеинемия), нарушение ее электролитного баланса. Гиалиново-капельная дистрофия гепатоцитов нередко является морфологической основой нарушений многих функций печени.

ГИДРОПИЧЕСКАЯ (ВОДЯНОЧНАЯ) ИЛИ ВАКУОЛЬНАЯ ДИСТРОФИЯ

Гидропическая, или вакуольная, дистрофия характеризуется появлением в клетке вакуолей, наполненных цитоплазматической жидкостью. Жидкость накапливается в цистернах эндоплазматического ретикулума и в митохондриях, реже в ядре клетки.

Механизм развития гидропической дистрофии сложен и отражает нарушения водно-электролитного и белкового обмена, ведущие к изменению коллоидно-осмотического давления в клетке. Большую роль играет нарушение проницаемости мембран клетки, сопровождающееся их распадом. Это ведет к активации гидролитических ферментов лизосом, которые разрывают внутримолекулярные связи с присоединением воды. По существу такие изменения клетки являются выражением фокального колликвационного некроза.

Гидропическая дистрофия наблюдается в эпителии кожи и почечных канальцев, в гепатоцитах, мышечных и нервных клетках, а также в клетках коры надпочечников. Причины развития гидропической дистрофии в разных органах неоднозначны. В почках - это повреждение гломерулярного фильтра (гломерулонефрит, амилоидоз, сахарный диабет), что ведет к гиперфильтрации и недостаточности ферментной системы нефроцитов, в норме обеспечивающей реабсорбцию воды; отравление гликолями, гипокалиемия. В печени гидропическая дистрофия возникает при вирусном и токсическом гепатитах. Причинами гидропической дистрофия эпидермиса могут быть инфекции, аллергии.

Внешний вид органов и тканей мало изменяется при гидропической дистрофии. Микроскопическая картина: паренхиматозные клетки увеличены в объеме, цитоплазма их заполнена вакуолями, содержащими прозрачную жидкость. Ядро смещается на периферию, иногда вакуолизируется или сморщивается. Нарастание гидропии приводит к распаду ультраструктур клетки и переполнению клетки водой, появлению заполненных жидкостью баллонов, поэтому такие изменения называют баллонной дистрофией.

Исход гидропической дистрофии, как правило, неблагоприятный; она завершается тотальным колликвационным некрозом клетки. Поэтому функция органов и тканей при гидропической дистрофии резко снижена.

РОГОВАЯ ДИСТРОФИЯ

Роговая дистрофия, или патологическое ороговение, характеризуется избыточным образованием рогового вещества в ороговевающем эпителии (гиперкератоз, ихтиоз) или образованием рогового вещества там, где в норме его не бывает (патологическое ороговение на слизистых оболочках, например, в полости рта (лейкоплакия), пищеводе, шейке матки.

Роговая дистрофия может быть местной или общей, врожденной или приобретенной. Причины роговой дистрофии разнообразны: хроническое воспаление, связанное с инфекционными агентами, действием физических и химических факторов, авитаминозы, врожденное нарушение развития кожи и др.

Исход может быть двояким: устранение вызывающей причины в начале процесса может привести к восстановлению ткани, однако в далеко зашедших случаях наступает гибель клеток.

Значение роговой дистрофии определяется ее степенью, распространенностью и длительностью. Длительно существующее патологическое ороговение слизистой оболочки (лейкоплакия) может явиться источником развития раковой опухоли. Врожденный ихтиоз резкой степени, как правило, несовместим с жизнью.

ПАРЕНХИМАТОЗНЫЕ ЖИРОВЫЕ ДИСТРОФИИ (ЛИПИДОЗЫ)

В цитоплазме клеток содержатся в основном липиды, которые образуют с белками сложные лабильные жиробелковые комплексы - липопротеиды. Эти комплексы составляют основу мембран клетки. Липиды вместе с белками являются составной частью и клеточных ультраструктур. Помимо липопротеидов, в цитоплазме встречаются в небольшом количестве жиры в свободном состоянии.

Паренхиматозная жировая дистрофия - это структурные проявления нарушения обмена цитоплазматических липидов, которые могут выражаться в накоплении жира в свободном состоянии в клетках, где он обнаруживаются и в норме.

Причины жировой дистрофии разнообразны:

Кислородное голодание (тканевая гипоксия), поэтому жировая дистрофия так часто встречается при заболеваниях сердечно-сосудистой системы, хронических заболеваниях легких, анемиях, хроническом алкоголизме и т. д. В условиях гипоксии страдают в первую очередь отделы органа, находящиеся в функциональном напряжении;

Тяжелые или длительно протекающие инфекции (дифтерия, туберкулез, сепсис);

Интоксикации (фосфор, мышьяк, хлороформ, алкоголь), ведущие к нарушениям обмена;

Авитаминозы и одностороннее (с недостаточным содержанием белков) питание, сопровождающееся дефицитом ферментов и липотропных факторов, которые необходимы для нормального жирового обмена клетки.

Паренхиматозная жировая дистрофия характеризуется, главным образом, накоплением триглицеридов в цитоплазме паренхиматозных клеток. При нарушении связи белков с липидами - декомпозиции, которая возникает под действием инфекций, интоксикаций, продуктов перекисного окисления липидов - возникает деструкция мембранных структур клетки и в цитоплазме появляются свободые липоиды, являющиеся морфологическим субстратом паренхиматозной жировой дистрофии. Наиболее часто она наблюдается в печени, реже в почке и миокарде, и расценивается как неспецифический ответ на большое количество типов повреждения.

Нормальный метаболизм триглицеридов в печени играет центральную роль в метаболизме жиров. Свободные жирные кислоты током крови приносятся в печень, где они преобразовываются в триглицериды, фосфолипиды и сложные эфиры холестерина. После того, как эти липиды формируют комплексы с белками, которые также синтезируются в клетках печени, они секретируются в плазму как липопротеины. При нормальном метаболизме количество триглицеридов в клетке печени невелико и не может быть замечено при обычных микроскопических исследованиях.

Микроскопические признаки жировой дистрофии: любой жир, находящийся в тканях, растворяется в растворителях, которые используются при окраске образцов ткани для микроскопического исследования. Поэтому при обычной проводке и окраске ткани (окраска гематоксилином и эозином) клетки в самых ранних стадиях жировой дистрофии имеют бледную и пенистую цитоплазму. По мере увеличения жировых включений в цитоплазме появляются небольшие вакуоли.

Специфическая окраска на жиры требует использования замороженных срезов, сделанных из свежей ткани. В замороженных срезах жир остается в цитоплазме, после чего срезы окрашиваются специальными красителями. Гистохимически жиры выявляются с помощью ряда методов: судан IV, жировой красный О и шарлах рот окрашивают их в красный цвет, судан Ш - в оранжевый, судан черный B и осмиевая кислота - в черный, сульфат нильского голубого окрашивает жирные кислоты в темно-синий цвет, а нейтральные жиры - в красный. С помощью поляризационного микроскопа можно дифференцировать изотропные и анизотропные липиды. Анизотропные липиды, такие как холестерин и его эфиры, дают характерное двойное лучепреломление.

Жировая дистрофия печени проявляется резким увеличением содержания и изменением состава жиров в гепатоцитах. В клетках печени вначале появляются гранулы липидов (пылевидное ожирение), затем мелкие капли их (мелкокапельное ожирение), которые в дальнейшем сливаются в крупные капли (крупнокапельное ожирение) или в одну жировую вакуоль, которая заполняет всю цитоплазму и отодвигает ядро на периферию. Измененные таким образом печеночные клетки напоминают жировые. Чаще отложение жиров в печени начинается на периферии, реже - в центре долек; при значительно выраженной дистрофии ожирение клеток печени имеет диффузный характер.

Макроскопически печень при жировой дистрофии увеличена, малокровна, тестоватой консистенции, имеет желтый или охряно-желтый цвет, с жирным блеском на разрезе. При разрезе на лезвии ножа и поверхности разреза виден налет жира.

Причины жировой дистрофии печени: накопление триглицеридов в цитоплазме клеток печени возникает в результате нарушения метаболизма при следующих условиях:

1) когда увеличивается мобилизация жиров в жировой ткани, что приводит к увеличению количества жирных кислот, достигающих печени, например, при голодании и сахарном диабете;

2) когда скорость преобразования жирных кислот в триглицериды в клетке печени увеличена из-за повышенной активности соответствующих ферментных систем. Это - главный механизм влияния алкоголя, который является мощным стимулятором ферментов.

3) когда уменьшено окисление триглицеридов до ацетил-КоА и кетоновых тел в органах, например, при гипоксии, и приносимый током крови и лимфы жир не окисляется - жировая инфильтрация;

4) когда синтез белков-акцепторов жиров недостаточен. Таким путем возникает жировая дистрофия печени при белковом голодании и при отравлении некоторыми гепатотоксинами, например, четыреххлористым углеродом и фосфором.

Типы жировой дистрофии печени :

a. Острая жировая дистрофия печени - редкое, но серьезное состояние, связанное с острым поражением печени. При острой жировой дистрофии печени триглицериды накапливаются в цитоплазме как маленькие, ограниченные мембраной вакуоли (мелкокапельная жировая дистрофия печени).

b. Хроническая жировая дистрофия печени может возникать при хроническом алкоголизме, недоедании и при отравлении некоторыми гепатотоксинами. Жировые капли в цитоплазме соединяются, формируя значительно большие вакуоли (крупнокапельная жировая дистрофия печени). Локализация жировых изменений в дольке печени различается в зависимости от различных причин. Даже при тяжелой хронической жировой печени редко имеются клинические проявления дисфункции печени.

Жировая дистрофия миокарда характеризуется накоплением триглицеридов в миокарде.

Причины жировой дистрофии миокарда:

Хронические гипоксические состояния, особенно при выраженной анемии. При хронической жировой дистрофии желтые полосы чередуются с красно-коричневыми участками («тигровое сердце»). Клинические признаки обычно не сильно выражены.

Токсическое поражение, например, дифтеритический миокардит, вызывает острую жировую дистрофию. Макроскопически сердце дряблое, имеется диффузное желтое окрашивание, сердце выглядит увеличенным в объеме, камеры его растянуты; в клинической картине появляются признаки острой сердечной недостаточности.

