Бионический глаз – искусственная зрительная система. Глазные протезы: виды, особенности применения и правила ухода

Являющаяся периферическим отделом зрительного анализатора; содержит фоторецепторные клетки, обеспечивающие восприятие и преобразование электромагнитного излучения видимой части спектра в электрические импульсы, а также обеспечивает их первичную обработку. Анатомически сетчатка представляет собой тонкую оболочку, прилежащую на всём своём протяжении с внутренней стороны к стекловидному телу, а с наружной - к сосудистой оболочке глазного яблока. В ней выделяют две неодинаковые по размерам части: зрительную часть - наибольшую, простирающуюся до самого ресничного тела, и переднюю - не содержащую фоточувствительных клеток - слепую часть, в которой выделяют в свою очередь ресничную и радужковую части сетчатки, соответственно частям сосудистой оболочки. Зрительная часть сетчатки имеет неоднородное слоистое строение, доступное для изучения лишь на микроскопическом уровне и состоит из 10-ти следующих вглубь глазного яблока слоёв: пигментного, нейроэпителиального, наружной пограничной мембраны, наружного зернистого слоя, наружного сплетениевидного слоя, внутреннего зернистого слоя, внутреннего сплетениевидного слоя, мультиполярных нервных клеток, слоя волокон зрительного нерва, внутренней пограничной мембраны.

Сетчатка глаза у взрослого человека имеет размер 22 мм и покрывает около 72 % площади внутренней поверхности глазного яблока. Фотография сетчатки представлена на рисунке 1. Пигментный слой сетчатки (самый наружный) с сосудистой оболочкой глаза связан более тесно, чем с остальной частью сетчатки. В центре сетчатки на задней поверхности находится диск зрительного нерва, который иногда из-за отсутствия в этой части фоторецепторов называют «слепым пятном». Он выглядит как возвышающаяся бледная овальной формы зона около 3 мм². Здесь из аксонов нервных клеток сетчатки происходит формирование зрительного нерва. В центральной части диска имеется углубление, через которое проходят сосуды, участвующие в кровоснабжении сетчатки.

Латеральнее диска зрительного нерва, приблизительно в 3 мм, располагается пятно (macula), в центре которого имеется углубление, центральная ямка (fovea), являющееся наиболее чувствительным к свету участком сетчатки и отвечающее за ясное центральное зрение. В этой области сетчатки (fovea) находятся только колбочки. Человек и другие приматы имеют одну центральную ямку в каждом глазу в противоположность некоторым видам птиц, таким как ястребы, у которых их две, а также собакам и кошкам, у которых вместо ямки в центральной части сетчатки обнаруживается полоса, так называемая зрительная полоска. Центральная часть сетчатки представлена ямкой и областью в радиусе 6 мм от неё, далее следует периферическая часть, где по мере движения вперед число палочек и колбочек уменьшается. Заканчивается внутренняя оболочка зубчатым краем, у которого фоточувствительные элементы отсутствуют. На своём протяжении толщина сетчатки неодинакова и составляет в самой толстой своей части, у края диска зрительного нерва, не более 0,5 мм; минимальная толщина наблюдается в области ямки жёлтого пятна.

2) Микроскопическое строение сетчатки

В сетчатке имеются три радиально расположенных слоя нервных клеток и два слоя синапсов. Как побочный продукт эволюции ганглионарные нейроны залегают в самой глубине сетчатки, в то время как фоточувствительные клетки (палочковые и колбочковые) наиболее удалены от центра, то есть сетчатка глаза является так называемым инвертированным органом. Вследствие такого положения свет прежде чем упасть на светочувствительные элементы и вызвать физиологический процесс фототрансдукции должен проникнуть через все слои сетчатки. Однако он не может пройти через эпителий или хориоидею, которые являются непрозрачными. Проходящие через расположенные перед фоторецепторами капилляры лейкоциты при взгляде на синий свет могут восприниматься как мелкие светлые движущиеся точки. Данное явление известно как энтопический феномен синего поля (или феномен Ширера). Кроме фоторецепторных и ганглионарных нейронов в сетчатке присутствуют и биполярные нервные клетки, которые, располагаясь между первыми и вторыми, осуществляют между ними контакты, а также горизонтальные и амакриновые клетки, осуществляющие горизонтальные связи в сетчатке. Между слоем ганглионарных клеток и слоем палочек и колбочек находятся два слоя сплетений нервных волокон со множеством синаптических контактов. Это наружный плексиформный (сплетеневидный) слой и внутренний плексиформный слой. В первом осуществляются контакты между палочками и колбочками посредством вертикально ориентированных биполярных клеток, во втором - сигнал переключается с биполярных на ганглионарные нейрноны, а также на амакриновые клетки в вертикальном и горизонтальном направлении.