Жировая дистрофия миокарда рассматривается как морфологический эквивалент его декомпенсации. Большинство митохондрий при этом распадается, поперечная исчерченность волокон исчезает. Развитие жировой дистрофии миокарда чаще всего связывают не с разрушением комплексов клеточных мембран, а с деструкцией митохондрий, что ведет к нарушению окисления жирных кислот в клетке. В миокарде жировая дистрофия характеризуется появлением в мышечных клетках мельчайших жировых капель (пылевидное ожирение). При нарастании изменений эти капли (мелкокапельное ожирение) полностью замещают цитоплазму. Процесс имеет очаговый характер и наблюдается в группах мышечных клеток, расположенных по ходу венозного колена капилляров и мелких вен, чаще субэндо- и субэпикардиально.

В почках при жировой дистрофии жиры появляются в эпителии проксимальных и дистальных канальцев. Обычно это нейтральные жиры, фосфолипиды или холестерин, который обнаруживают не только в эпителии канальцев, но и в строме. Нейтральные жиры в эпителии узкого сегмента и собирательных трубок встречаются как физиологическое явление. Внешний вид почек: они увеличены, дряблые (при сочетании с амилоидозом плотные), корковое вещество набухшее, серое с желтым крапом, заметным на поверхности и разрезе.

Механизм развития жировой дистрофии почек связан с инфильтрацией эпителия почечных канальцев жиром при липемии и гиперхолестеринемии (нефротический синдром), что ведет к гибели нефроцитов.

Исход жировой дистрофии зависит от ее степени. Если она не сопровождается грубым поломом клеточных структур, то, как правило, оказывается обратимой. Глубокое нарушение обмена клеточных липидов в большинстве случаев заканчивается гибелью клетки. Функциональное значение жировой дистрофии велико: функционирование органов при этом резко нарушается, а в ряде случаев и прекращается. Некоторые авторы высказывали мысль о появлении жира в клетках в период реконвалесценции и начала репарации. Это согласуется с биохимическими представлениями о роли пентозофосфатного пути утилизации глюкозы в анаболических процессах, что сопровождается также синтезом жиров.

ПАРЕНХИМАТОЗНЫЕ УГЛЕВОДНЫЕ ДИСТРОФИИ

Углеводы, которые определяются в клетках и тканях и могут быть идентифицированы гистохимически, делят на полисахариды, из которых в животных тканях выявляются лишь гликоген, гликозаминогликаны (мукополисахариды) и гликопротеиды. Среди гликозаминогликанов различают нейтральные, прочно связанные с белками, и кислые, к которым относятся гиалуроновая, хондроитинсерная кислоты и гепарин. Кислые гликозаминогликаны как биополимеры способны вступать в непрочные соединения с рядом метаболитов и осуществлять их транспорт. Главными представителями гликопротеидов являются муцины и мукоиды. Муцины составляют основу слизи, продуцируемой эпителием слизистых оболочек и железами, мукоиды входят в состав многих тканей.

Гистохимические методы выявления углеводов.

Полисахариды, гликозаминогликаны и гликопротеиды выявляются ШИК-реакцией. Сущность реакции заключается в том, что после окисления йодной кислотой (или реакции с перйодатом) образующиеся альдегиды дают с фуксином Шиффа красное окрашивание. Для выявления гликогена ШИК-реакцию дополняют ферментативным контролем - обработкой срезов амилазой. Гликоген окрашивается кармином Беста в красный цвет. Гликозаминогликаны и гликопротеиды определяют с помощью ряда методов, из которых наиболее часто применяют окраски толуидиновым синим или метиленовым синим. Эти окраски позволяют выявлять хромотропные вещества, дающие реакцию метахромазии.

Обработка срезов ткани гиалуронидазами (бактериальной, тестикулярной) с последующей окраской теми же красителями позволяет дифференцировать различные гликозаминогликаны; это возможно также при изменении рН красителя.

Паренхиматозная углеводная дистрофия может быть связана с нарушением обмена гликогена или гликопротеидов.

Нарушение обмена гликогена

Основные запасы гликогена находятся в печени и скелетных мышцах. Гликоген печени и мышц расходуется в зависимости от потребностей организма (лабильный гликоген). Гликоген нервных клеток, проводящей системы сердца, аорты, эндотелия, эпителиальных покровов, слизистой оболочки матки, соединительной ткани, эмбриональных тканей, хряща является необходимым компонентом клеток и его содержание не подвергается заметным колебаниям (стабильный гликоген). Однако деление гликогена на лабильный и стабильный условно. Регуляция обмена углеводов осуществляется нейроэндокринным путем. Основная роль принадлежит гипоталамической области, гипофизу (АКТГ, тиреотропный, соматотропный гормоны), бета-клеткам островков поджелудочной железы (инсулин), надпочечникам (глюкокортикоиды, адреналин) и щитовидной железе.

При сахарном диабете, развитие которого связывают с патологией бета-клеток островков поджелудочной железы, что обусловливает недостаточную выработку инсулина, происходит недостаточное использование глюкозы тканями, увеличение ее содержания в крови (гипергликемия) и выведение с мочой (глюкозурия). Тканевые запасы гликогена резко уменьшаются. Это в первую очередь касается печени, в которой нарушается синтез гликогена, что ведет к инфильтрации ее жирами - развивается жировая дистрофия печени; при этом в ядрах гепатоцитов появляются включения гликогена, они становятся светлыми («пустые» ядра).

С глюкозурией связаны характерные изменения почек при диабете. Они выражаются в гликогенной инфильтрации эпителия канальцев, главным образом узкого и дистального сегментов. Эпителий становится высоким, со светлой пенистой цитоплазмой; зерна гликогена видны и в просвете канальцев. Эти изменения отражают состояние синтеза гликогена (полимеризация глюкозы) в канальцевом эпителии при резорбции богатого глюкозой ультрафильтрата плазмы. При диабете страдают не только почечные канальцы, но и клубочки, их капиллярные петли, базальная мембрана которых становится значительно более проницаемой для сахаров и белков плазмы. Возникает одно из проявлений диабетической микроангиопатии - интеркапиллярный (диабетический) гломерулосклероз.

Сахарный диабет матери. У детей раннего грудного возраста в ряде случаев обнаруживаются избыточные отложения гликогена в миокарде, почках, печени, скелетных мышцах. «Этот вторичный транзиторный гликогеноз» наблюдается при СД матерей (то есть речь идёт о проявлениях диабетической фетопатии) и проходит через несколько недель после рождения.

Наследственные углеводные дистрофии, в основе которых лежат нарушения обмена гликогена, называются гликогенозами. Гликогенозы обусловлены отсутствием или недостаточностью фермента, участвующего в расщеплении депонированного гликогена, и относятся потому к наследственным ферментопатиям, или болезням накопления. В настоящее время хорошо изучены 6 типов гликогенозов, обусловленных наследственной недостаточностью 6 различных ферментов. Это болезни Гирке (I тип), Помпе (II тип), Мак-Ардля (V тип) и Герса (VI тип), при которых структура накапливаемого в тканях гликогена не нарушена, и болезни Форбса-Кори (III тип) и Андерсена (IV тип), при которых она резко изменена.

Морфологическая диагностика гликогеноза того или иного типа возможна при исследовании биопсии с помощью гистоферментных методов, а также с учетом локализации накапливаемого гликогена.

Болезнь фон Гирке . Заболевание начинается в раннем детском возрасте проявлениями гипогликемии и кетонемии. Характерны развитие вторичного гипофизарного ожирения (жир откладывается главным образом на лице, приобретающем «кукольный» вид), увеличение в размерах почек, значительная гепатомегалия, обусловленная не только углеводной, но и жировой дистрофией гепатоцитов. Отмечается значительное увеличение гликогена в лейкоцитах. Накопление гликогена в поражённых клетках столь значительно, что они остаются PAS-положительными даже после фиксации материала в формалине. Большинство детей погибает от ацидотической комы или присоединившейся инфекции.

Болезнь Помпе (гликогеноз типа II, 17q25.2-q25.3, ген GAA) - дефицит лизосомной α-1,4-глюкозидазы - приводит к поражению сердца, поперечнополосатых и гладких мышц и проявляется в возрасте до одного года жизни отставанием в массе тела, кардиомегалией общей мышечной слабостью. Накопление гликогена в миокарде, диафрагме и других дыхательных мышцах способствует нарастающей сердечной и дыхательной недостаточности. Гликоген откладывается также в язык (глоссомегалия), гладких мышцах пищевода, желудка, что вызывает затруднение глотания, картину пилоростеноза, сопровождающегося рвотой. Летальный исход наступает в первые годы жизни не только от сердечной или дыхательной недостаточности, но часто и от аспирационной пневмонии.

Болезнь Форбса-Кори . Накопление атипичного гликогена (лимитдекстрина) уже на 1-м году жизни приводит к умеренной гепатомегалии, небольшому увеличению сердца, гипотонусу скелетных мышц, что не является опасным для жизни, почему заболевание иногда называют доброкачественным гликогенозом.

Болезнь Андерсена . Нарушается структура гликогена (напоминает растительные полисахариды - пектины), откладывающегося в клетках печени, селезёнки и лимфатических узлов с развитием в последующем цирроза печени. Заболевание проявляется в конце грудного или в раннем детском возрасте в виде мелкоузлового цирроза печени с портальной гипертензией. При ЭМ-исследовании в цитоплазме поражённых клеток обнаруживаются включения аномального гликогена, состоящего из тёмной массивной центральной части (образованной гранулярным и ветвистым материалом), окружённой светлым тонким периферическим ободком.

Болезнь Мак-Ардля . У больных (как правило, в возрасте старше 10 лет) наблюдаются боли в мышцах, общая слабость после физической нагрузки. В ряде случаев отмечается тёмный цвет мочи из-за присутствия в ней миоглобина. В состоянии покоя указанная симптоматика не наблюдается. Изменения затрагивают только скелетную мускулатуру, в цитоплазме мышечных волокон находятся PAS-положительные включения гликогена. Прогноз благоприятен.

Углеводные дистрофии, связанные с нарушением обмена гликопротеидов.

При нарушении обмена гликопротеидов в клетках или в межклеточном веществе происходит накопление муцинов и мукоидов, называемых также слизистыми или слизеподобными веществами. В связи с этим при нарушении обмена гликопротеидов говорят о слизистой дистрофии.

Микроскопическое исследование. Оно позволяет выявить не только усиленное слизеобразование, но и изменения физико-химических свойств слизи. Многие секретирующие клетки погибают и десквамируются, выводные протоки желез обтурируются слизью, что ведет к развитию кист. Нередко в этих случаях присоединяется воспаление. Слизь может закрывать просветы бронхов, следствием чего является возникновение ателектазов и очагов пневмонии. Иногда в железистых структурах накапливается не истинная слизь, а слизеподобные вещества (псевдомуцины). Эти вещества могут уплотняться и принимать характер коллоида. Тогда говорят о коллоидной дистрофии, которая наблюдается, например, при коллоидном зобе.

Причины слизистой дистрофии разнообразны, но чаще всего это воспаление слизистых оболочек в результате действия различных патогенных раздражителей (катаральное воспаление).

Слизистая дистрофия лежит в основе наследственного системного заболевания, называемого муковисцидозом, для которого характерно изменение качества слизи, выделяемой эпителием слизистых желез: слизь становится густой и вязкой, она плохо выводится, что обусловливает развитие ретенционных кист и склероза (кистозный фиброз). Поражаются экзокринный аппарат поджелудочной железы, железы бронхиального дерева, пищеварительного и мочевого тракта, желчных путей, потовые и слезные железы. Исход в значительной мере определяется степенью и длительностью повышенного слизеобразования. В одних случаях регенерация эпителия приводит к полному восстановлению слизистой оболочки, в других - она атрофируется, в дальнейшем склерозируется, что, естественно, отражается на функции органа.

МУКОПОЛИСАХАРИДОЗЫ И МУКОЛИПИДОЗЫ .

К этой группе относятся болезни накопления, развивающиеся при мутациях ферментов, обеспечивающих метаболизм сфинголипидов, гликолипидов и мукополисахаридов. Существует множество нозологических единиц, в значительной степени перекрывающих друг друга. Классификация заболеваний запутана. Для больных с многими страданиями рассматриваемой группы характерен фенотип гаргоилизма.

Гаргоилизм . У больных уже к концу 1-го года жизни отмечается низкий рост, характерный фенотип - массивный череп, втянутый корень носа, сросшиеся брови, толстые губы, большой язык, короткая шея. Одним из симптомов является своеобразное выражение лица - «лицо, выплёвывающее воду». Наблюдаются помутнение роговицы, гепато- и спленомегалия, склонность к пупочным и паховым грыжам, скелетные аномалии вследствие нарушения периостального и энхондрального окостенения (фиксированный кифоз в области торакально-поясничного сочленения, ограниченная подвижность суставов, искривления длинных трубчатых костей), отсталость в психическом развитии и иногда тугоухость (вплоть до глухоты), низкий хриплый голос. При клинико-лабораторном обследовании характерным признаком заболевания является темно-синяя зернистость лейкоцитов и лимфоцитов периферической крови. В поражённых ганглиозных клетках откладывается трудно растворимый гликолипопротеин, тогда как в клетках миокарда, печени, селезёнки, хрящевой и фиброзной ткани, а также в эндотелиоцитах интимы кровеносных сосудов - гликопротеины и гликолипиды. Дети погибают обычно до 12-летнего возраста от сердечно-сосудистой недостаточности или вторичной инфекции.

Определение. Дистрофия (от греч. dis – нарушение и trорhе – питаю) – патологический процесс, в основе которого лежит нарушение тканевого (клеточного) обмена, ведущее к структурным изменениям. Поэтому дистрофии рассматриваются как один из видов повреждения.

Непосредственной причиной развития дистрофий являются нарушения как клеточных , так и внеклеточных механизмов, обеспечивающих трофику.

1. Расстройства ауторегуляции клетки, ведущие к энергетическому дефициту и нарушению ферментативных процессов в клетке. В таком случае ферментопатии , или энзимопатии (приобретенные или наследственные) становятся основным патогенетическим звеном и выражением дистрофии.

2. Нарушения функции транспортных систем обеспечивающих метаболизм и структурную сохранность тканей (клеток), вызывают гипоксию, которая является ведущей в патогенезе дисциркуляторных дистрофий.

3. При расстройствах эндокринной или нервной регуляции трофики можно говорить – о нервных или церебральных дистрофиях.

Особенности патогенеза внутриутробных дистрофий определяются непо­средственной связью их с болезнями матери. В исходе при гибели части зачатка органа или ткани может развиться необратимый порок развития.

При дистрофиях в клетке и (или) межклеточном веществе накапливаются различные продукты обмена (белки, жиры, углеводы, минералы, вода), которые характеризуются количественными или качественными изменениями в результате нарушения ферментативных процессов.

Морфогенез. Среди механизмов, ведущих к развитию дистрофий, различают инфильтрацию, декомпозицию (фанероз), извращенный синтез и трансформацию.

Инфильтрация – избыточное проникновение продуктов обмена из крови и лимфы в клетки или межклеточное вещество с последующим их накоплением, в связи с недостаточностью ферментных систем, метаболизирующих эти продукты. Например: инфильтрация грубодисперсными белками эпителия проксимальных канальцев почек при нефротическом синдроме, инфильтрация холестерином и липопротеидами интимы аорты и крупных артерий при атеросклерозе.

Декомпозиция (фанероз ) – распад ультраструктур клеток и межклеточного вещества, ведущий к нарушению тканевого (клеточного) обмена и накоплению продуктов нарушенного обмена в ткани (клетке).

Извращенный синтез – это синтез в клетках или в тканях веществ, не встречающихся в них в норме.

Трансформация – образование продуктов одного вида обмена из общих исходных продуктов, которые идут на построение белков, жиров и углеводов. Такова, например, трансформация компонентов жиров и углеводов в белки, усиленная полимеризация глюкозы в гликоген.

Инфильтрация и декомпозиция – ведущие морфогенетические механизмы дистрофий – часто являются последовательными стадиями в их развитии.

Классификация дистрофий. Выделяют следующие виды дистрофий:

I. В зависимости от преобладания морфологических изменений в специализированных элементах паренхимы или строме и сосудах: 1) паренхиматозные ; 2) стромально-сосудистые ; 3) смешанные.

II. По преобладанию нарушений того или иного вида обмена: 1) белковые; 2) жировые; 3) углеводные; 4) минеральные.

III. В зависимости от влияния наследственных факторов: 1) приобретенные; 2) наследственные.

IV. По распространенности процесса: 1) общие; 2) местные.

ПАРЕНХИМАТОЗНЫЕ ДИСТРОФИИ

Определение. Паренхиматозные дистрофии – проявления нарушений обмена в высокоспециализированных в функциональном отношении клетках паренхиматозных органов.

В зависимости от нарушений того или иного вида обмена паренхиматоз­ные дистрофии делят на белковые (диспротеинозы), жировые (липидозы) и углеводные.

К паренхиматозным диспротеинозам относят гиалиново-капельную , гидропическую и роговую дистрофии.

Гиалиново-капельная дистрофия. При гиалиново-капельной дистрофии в цитоплазме появляются крупные гиалиноподобные белковые капли, сливающиеся между собой и заполняющие тело клетки; при этом происходит деструкция ультраструктурных элементов клетки. В ряде случаев гиалиновокапельная дистрофия завершается фокальным коагуляционным некрозом клеткой . Этот вид диспротеиноза часто встречается в почках, редко – в печени и совсем редко – в миокарде.

В почках при микроскопическом исследовании накопление гиалиновых капель определяется в нефроцитах. При этом наблюдается деструкция митохондрий, эндоплазматической сети, щеточной каемки. В основе гиалиново-капельной дистрофии нефроцитов лежит недостаточность вакуолярно-лизосомального аппарата эпителия проксимальных канальцев, в норме реабсорбирующего белки. Поэтому этот вид дистрофии нефроцитов очень часто встречается при нефротическом синдроме. Внешний вид почек не имеет каких-либо характерна черт, он определяется прежде всего особенностями основного заболевания (гломерулонефрит, амилоидоз).

В печени при микроскопическом исследовании в гепатоцитах находят гиалиноподобные тельца (тельца Мэллори), которые состоят из фибрилл особого белка – алкогольного гиалина. Образование это белка и телец Мэллори служит проявлением извращенной белково-синтетической функции гепатоцита, что встречается постоянно при алкогольном гепатите и сравнительно редко при первичном билиарном и индийском детском циррозах, гепатоцеребральной дистрофии (болезни Вильсона–Коновалова). Внешний вид печени характерен для тех ее заболеваний, при которых встречается гиалиново-капельная дистрофия.

Исход гиалиново-капельной дистрофии неблагоприятен: она завершается некрозом клетки. С гиалиново-капельной дистрофией эпителия почечных канальцев связаны появления в моче белка (протеинурия) и цилиндров (цилиндрурия), потеря белков плазмы (гипопротеинемия), нарушение ее электролитного баланса. Гиалиново-капельная дистрофия гепатоцитов может является морфологической основой нарушений многих функций печени.

Гидропическая дистрофия. Гидропическая (водяночная , вакуодльная ) дистрофия характеризуется появление в клетке вакуолей, наполненных цитоплазматической жидкостью. Она наблюдается чаще в эпителии кожи и почечных канальцев, в гепатоцитах, мышечных и нервных клетках и клетках коры надпочечников.

Микроскопическая картина : паренхиматозные клетки увеличены в объеме, цитоплазма их заполнена вакуолями, содержащими прозрачную жидкость. Ядро смещается на периферию, иногда вакуолизируется или сморщивается. Прогрессирование этих изменений приводит к распаду ультраструктур клетки и переполнению клетки водой. Клетка превращается в заполненные жидкостью баллоны или в огромную вакуоль, в которой плавает пузырьковидное ядро. Такие изменения клетки, которые по существу являются выражением фокального колликвационного некроза , называют баллонной дистрофией.