Таким образом, наружный нуклеарный слой сетчатки содержит тела фотосенсорных клеток, внутренний нуклеарный слой содержит тела биполярных, горизонтальных и амакриновых клеток, а ганглионарный слой содержит ганглионарный клетки, а также небольшое количество перемещённых амакриновых клеток. Все слои сетчатки пронизаны радиальными глиальными клетками Мюллера.

Наружная пограничная мембрана образована из синаптических комплексов, расположенных между фоторецепторным и наружным ганглионарным слоями. Слой нервных волокон образован из аксонов ганглионарных клеток. Внутренняя пограничная мембрана образована из базальных мембран мюллеровских клеток, а также окончаний их отростков. Лишённые шванновских оболочек аксоны ганглионарных клеток, достигая внутренней границы сетчатки, поворачивают под прямым углом и направляются к месту формирования зрительного нерва. Каждая сетчатка у человека содержит около 6-7 млн колбочек и 110-125 млн палочек. Эти светочувствительные клетки распределены неравномерно. Центральная часть сетчатки содержит больше колбочек, периферическая содержит больше палочек. В центральной части пятна в области ямки колбочки имеют минимальные размеры и мозаично упорядочены в виде компактных шестиграных структур.

Рассмотрим строение сетчатки более подробно. К сосудистой оболочке по всей ее внутренней поверхности прилегает пигментный слой эпителиальных клеток. Перед пигментным слоем, примыкая к нему, лежит самая внутренняя из оболочек глаза – сетчатая оболочка, или ретина. Она выполняет основную функцию глаза – воспринимает формируемое оптикой глаза изображение внешнего мира, преобразует его в нервное возбуждение и направляет в мозг. Строение сетчатки чрезвычайно сложно. Обычно в ней насчитывают десять слоев. На рисунке 2a дана схема поперечного разреза через сетчатку глаза, а на рисунке 2б – увеличенный фрагмент сетчатки с указанием относительного расположения основных типов клеток. Во внешнем слое 1 , непосредственно примыкающим к сосудистой оболочке, расположены клетки, окрашенные черным пигментом. Затем идут основные элементы зрительного восприятия 2 , называемые по внешнему виду палочками и колбочками. Слои 3 5 соответствуют нервным волокнам, подходящим к палочкам и колбочкам. За этими слоями расположены так называемые зернистые слои, также связанные нервными волокнами. Слой 8 – это ганглиозные клетки, каждая из которых соединена с нервными волокнами, расположенными в слое 9 . Слой 10 – внутренняя ограничивающая оболочка. Каждое нервное волокно заканчивается либо колбочкой, либо группой палочек. Светочувствительным слоем служит второй, где находятся палочки и колбочки. Общее число палочек и колбочек в сетчатке одного глаза достигает примерно 140 млн., из них около 7 млн. колбочек.

Распределение палочек и колбочек по сетчатке не равномерно. В месте сетчатки, через которое проходит зрительная линия глаза, расположены одни колбочки. Этот участок сетчатки, несколько углубленный, диаметром примерно 0,4 мм, что соответствует углу 1,2°, называется центральной ямкой – fovea centralis (лат.) – сокращенно, фовеола или фовеа. В центральной ямке находятся только колбочки, их число здесь достигает 4 – 5 тыс. Фовеола располагается в середине горизонтально расположенного овального участка сетчатки размером от 1,4 до 2 мм (что соответствует угловым размерам, равным 5 – 7°), известного под названием желтого пятна или macula (macula – по лат. «пятно»), В этом пятне содержится придающий ему соответствующую окраску пигмент, а помимо колбочек встречаются уже и палочки, однако число колбочек здесь значительно превышает число палочек.