Внешний вид органов и тканей мало изменяется при гидропической дистрофии, она обнаруживается обычно под микроскопом.

Механизм развития гидропической дистрофии отражает нарушение водно-электролитного и белкового обмена, ведущие к изменению коллоидноосматического давления в клетке. Большую роль играет нарушение проницаемости мембран клетки, сопровождающееся их распадом. Это ведет к закислению цитоплазмы, активации гидролитических ферментов лизосом, которые разрывают внутримолекулярные связи с присоединением воды.

Причины развития: в почках– это повреждение гломерулярного фильтра (гломерулонефрит, амилоидоз, сахарный диабет), в печени гидропическая дистрофия возникает при вирусном и токсическом гепатитах и нередко является причиной печеночной недостаточности. Причиной гидропической дистрофии эпидермиса может быть инфекция (оспа), ожоги.

Исход гидропической дистрофии, как правило, неблагоприятный; она завершается фокальным или тотальным некрозом клетки. Функция органов и тканей при гидропической дистрофии резко страдает.

Роговая дистрофия. Роговая дистрофия, или патологическое ороговение , характеризуется избыточным образованием рогового вещества в ороговевающем эпителии (гиперкератоз, ихтиоз ) или образованием рогового вещества там, где в норме его не бывает (патологическое ороговение на слизистых оболочках, или лейкоплакия; образование «раковых жемчужин» в плоскоклеточном раке). Процесс может быть местным или распространенным.

Причины роговой дистрофии: нарушение развития кожи, хроническое воспаление, вирусные инфекции, авитаминозы и др. Исход может быть при устранении причины в начале процесса возможно восстановление ткани, однако в далеко зашедших случаях наступает гибель клеток. Значение роговой дистрофии определяется ее степенью, распространенностью и длительностью. Длительно существующее патологическое ороговение слизистой оболочки (лейкоплакия) может явиться источником развития раковой опухоли. Врожденный ихтиоз резкой степени, как правило, несовместим с жизнью.

Примерами наследственных дистрофий, связанных с нарушением внутриклеточного обмена аминокислот, являются цистиноз, тирозиноз, фенилпировиноградная олигофрения (фенилкетонурия) .

ПАРЕНХИМАТОЗНЫЕ ЖИРОВЫЕ ДИСТРОФИИ (ЛИПИДОЗЫ)

В цитоплазме клеток содержатся в основном липиды, которые образуют с белками сложные лабильные жиробелковые комплексы – липопротеиды. Эти комплексы составляют основу мембран клетки. Липиды вместе с белками являются составной частью и клеточных ультраструктур. Помимо липопротеидов, в цитоплазме встречаются и нейтральные жиры.

Для выявления жиров используют срезы нефиксированных замороженных или фиксированных в формалине тканей. Гистохимически жиры выявляются с помощью ряда методов: судан III и шарлах окрашивают их в красный цвет, судан IV и осмиевая кислота – в черный, сульфат нильского голубого окрашивает жирные кислоты в темно-синий цвет, а нейтральные жиры – красный.

Нарушения обмена цитоплазматических жиров могут проявляться в увеличении их содержания в клетках, и в появлении липидов там, где они обычно не встречаются, и в образовании жиров необычного химического состава. Обычно в клетках накапливаются нейтральные жиры. Паренхиматозная жировая дистрофия встречается наиболее часто там же, где и белковая, – в миокарде, печени, почках.

В миокарде жировая дистрофия характеризуется появлением в кардиомиоцитах жировых капель (пылевидное ожирение ). При нарастании изменений эти капли (мелкокапельное ожирение ) полностью замещают цитоплазму. Процесс имеет очаговый характер и наблюдается в группах мышечных клеток, расположенных по ходу венозного колена капилляров и мелких вен. Внешний вид изменяется если процесс выражен сильно, сердце выглядит увеличенным в объеме, камеры его растянуты, оно дряблой консистенции, миокард на разрезе тусклый, глинисто-желтый. Со стороны эндокарда видна желто-белая исчерченность, особенно хорошо выраженная в сосочковых мышцах и трабекулах желудочков сердца («тигровое сердце»). Жировая дистрофия миокарда рассматривается как морфологический эквивалент его декомпенсации.

В печени жировая дистрофия (ожирение) проявляется резким увеличением содержания жиров в гепатоцитах и изменением их состава. В клетках печени вначале появляются гранулы липидов (пылевидное ожирение ), затем мелкие капли их (мелкокапельное ожирение ), которые в дальнейшем сливаются в крупные капли (крупнокапельное ожирение ) или в одну жировую вакуоль, которая заполняет всю цитоплазму и отодвигает ядро на периферию. Измененные таким образом гепатоциты напоминают жировые клетки. Чаще отложение жиров в печени начинается на периферии долек, при значительно выраженной дистрофии ожирение имеет диффузный характер. Внешний вид печени: она увеличена, дряблая, охряно-желтого или желто-коричневого цвета. При разрезе на лезвии ножа и поверхности разреза виден налет жира.

В почках при жировой дистрофии жиры появляются в эпителии проксимальных и дистальных канальцев. Обычно это нейтральные жиры, фосфолипиды или холестерин, который обнаруживают не только в эпителии канальцев, но и в стро­ке. Нейтральные жиры в эпителии узкого сегмента и собирательных трубочек встречаются как физиологическое явление. Внешний вид почек: они увеличены, дряблые (при сочетании с амилоидозом плотные), корковое вещество набухшее, серое с желтым крапом, заметным на поверхности и разреза.

Причины жировой дистрофии: кислородное голодание (тканевая гипоксия) при заболеваниях сердечно-сосудистой системы, хронических заболеваниях легких, анемиях, хроническом алкоголизме и т. д., вторая причина – инфекции (дифтерия, туберкулез, сепсис) и интоксикации (фосфор, мышьяк, хлороформ), третья – авитаминозы и одностороннее (с недостаточным содержанием белков) питание. Исход зависит от степени выраженности дистрофии. Если она не сопровождается грубым поломом клеточных структур, то, как правило, оказывается обратимой. Глубокое нарушение обмена в большинстве заканчивается гибелью клетки, функция органов при этом резко нарушается.

Системные липидозы возникают вследствие наследственного дефицита ферментов и относятся к наследственным ферментопатиям (болезням накопления ). Различают: цереброзидлипидоз , или глюкозилцерамидлипидоз (болезнь Гоше), сфингомиелинлидоз (болезнь Ниманна–Пика), ганглиозидлипидоз (болезнь Тея–Сакса или амавротическая идиотия), генерализованный ганглиозидоз (болезнь Нормана–Ландинга) и др. Чаще всего липиды накапливаются в печени, селезенке, костном мозге, центральной нервной системе, нервных сплетениях.

ПАРЕНХИМАТОЗНЫЕ УГЛЕВОДНЫЕ ДИСТРОФИИ

Углеводы, которые определяются в клетках и тканях и могут быть идентифицированы гистохимически, делят на полисахариды, из которых в животных тканях выявляются лишь гликоген, гликозаминогликаны (мукополисахариды) и гликопротеиды. Среди гликозаминогликанов различают нейтральные, прочно связанные с белками, и кислые, к которым относится гиалуроновая, хондроитин-серная кислоты и гепарин. Кислые гликозаминогликаны как биополимеры. Представителем гликопротеидов являются муцины и мукоиды. Муцины составляют основу слизи, продуцируемой эпителием сли­зистых оболочек и железами, мукоиды входят в состав многих тканей.

Полисахариды, гликозаминогликаны и гликопротеиды выявляются ШИК-реакцией или реакцией Хочкиса–Мак-Мануса. Сущность реакции заключается в том, что после окисления йодной кислотой (или реакции с перийодатом) образующиеся альдегиды дают с фуксином Шиффа красное окрашивание. Для выявления гликогена ШИК-реакцию дополняют ферментативным контролем – обработкой срезов амилазой. Гликоген окрашивается кармином Беста в красный цвет. Гликозаминогликаны и гликопротеиды определяют с помощью окраски толуидиновым синим или метиленовым синим. Эти окраски позволяют выявлять хромотропные вещества, дающие реакцию метахромазии. Обработка срезов ткани гиалуронидазами (бактериальной, тестикулярной) с последующей окраской теми же краси­телями позволяет дифференцировать различные гликозаминогликаны. Паренхиматозная углеводная дистрофия может быть связана с нарушением обмена гликогена или гликопротеидов.


ПАТОЛОГИЧЕСКАЯ АНАТОМИЯ

ОБЩИЙ КУРС

Дистрофия


Общие сведения

Дистрофия (от греч. dys – нарушение и trophe – питаю) – сложный патологический процесс, в основе которого лежит нарушение тканевого (клеточного) метаболизма, ведущее к структурным изменениям. Поэтому дистрофии рассматриваются как один из видов повреждения.

Под трофикой понимают совокупность механизмов , определяющих метаболизм и структурную организацию ткани (клетки), которые необходимы для отправления специализированной функции. Среди этих механизмов выделяют клеточные и внеклеточные. Клеточные механизмы обеспечиваются структурной организацией клетки и ее ауторегуляцией. Это значит, что трофика клетки в значительной мере является свойством самой клетки как сложной саморегулирующейся системы. Жизнедеятельность клетки обеспечивается «окружающей средой» и регулируется с помощью ряда систем организма. Поэтому внеклеточные механизмы трофики располагают транспортными (кровь, лимфа, микроциркуляторное русло) и интегративными (нейроэндокринные, нейрогуморальные) системами ее регуляции. Из сказанного следует, что непосредственной причиной развития дистрофий могут служить нарушения как клеточных, так и внеклеточных механизмов, обеспечивающих трофику.

1. Расстройства ауторегуляции клетки могут быть вызваны различными факторами (гиперфункция, токсические вещества, радиация, наследственная недостаточность или отсутствие фермента и т. д.). Большую роль придают полому генов – рецепторов, осуществляющих «координированное торможение» функций различных ультраструктур. Нарушение ауторегуляции клетки ведет к энергетическому ее дефициту и к нарушению ферментативных процессов в клетке. Ферментопатия, или энзимопатия (приобретенная или наследственная), становится основным патогенетическим звеном и выражением дистрофии при нарушениях клеточных механизмов трофики.

2. Нарушения функции транспортных систем, обеспечивающих метаболизм и структурную сохранность тканей (клеток), вызывают гипоксию, которая является ведущей в патогенезе дисциркуляторных дистрофий.

3. При расстройствах эндокринной регуляции трофики (тиреотоксикоз, диабет, гиперпаратиреоз и т. д.) можно говорить об эндокринных, а при нарушении нервной регуляции трофики (нарушенная иннервация, опухоль головного мозга и т. д.) – о нервных или церебральных дистрофиях.

Особенности патогенеза внутриутробных дистрофий определяются непосредственной связью их с болезнями матери. В исходе при гибели части зачатка органа или ткани может развиться необратимый порок развития.

При дистрофиях в клетке и (или) межклеточном веществе накапливаются различные продукты обмена (белки, жиры, углеводы, минералы, вода), которые характеризуются количественными или качественными изменениями в результате нарушения ферментативных процессов.


Морфогенез.

Среди механизмов, ведущих к развитию характерных для дистрофий изменений, различают инфильтрацию, декомпозицию (фанероз), извращенный синтез и трансформацию.

Инфильтрация – избыточное проникновение продуктов обмена из крови и лимфы в клетки или межклеточное вещество с последующим их накоплением в связи с недостаточностью ферментных систем, метаболизирующих эти продукты. Таковы, например, инфильтрация грубодисперсным белком эпителия проксимальных канальцев почек при нефротическом синдроме, инфильтрация холестерином и липопротеидами интимы аорты и крупных артерий при атеросклерозе.

Декомпозиция (фанероз) – распад ультраструктур клеток и межклеточного вещества, ведущий к нарушению тканевого (клеточного) метаболизма и накоплению продуктов нарушенного обмена в ткани (клетке). Таковы жировая дистрофия кардиомиоцитов при дифтерийной интоксикации, фибриноидное набухание соединительной ткани при ревматических болезнях.

Извращенный синтез – это синтез в клетках или в тканях веществ, не встречающихся в них в норме. К ним относятся: синтез аномального белка амилоида в клетке и аномальных белково-полисахаридных комплексов амилоида в межклеточном веществе; синтез белка алкогольного гиалина гепатоцитом; синтез гликогена в эпителии узкого сегмента нефрона при сахарном диабете.

Трансформация – образование продуктов одного вида обмена из общих исходных продуктов, которые идут на построение белков, жиров и углеводов. Такова, например, трансформация компонентов жиров и углеводов в белки, усиленная полимеризация глюкозы в гликоген и др.

Инфильтрация и декомпозиция – ведущие морфогенетические механизмы дистрофий – часто являются последовательными стадиями в их развитии. Однако в некоторых органах и тканях в связи со структурно-функциональными их особенностями преобладает какой-либо один из морфогенетических механизмов (инфильтрация – в эпителии почечных канальцев, декомпозиция – в клетках миокарда), что позволяет говорить об ортологии (от греч. orthos – прямой, типичный) дистрофий.


Морфологическая специфика.

При изучении дистрофий на разных уровнях – ультраструктурном, клеточном, тканевом, органном – морфологическая специфика проявляется неоднозначно. Ультраструктурная морфология дистрофий обычно не имеет какой-либо специфики. Она отражает не только повреждение органелл, но и их репарацию (внутриклеточная регенерация). Вместе с тем возможность выявления в органеллах ряда продуктов обмена (липиды, гликоген, ферритин) позволяет говорить об ультраструктурных изменениях, характерных для того или иного вида дистрофий.

Характерная морфология дистрофий выявляется, как правило, на тканевом и клеточном уровнях, причем для доказательства связи дистрофии с нарушениями того или иного вида обмена требуется применение гистохимических методов. Без установления качества продукта нарушенного обмена нельзя верифицировать тканевую дистрофию, т. е. отнести её к белковым, жировым, углеводным или другим дистрофиям. Изменения органа при дистрофии (размер, цвет, консистенция, структура на разрезе) в одних случаях представлены исключительно ярко, в других – отсутствуют, и лишь микроскопическое исследование позволяет выявить их специфичность. В ряде случаев можно говорить о системном характере изменений при дистрофии (системный гемосидероз, системный мезенхимальный амилоидоз, системный липоидоз).

В классификации дистрофий придерживаются нескольких принципов. Выделяют дистрофии:

1. В зависимости от преобладания морфологических изменений в специализированных элементах паренхимы или строме и сосудах:

Паренхиматозные;

Стромально-сосудистые;

Смешанные.

2. По преобладанию нарушений того или иного вида обмена:

Белковые;

Жировые;

Углеводные;

Минеральные.

3. В зависимости от влияния генетических факторов:

Приобретенные;

Наследственные.

4. По распространенности процесса:

Местные.


Паренхиматозные дистрофии

Паренхиматозные дистрофии – проявления нарушений обмена в высокоспециализированных в функциональном отношении клетках. Поэтому при паренхиматозных дистрофиях преобладают нарушения клеточных механизмов трофики. Различные виды паренхиматозных дистрофий отражают недостаточность определенного физиологического (ферментативного) механизма, служащего выполнению специализированной функции клеткой (гепатоцит, нефроцит, кардиомиоцит и т. д.). В связи с этим в разных органах (печень, почки, сердце и т. д.) при развитии одного и того же вида дистрофии участвуют различные пато- и морфогенетические механизмы. Из этого следует, что переход одного вида паренхиматозной дистрофии в другой вид исключается, возможно лишь сочетание разных видов этой дистрофии.

В зависимости от нарушений того или иного вида обмена паренхиматозные дистрофии делят на белковые (диспротеинозы), жировые (липидозы) и углеводные.


Паренхиматозные белковые дистрофии (диспротеинозы)

Большая часть белков цитоплазмы (простых и сложных) находится в соединении с липидами, образуя липопротеидные комплексы. Эти комплексы составляют основу мембран митохондрий, эндоплазматической сети, пластинчатого комплекса и других структур. Помимо связанных белков, в цитоплазме содержатся и свободные. Многие из последних обладают функцией ферментов.

Сущность паренхиматозных диспротеинозов состоит в изменении физико-химических и морфологических свойств белков клетки: они подвергаются денатурации и коагуляции или, наоборот, колликвации, что ведет к гидратации цитоплазмы; в тех случаях, когда нарушаются связи белков с липидами, возникает деструкция мембранных структур клетки. В исходе этих нарушений может развиться коагуляционный (сухой) или колликвационный (влажный) некроз (схема 1).

К паренхиматозным диспротеинозам относят гиалиново-капельную, гидропическую и роговую дистрофии.

К паренхиматозным белковым дистрофиям со времен Р. Вирхова причисляли и многие патологи продолжают причислять так называемую зернистую дистрофию, при которой в клетках паренхиматозных органов появляются белковые зерна. Сами органы увеличиваются в размерах, становятся дряблыми и тусклыми на разрезе , что послужило причиной называть также зернистую дистрофию тусклым (мутным) набуханием. Однако электронно-микроскопическое и гистоферменто-химическое изучение «зернистой дистрофии» показало, что в ее основе лежит не накопление белка "в цитоплазме, а гиперплазия ультраструктур клеток паренхиматозных органов как выражение функционального напряжения этих органов в ответ на различные воздействия; гиперплазированные ультраструктуры клетки выявляются при светооптическом исследовании как белковые гранулы.


Гиалиново-капельная дистрофия

При гиалиново-капельной дистрофии в цитоплазме появляются крупные гиалиноподобные белковые капли, сливающиеся между собой и заполняющие тело клетки; при этом происходит деструкция ультраструктурных элементов клетки. В ряде случаев гиалиново-капельная дистрофия завершается фокальным коагуляционным некрозом клетки.

Этот вид диспротеиноза часто встречается в почках, редко – в печени и совсем редко – в миокарде.

В почках при микроскопическом исследовании накопление гиалиновых капель находят в нефроцитах. При этом наблюдается деструкция митохондрий, эндоплазматической сети, щеточной каемки. В основе гиалиново-капельной дистрофии нефроцитов лежит недостаточность вакуолярно-лизосомального аппарата эпителия проксимальных канальцев, в норме реабсорбирующего белки. Поэтому этот вид дистрофии нефроцитов очень часто встречается при нефротическом синдроме. Этот синдром является одним из проявлений многих заболеваний почек, при которых первично поражается гломерулярный фильтр (гломерулонефрит, амилоидоз почек, парапротеинемическая нефропатия и др.).

Внешний вид почек при этой дистрофии не имеет каких-либо характерных черт, он определяется прежде всего особенностями основного заболевания (гломерулонефрит, амилоидоз).

В печени при микроскопическом исследовании в гепатоцитах находят гиалиноподобные тельца (тельца Мэллори), которые состоят из фибрилл особого белка – алкогольного гиалина. Образование этого белка и телец Мэллори служит проявлением извращенной белково-синтетической функции гепатоцита, что встречается постоянно при алкогольном гепатите и сравнительно редко при первичном билиарном и индийском детском циррозах, гепатоцеребральной дистрофии (болезни Вильсона-Коновалова).

Внешний вид печени различен; изменения характерны для тех ее заболеваний, при которых встречается гиалиново-капельная дистрофия.

Исход гиалиново-капельной дистрофии неблагоприятен: она завершается необратимым процессом, ведущим к некрозу клетки.

Функциональное значение этой дистрофии очень велико. С гиалиново-капельной дистрофией эпителия почечных канальцев связаны появление в моче белка (протеинурия) и цилиндров (цилиндрурия), потеря белков плазмы (гипопротеинемия), нарушение ее электролитного баланса. Гиалиново-капельная дистрофия гепатоцитов нередко является морфологической основой нарушений многих функций печени.


Гидропическая дистрофия

Гидропическая, или водяночная, дистрофия характеризуется появлением в клетке вакуолей, наполненных цитоплазматической жидкостью. Она наблюдается чаще в эпителии кожи и почечных канальцев, в гепатоцитах, мышечных и нервных клетках, а также в клетках коры надпочечников.

Микроскопическая картина: паренхиматозные клетки увеличены в объеме, цитоплазма их заполнена вакуолями, содержащими прозрачную жидкость. Ядро смещается на периферию, иногда вакуолизируется или сморщивается. Прогрессирование этих изменений приводит к распаду ультраструктур клетки и переполнению клетки водой. Клетка превращается в заполненные жидкостью баллоны или в огромную вакуоль, в которой плавает пузырьковидное ядро. Такие изменения клетки, которые по существу являются выражением фокального колликвационного некроза, называют баллонной дистрофией.

Внешний вид органов и тканей мало изменяется при гидропической дистрофии, она обнаруживается обычно под микроскопом.

Механизм развития гидропической дистрофии сложен и отражает нарушения водно-электролитного и белкового обмена, ведущие к изменению коллоидно-осмотического давления в клетке. Большую роль играет нарушение проницаемости мембран клетки, сопровождающееся их распадом. Это ведет к закислению цитоплазмы, активации гидролитических ферментов лизосом, которые разрывают внутримолекулярные связи с присоединением воды.

Причины развития гидропической дистрофии в разных органах неоднозначны. Впочках – это повреждение гломерулярного фильтра (гломерулонефрит, амилоидоз, сахарный диабет), что ведет к гиперфильтрации и недостаточности ферментной системы базального лабиринта нефроцитов, в норме обеспечивающей реабсорбцию воды; поэтому гидропическая дистрофия нефроцитов так характерна для нефротического синдрома. В печени гидропическая дистрофия возникает при вирусном и токсическом гепатитах (рис. 28) и нередко является причиной печеночной недостаточности. Причиной гидропической дистрофии эпидермиса может быть инфекция (оспа), отек кожи различного механизма. Вакуолизация цитоплазмы может быть проявлением физиологической деятельности клетки, что отмечается, например, в ганглиозных клетках центральной и периферической нервной системы.

Исход гидропической дистрофии, как правило, неблагоприятный; она завершается фокальным или тотальным некрозом клетки. Поэтому функция органов и тканей при гидропической дистрофии резко страдает.


Роговая дистрофия

Роговая дистрофия, или патологическое ороговение, характеризуется избыточным образованием рогового вещества в ороговевающем эпителии (гиперкератоз, ихтиоз) или образованием рогового вещества там, где в норме его не бывает (патологическое ороговение на слизистых оболочках, или лейкоплакия; образование «раковых жемчужин» в плоскоклеточном раке). Процесс может быть местным или распространенным.

Причины роговой дистрофии разнообразны: нарушение развития кожи, хроническое воспаление, вирусные инфекции, авитаминозы и др.

Исход может быть двояким: устранение вызывающей причины в начале процесса может привести к восстановлению ткани , однако в далеко зашедших случаях наступает гибель клеток.

Значение роговой дистрофии определяется ее степенью, распространенностью и длительностью. Длительно существующее патологическое ороговение слизистой оболочки (лейкоплакия) может явиться источником развития раковой опухоли. Врожденный ихтиоз резкой степени, как правило, несовместим с жизнью.

К группе паренхиматозных диспротеинозов примыкает ряд дистрофий, в основе которых лежат нарушения внутриклеточного метаболизма ряда аминокислот в результате наследственной недостаточности метаболизирующих их ферментов, т. е. в результате наследственной ферментопатии. Эти дистрофии относятся к так называемым болезням накопления.

Наиболее яркими примерами наследственных дистрофий, связанных с нарушением внутриклеточного метаболизма аминокислот, являются цистиноз, тирозиноз, фенилпировиноградная олигофрения (фенилкетонурия).


Паренхиматозные жировые дистрофии (дислипидозы)

В цитоплазме клеток содержатся в основном липиды, которые образуют с белками сложные лабильные жиробелковые комплексы – липопротеиды. Эти комплексы составляют основу мембран клетки. Липиды вместе с белками являются составной частью и клеточных ультраструктур. Помимо липопротеидов, в цитоплазме встречаются и нейтральные жиры, которые представляют собой сложные эфиры глицерина и жирных кислот.

Для выявления жиров используют срезы нефиксированных замороженных или фиксированных в формалине тканей. Гистохимически жиры выявляются с помощью ряда методов: судан III и шарлах окрашивают их в красный цвет, судан IV и осмиевая кислота – в черный, сульфат нильского голубого окрашивает жирные кислоты в темносиний цвет, а нейтральные жиры – в красный.

С помощью поляризационного микроскопа можно дифференцировать изотропные и анизотропные липиды, последние дают характерное двойное лучепреломление.

Нарушения обмена цитоплазматических липидов могут проявляться в увеличении их содержания в клетках, где они обнаруживаются и в норме, в появлении липидов там, где они обычно не встречаются, и в образовании жиров необычного химического состава. Обычно в клетках накапливаются нейтральные жиры.

Паренхиматозная жировая дистрофия встречается наиболее часто там же, где и белковая,- в миокарде, печени, почках.

В миокарде жировая дистрофия характеризуется появлением в мышечных клетках мельчайших жировых капель (пылевидное ожирение). При нарастании изменений эти капли (мелкокапельное ожирение) полностью замещают цитоплазму. Большинство митохондрий при этом распадается, поперечная исчерченность волокон исчезает. Процесс имеет очаговый характер и наблюдается в группах мышечных клеток, расположенных по ходу венозного колена капилляров и мелких вен.

Внешний вид сердца зависит от степени жировой дистрофии. Если процесс выражен слабо, его можно распознать лишь под микроскопом, применяя специальные окраски на липиды; если он выражен сильно, сердце выглядит увеличенным в объеме, камеры его растянуты, оно дряблой консистенции, миокард на разрезе тусклый, глинисто-желтый. Со стороны эндокарда видна желто-белая исчерченность, особенно хорошо выраженная в сосочковых мышцах и трабекулах желудочков сердца («тигровое сердце»). Эта исчерченность миокарда связана с очаговым характером дистрофии, преимущественным поражением мышечных клеток вокруг венул и вен. Жировая дистрофия миокарда рассматривается как морфологический эквивалент его декомпенсации.

Развитие жировой дистрофии миокарда связывают с тремя механизмами: повышенным поступлением жирных кислот в кардиомиоциты, нарушением обмена жиров в этих клетках и распадом липопротеидных комплексов внутриклеточных структур. Чаще всего эти механизмы реализуются путем инфильтрации и декомпозиции (фанероза) при энергетическом дефиците миокарда, связанном с гипоксией и интоксикацией (дифтерия). При этом основное значение декомпозиции не в высвобождении липидов из липопротеидных комплексов клеточных мембран, а в деструкции митохондрий, что ведет к нарушению окисления жирных кислот в клетке.

В печени жировая дистрофия (ожирение) проявляется резким увеличением содержания жиров в гепатоцитах и изменением их состава. В клетках печени вначале появляются гранулы липидов (пылевидное ожирение), затем мелкие капли их (мелкокапельное ожирение), которые в дальнейшем сливаются в крупные капли (крупнокапельное ожирение) или в одну жировую вакуоль, которая заполняет всю цитоплазму и отодвигает ядро на периферию. Измененные таким образом печеночные клетки напоминают жировые. Чаще отложение жиров в печени начинается на периферии, реже – в центре долек; при значительно выраженной дистрофии ожирение клеток печени имеет диффузный характер.

Внешний вид печени достаточно характерен: она увеличена, дряблая, охряно-желтого или желто-коричневого цвета. При разрезе на лезвии ножа и поверхности разреза виден налет жира.

Среди механизмов развития жировой дистрофии печени различают: чрезмерное поступление в гепатоциты жирных кислот или повышенный их синтез этими клетками ; воздействие токсических веществ, блокирующих окисление жирных кислот и синтез липопротеидов в гепатоцитах; недостаточное поступление в печеночные клетки аминокислот, необходимых для синтеза фосфолипидов и липопротеидов. Из этого следует, что жировая дистрофия печени развивается при липопротеидемии (алкоголизм, сахарный диабет, общее ожирение, гормональные расстройства), гепатотропных интоксикациях (этанол, фосфор, хлороформ и др.), нарушениях питания (недостаток белка в пище – алипотропная жировая дистрофия печени, авитаминозы, болезни пищеварительной системы).

В почках при жировой дистрофии жиры появляются в эпителии проксимальных и дистальных канальцев. Обычно это нейтральные жиры, фосфолипиды или холестерин, который обнаруживают не только в эпителии канальцев, но и в строме. Нейтральные жиры в эпителии узкого сегмента и собирательных трубок встречаются как физиологическое явление.

Внешний вид почек: они увеличены, дряблые (при сочетании с амилоидозом плотные), корковое вещество набухшее, серое с желтым крапом, заметным на поверхности и разрезе.

Механизм развития жировой дистрофии почек связан с инфильтрацией эпителия почечных канальцев жиром при липемии и гиперхолестеринемии (нефротический синдром), что ведет к гибели нефроцитов.

Причины жировой дистрофии разнообразны. Чаще всего она связана с кислородным голоданием (тканевая гипоксия), поэтому жировая дистрофия так часто встречается при заболеваниях сердечно-сосудистой системы, хронических заболеваниях легких, анемиях, хроническом алкоголизме и т. д. В условиях гипоксии страдают в первую очередь отделы органа, находящиеся в функциональном напряжении. Вторая причина – инфекции (дифтерия, туберкулез, сепсис) и интоксикации (фосфор, мышьяк, хлороформ), ведущие к нарушениям обмена (диспротеиноз, гипопротеинемия, гиперхолестеринемия), третья – авитаминозы и одностороннее (с недостаточным содержанием белков) питание, сопровождающееся дефицитом ферментов и липотропных факторов, которые необходимы для нормального жирового обмена клетки.

Исход жировой дистрофии зависит от ее степени. Если она не сопровождается грубым поломом клеточных структур, то, как правило, оказывается обратимой. Глубокое нарушение обмена клеточных липидов в большинстве случаев заканчивается гибелью клетки, функция органов при этом резко нарушается, а в ряде случаев и выпадает.

Группу наследственных липидозов составляют так называемые системные липидозы, возникающие вследствие наследственного дефицита ферментов, участвующих в метаболизме определенных липидов. Поэтому системные липидозы относят к наследственным ферментопатиям (болезни накопления), поскольку дефицит фермента определяет накопление субстрата, т. е. липидов, в клетках.

В зависимости от вида накапливающихся в клетках липидов различают: цереброзидлипидоз, или глюкозилцерамидлипидоз (болезнь Гоше), сфингомиелинлипидоз (болезнь Ниманна-Пика), ганглиозидлипидоз (болезнь Тея- Сакса, или амавротическая идиотия), генерализованный ганглиозидоз (болезнь Нормана-Ландинга) и др. Чаще всего липиды накапливаются в печени, селезенке, костном мозге, центральной нервной системе (ЦНС), нервных сплетениях. При этом появляются характерные для того или иного вида липидоза клетки (клетки Гоше, клетки Пика), что имеет диагностическое значение при изучений биоптатов (табл. 2).

Многие ферменты, дефицит которых определяет развитие системных липидозов, относятся, как видно из табл. 2, к лизосомным. На этом основании ряд липидозов рассматривают как лизосомные болезни.


Паренхиматозные углеводные дистрофии

Углеводы, которые определяются в клетках и тканях и могут быть идентифицированы гистохимически, делят на полисахариды, из которых в животных тканях выявляются лишь гликоген, гликозаминогликаны (мукополисахариды) и гликопротеиды. Среди гликозаминогликанов различают нейтральные, прочно связанные с белками, и кислые, к которым относятся гиалуроновая, хондроитинсерная кислоты и гепарин. Кислые гликозаминогликаны как биополимеры способны вступать в непрочные соединения с рядом метаболитов и осуществлять их транспорт. Главными представителями гликопротеидов являются муцины и мукоиды. Муцины составляют основу слизи, продуцируемой эпителием слизистых оболочек и железами, мукоиды входят в состав многих тканей.

Полисахариды, гликозаминогликаны и гликопротеиды выявляются ШИК-реакцией или реакцией Хочкиса-Мак-Маиуса. Сущность реакции заключается в том, что после окисления йодной кислотой (или реакции с перйодатом) образующиеся альдегиды дают с фуксином Шиффа красное окрашивание. Для выявления гликогена ШИК-реакцию дополняют ферментативным контролем – обработкой срезов амилазой. Гликоген окрашивается кармином Беста в красный цвет. Гликозаминогликаны и гликопротеиды определяют с помощью ряда методов, из которых наиболее часто применяют окраски толуидиновым синим или метиленовым синим. Эти окраски позволяют выявлять хромотропные вещества, дающие реакцию метахромазии. Обработка срезов ткани гиалуронидазами (бактериальной, тестикулярной) с последующей окраской теми же красителями позволяет дифференцировать различные гликозаминогликаны.

Паренхиматозная углеводная дистрофия может быть связана с нарушением обмена гликогена или гликопротеидов.


Углеводные дистрофии, связанные с нарушением обмена гликогена

Основные запасы гликогена находятся в печени и скелетных мышцах. Гликоген печени и мышц расходуется в зависимости от потребностей организма (лабильный гликоген). Гликоген нервных клеток , проводящей системы сердца, аорты, эндотелия, эпителиальных покровов, слизистой оболочки матки, соединительной ткани, эмбриональных тканей, хряща и лейкоцитов является необходимым компонентом клеток, и его содержание не подвергается заметным колебаниям (стабильный гликоген). Однако деление гликогена на лабильный и стабильный условно.

Регуляция обмена углеводов осуществляется нейроэндокринным путем. Основная роль принадлежит гипоталамической области, гипофизу (АКТГ, тиреотропный, соматотропный гормоны), (5-клеткам (В-клеткам) поджелудочной железы (инсулин), надпочечникам (глюкокортикоиды, адреналин) и щитовидной железе.

При сахарном диабете, развитие которого связывают с патологией р-клеток островков поджелудочной железы, происходят недостаточное использование глюкозы тканями, увеличение ее содержания в крови (гипергликемия) и выведение с мочой (глюкозурия). Тканевые запасы гликогена резко уменьшаются. Это в первую очередь касается печени, в которой нарушается синтез гликогена, что ведет к инфильтрации ее жирами – развивается жировая дистрофия печени; при этом в ядрах гепатоцитов появляются включения гликогена, они становятся светлыми («дырчатые», «пустые», ядра).

С глюкозурией связаны характерные изменения почек при диабете. Они выражаются в гликогенной инфильтрации эпителия канальцев, главным образом узкого и дистального сегментов. Эпителий становится высоким, со светлой пенистой цитоплазмой; зерна гликогена видны и в просвете канальцев. Эти изменения отражают состояние синтеза гликогена (полимеризация глюкозы) в канальцевом эпителии при резорбции богатого глюкозой ультрафильтрата плазмы.

При диабете страдают не только почечные канальцы, но и клубочки, их капиллярные петли, базальная мембрана которых становится значительно более проницаемой для Сахаров и белков плазмы. Возникает одно из проявлений диабетической микроангиопатии – интеркапиллярный (диабетический) гломерулосклероз.

Наследственные углеводные дистрофии, в основе которых лежат нарушения обмена гликогена, называются гликогенозами. Гликогенозы обусловлены отсутствием или недостаточностью фермента, участвующего в расщеплении депонированного гликогена, и относятся поэтому к наследственным ферментопатиям, или болезням накопления. В настоящее время хорошо изучены 6 типов гликогенозов, обусловленных наследственной недостаточностью 6 различных ферментов. Это болезни Гирке (I тип), Помпе (II тип), Мак-Ардля (V тип) и Герса (VI тип), при которых структура накапливаемого в тканях гликогена не нарушена, и болезни Форбса-Кори (III тип) и Андерсена (IV тип), при которых она резко изменена (табл. 3).

Морфологическая диагностика гликогеноза того или иного типа возможна при биопсии с помощью гистоферментативных методов.


Углеводные дистрофии, связанные с нарушением обмена гликопротеидов

При нарушении обмена гликопротеидов в клетках или в межклеточном веществе происходит накопление муцинов и мукоидов, называемых также слизистыми или слизеподобными веществами. В связи с этим при нарушении обмена гликопротеидов говорят о слизистой дистрофии.

Микроскопическое исследование. Оно позволяет выявить не только усиленное слизеобразование, но и изменения физико-химических свойств слизи. Многие секретирующие клетки погибают и десквамируются, выводные протоки желез обтурируются слизью, что ведет к развитию кист. Нередко в этих случаях присоединяется воспаление. Слизь может закрывать просветы бронхов, следствием чего является возникновение ателектазов и очагов пневмонии.

Иногда в железистых структурах накапливается не истинная слизь, а слизеподобные вещества (псевдомуцины). Эти вещества могут уплотняться и принимать характер коллоида. Тогда говорят о коллоидной дистрофии, которая наблюдается, например, при коллоидном зобе.

Причины слизистой дистрофии разнообразны, но чаще всего это воспаление слизистых оболочек в результате действия различных патогенных раздражителей (см. Катаральное воспаление).

Слизистая дистрофия лежит в основе наследственного системного заболевания, называемого муковисцидозом, для которого характерно изменение качества слизи , выделяемой эпителием слизистых желез: слизь становится густой и вязкой, она плохо выводится, что обусловливает развитие ретенционных кист и склероза (кистозный фиброз). Поражаются экзокринный аппарат поджелудочной железы, железы бронхиального дерева, пищеварительного и мочевого тракта, желчных путей, потовые и слезные железы (подробнее см. Пренатальная патология).

Исход в значительной мере определяется степенью и длительностью повышенного слизеобразования. В одних случаях регенерация эпителия приводит к полному восстановлению слизистой оболочки, в других – она атрофируется, подвергается склерозу, что, естественно, отражается на функции органа.


Стромально-сосудистые дистрофии

Стромально-сосудистые (мезенхимальные) дистрофии развиваются в результате нарушений обмена в соединительной ткани и выявляются в строме органов и стенках сосудов. Они развиваются на территории гистиона, который, как известно, образован отрезком микроциркуляторного русла с окружающими его элементами соединительной ткани (основное вещество, волокнистые структуры, клетки) и нервными волокнами. Понятными становятся в связи с этим преобладание среди механизмов развития стромально-сосудистых дистрофий нарушений транспортных систем трофики, общность морфогенеза, возможность не только сочетания различных видов дистрофии, но и перехода одного вида в другой.

При нарушениях обмена в соединительной ткани, преимущественно в ее межклеточном веществе, накапливаются продукты метаболизма, которые могут приноситься с кровью и лимфой, быть результатом извращенного синтеза или появляться в результате дезорганизации основного вещества и волокон соединительной ткани.

В зависимости от вида нарушенного обмена мезенхимальные дистрофии делят на белковые (диспротеинозы), жировые (липидозы) и углеводные.


Стромально-сосудистные белковые дистрофии

Среди белков соединительной ткани основное значение имеет коллаген, из макромолекул которого строятся коллагеновые и ретикулярные волокна. Кол-лаген является неотъемлемой частью базальных мембран (эндотелия, эпителия) и эластических волокон, в состав которых, помимо коллагена, входит эластин. Коллаген синтезируется клетками соединительной ткани, среди которых главную роль играют фибробласты. Кроме коллагена, эти клетки синтезируют гликозаминогликаны основного вещества соединительной ткани, которое содержит также белки и полисахариды плазмы крови.

Волокна соединительной ткани имеют характерную ультраструктуру. Они хорошо выявляются с помощью ряда гистологических методов: коллагеновые – окраской пикрофуксиновой смесью (по ван Гизону), эластические – окраской фукселином или орсеином, ретикулярные – импрегнацией солями серебра (ретикулярные волокна являются аргирофильными).

В соединительной ткани, помимо ее клеток, синтезирующих коллаген и гликозаминогликаны (фибробласт, ретикулярная клетка), а также ряд биологически активных веществ (лаброцит, или тучная клетка), находятся клетки гематогенного происхождения, осуществляющие фагоцитоз (полиморфно-ядерные лейкоциты, гистиоциты, макрофаги) и иммунные реакции (плазмобласты и плазмоциты, лимфоциты, макрофаги).

К стромально-сосудистым диспротеинозам относят мукоидное набухание, фибриноидное набухание (фибриноид), гиалиноз, амилоидоз.

Нередко мукоидное набухание, фибриноидное набухание и гиалиноз являются последовательными стадиями дезорганизации соединительной ткани; в основе этого процесса лежат накопление продуктов плазмы крови в основном веществе в результате повышения тканево-сосудистой проницаемости (плазмор- рагия), деструкция элементов соединительной ткани и образование белковых (белково-полисахаридных) комплексов. Амилоидоз отличается от этих процессов тем, что в состав образующихся белково-полисахаридных комплексов входит не встречающийся обычно фибриллярный белок, синтезируемый клетками-амилоидобластами.


Мукоидное набухание

Мукоидное набухание – поверхностная и обратимая дезорганизация соединительной ткани. При этом в основном веществе происходят накопление и перераспределение гликозаминогликанов за счет увеличения содержания прежде всего гиалуроновой кислоты. Гликозаминогликаны обладают гидрофильными свойствами, накопление их обусловливает повышение тканевой и сосудистой проницаемости. В результате этого к гликозаминогликанам примешиваются белки плазмы (главным образом глобулины) и гликопротеиды. Развиваются гидратация и набухание основного межуточного вещества.

Микроскопическое исследование. Основное вещество базофильное, при окраске толуидиновым синим – сиреневое или красное. Возникает феномен метахромазии, в основе которого лежит изменение состояния основного межуточного вещества с накоплением хромотропных веществ. Коллагеновые волокна обычно сохраняют пучковое строение, но на-бухают и подвергаются фибриллярному разволокнению. Они становятся малоустойчивыми к действию коллагеназы и при окраске пикрофуксином выглядят желто-оранжевыми, а не кирпично-красными. Изменения основного вещества и коллагеновых волокон при мукоидном набухании могут сопровождаться клеточными реакциями – появлением лимфоцитарных , плазмоклеточных и гистиоцитарных инфильтратов.

Мукоидное набухание встречается в различных органах и тканях, но чаще в стенках артерий, клапанах сердца, эндокарде и эпикарде, т. е. там, где хромотропные вещества встречаются и в норме; при этом количество хромотропных веществ резко возрастает. Наиболее часто оно наблюдается при инфекционных и аллергических заболеваниях, ревматических болезнях, атеросклерозе, эндокринопатиях и пр.

Внешний вид. При мукоидном набухании ткань или орган сохранены, характерные изменения устанавливаются с помощью гистохимических реакций при микроскопическом исследовании.

Причины. Большое значение в его развитии имеют гипоксия, инфекция, особенно стрептококковая, иммунопатологические реакции (реакции гиперчувствительности) .

Исход может быть двояким: полное восстановление ткани или переход в фибриноидное набухание. Функция органа при этом страдает (например, нарушения функции сердца в связи с развитием ревматического эндокардита – вальвулита).


Фибриноидное набухание (фибриноид)

Фибриноидное набухание – глубокая и необратимая дезорганизация соединительной ткани, в основе которой лежит деструкция ее основного вещества и волокон, сопровождающаяся резким повышением сосудистой проницаемости и образованием фибриноида.

Фибриноид представляет собой сложное вещество, в состав которого входят белки и полисахариды распадающихся коллагеновых волокон, основного вещества и плазмы крови, а также клеточные нуклеопротеиды. Гистохимически при различных заболеваниях фибриноид различен, но обязательным компонентом его является фибрин (рис. 31) (отсюда и термины «фибриноидное набухание», «фибриноид»).

Микроскопическая картина. При фибриноидном набухании пучки коллаге- новых волокон, пропитанные белками плазмы, становятся гомогенными, обра-зуя с фибрином нерастворимые прочные соединения; они эозинофильны, пиро- фуксином окрашиваются в желтый цвет, резко ШИК-положительны и пиро- нинофильны при реакции Браше, а также аргирофильны при импрегнации солями серебра. Метахромазия соединительной ткани при этом не выражена или выражена слабо, что объясняется деполимеризацией гликозаминогликанов основного вещества.

В исходе фибриноидного набухания иногда развивается фибриноидный некроз, характеризующийся полной деструкцией соединительной ткани. Вокруг очагов некроза обычно выражена реакция макрофагов.

Внешний вид. Различные органы и ткани, где встречается фибриноидное набухание, внешне мало изменяются, характерные изменения обнаруживаются обычно лишь при микроскопическом исследовании.

Причины. Чаще всего это проявление инфекционно-аллергических (на-пример, фибриноид сосудов при туберкулезе с гиперергическими реакциями), аллергических и аутоиммунных (фибриноидные изменения соединительной ткани при ревматических болезнях, капилляров почечных клубочков при гломе- рулонефрите) и ангионевротических (фибриноид артериол при гипертонической болезни и артериальных гипертензиях) реакций. В таких случаях фибриноидное набухание имеет распространенный (системный) характер. Местно фибриноидное набухание может возникать при воспалении, особенно хроническом (фибриноид в червеобразном отростке при аппендиците, в дне хронической язвы желудка, трофических язв кожи и т. д.).

Исход фибриноидных изменений характеризуется развитием некроза, замещением очага деструкции соединительной тканью (склероз) или гиалинозом. Фибриноидное набухание ведет к нарушению, а нередко и прекращению функции органа (например, острая почечная недостаточность при злокачественной гипертонии, характеризующейся фибриноидным некрозом и изменениями артериол клубочков).


Гиалиноз

При гиалинозе (от греч. hyalos – прозрачный, стекловидный), или гиалиновой дистрофии, в соединительной ткани образуются однородные полупрозрачные плотные массы (гиалин), напоминающие гиалиновый хрящ. Ткань уплотняется, поэтому гиалиноз рассматривается и как разновидность склероза.

Гиалин – это фибриллярный белок. При иммуногистохимическом исследовании в нем обнаруживают не только белки плазмы , фибрин, но и компоненты иммунных комплексов (иммуноглобулины, фракции комплемента), а также липиды. Гиалиновые массы устойчивы по отношению к кислотам, щелочам, ферментам, ШИК-положительны, хорошо воспринимают кислые красители (эозин, кислый фуксин), пикрофуксином окрашиваются в желтый или красный цвет.

Механизм гиалиноза сложен. Ведущими в его развитии являются деструкция волокнистых структур и повышение тканево-сосудистой проницаемости (плазморрагия) в связи с ангионевротическими (дисциркуляторными), метаболическими и иммунопатологическими процессами. С плазморрагией связаны пропитывание ткани белками плазмы и адсорбция их на измененных волокнистых структурах с последующей преципитацией и образованием белка – гиалина. В образовании сосудистого гиалина принимают участие гладкомышечные клетки. Гиалиноз может развиваться в исходе разных процессов: плазматического пропитывания, фибриноидного набухания (фибриноида), воспаления, некроза, склероза.

Классификация. Различают гиалиноз сосудов и гиалиноз собственно соединительной ткани. Каждый из них может быть распространенным (системным) и местным.


Гиалиноз сосудов.

Гиалинозу подвергаются преимущественно мелкие артерии и артериолы. Ему предшествуют повреждение эндотелия, его мембраны и гладкомышечных клеток стенки и пропитывание ее плазмой крови.

Микроскопическое исследование. Гиалин обнаруживают в субэндотелиальном пространстве, он оттесняет кнаружи и разрушает эластическую пластинку, средняя оболочка истончается, в финале артериолы превращаются в утолщенные стекловидные трубочки с резко суженным или полностью закрытым просветом.

Гиалиноз мелких артерий и артериол носит системный характер, но наиболее выражен в почках, головном мозге, сетчатке глаза, поджелудочной железе, коже. Он особенно характерен для гипертонической болезни и гипертонических состояний (гипертонический артериологиалиноз), диабетической микроангиопатии (диабетический артериологиалиноз) и заболеваний с нарушениями иммунитета. Как физиологическое явление местный гиалиноз артерий наблюдается в селезенке взрослых и пожилых людей, отражая функционально-мор фологические особенности селезенки как органа депонирования крови.

Сосудистый гиалин – вещество преимущественно гематогенной природы. В его образовании играют роль не только гемодинамические и метаболические, но и иммунные механизмы. Руководствуясь особенностями патогенеза гиалиноза сосудов, выделяют 3 вида сосудистого гиалина:

1. простой, возникающий вследствие инсудации неизмененных или малоизмененных компонентов плазмы крови (встречается чаще при гипертонической болезни доброкачественного течения, атеросклерозе и у здоровых людей);

2. липогиалин, содержащий липиды и p-липопротеиды (обнаруживается чаще всего при сахарном диабете);

3. сложный гиалин, строящийся из иммунных комплексов, фибрина и разрушающихся структур сосудистой стенки (характерен для болезней с иммунопатологическими нарушениями, например для ревматических заболеваний).


Гиалиноз собственно соединительной ткани.

Развивается обычно в исходе фибриноидного набухания, ведущего к деструкции коллагена и пропитыванию ткани белками плазмы и полисахаридами.

Микроскопическое исследование. Находят набухание соединительнотканных пучков, они теряют фибриллярность и сливаются в однородную плотную хрящеподобную массу; клеточные элементы сдавливаются и подвергаются атрофии. Этот механизм развития системного гиалиноза соединительной ткани особенно часто встречается при заболеваниях с иммунными нарушениями (ревматические болезни). Гиалиноз может завершать фибриноидные изменения в дне хронической язвы желудка, в червеобразном отростке при аппендиците; он подобен механизму местного гиалиноза в очаге хронического воспаления.

Гиалиноз как исход склероза имеет в основном также местный характер: он развивается в рубцах, фиброзных спайках серозных полостей, сосудистой стенке при атеросклерозе, инволюционном склерозе артерий, при организации тромба, в капсулах, строме опухоли и т. д. В основе гиалиноза в этих случаях лежат нарушения обмена соединительной ткани. Подобный механизм имеет гиалиноз некротизированных тканей и фибринозных наложе-ний.



Понравилась статья? Поделитесь ей
Наверх