Желтое пятно (по новой классификации – «пятно сетчатки») и особенно его углубление – фовеа, являются областью наиболее ясного видения. Эта область обеспечивает высокую остроту зрения: здесь от каждой колбочки к зрительному нерву отходит отдельное волокно; в периферической же части сетчатки одно зрительное волокно соединяется с рядом элементов (колбочек и палочек).

В сетчатке есть участок, совсем лишенный палочек и колбочек и поэтому нечувствительный к свету. Это место сетчатки, где ствол зрительного нерва, идущий к мозгу, выходит из глаза. Этот круглый участок сетчатки на дне глаза, диаметром около 1,5 мм, называют диском зрительного нерва. Соответственно ему в поле зрения можно обнаружить слепое пятно.

2a) Колбочки и палочки различаются по своим функциям: палочки более светочувствительны, но не различают цветов, колбочки различают цвета, но менее чувствительны к свету. Цветные объекты при слабом освещении, когда весь зрительный процесс осуществляется палочками, отличаются только яркостью, цвет же объектов в этих условиях не ощущается. В палочках имеется особое вещество, разлагающееся под действием света, – зрительный пурпур, или родопсин. В колбочках существует зрительный пигмент, называемый иодопсином. Разложение зрительного пурпура и зрительного пигмента под действием света представляет собой фотохимическую реакцию, в результате которой в нервных волокнах появляется электрическая разность потенциалов. Световое раздражение в виде нервных импульсов передается от глаза в мозг, где и воспринимается нами в виде света.

2 б) В последнем слое сетчатки, прилегающем к сосудистой оболочке, в виде отдельных зерен находится черный пигмент. Существование пигмента имеет большое значение для приспособления глаза к работе при различных уровнях освещенности, а также для уменьшения рассеяния света внутри глаза.

3) В Великобритании создали искусственный глаз и вживили его в тело человека. До операции он был полностью слеп, но теперь может самостоятельно передвигаться и различать простые предметы. На сетчатку в задней части глаза устанавливается крошечная металлическая пластина с 60-ю электродами. Миниатюрная видеокамера, установленная на специальных очках, направляет образы на преобразователь, передает сигналы на электроды, которые, в свою очередь, связаны со зрительным нервом, передающим зрительную информацию в виде электрических импульсов в головной мозг. Пациентам приходится носить на поясе небольшой прибор для питания камеры и обработки образов. Система не воссоздает естественное зрение, но позволяет видеть, хотя и с очень низким разрешением. Таким образом, вся система включает в себя имплантат и внешний передатчик видеосигнала, интегрируемый в оправу очков. Система преобразует зрительные образы в поддающиеся толкованию сигналы стимуляции. Затем нервные клетки стимулируются в соответствии с полученным беспроводным путем сигналом. Клетки стимулируются при помощи особых трехмерных электродов, расположенных на сетчатке глаза и имеющих форму крохотных гвоздиков. В этом случае электроды располагаются, как следует из рисунка, перед сетчаткой, то есть контактируют с внутренней ограничивающей оболочкой сетчатки, за которой расположены нервные волокна, нервные клетки непосредственно стимулируются электродом, сигнал подается на зрительный нерв, а затем в мозг.

Из этого примера следует, что электроды могут помещаться перед сетчаткой, контактируя с внутренней ограничивающей оболочкой сетчатки, за которой расположены нервные волокна. Другим возможным теоретическим способом вживления электрода, но более неоправданно сложным, является его помещение рядом со слоем элементов зрительного восприятия - колбочек и палочек (с внутренней стороны), потому что рядом с этим слоем с внутренней стороны расположены нервные волокна (слои 3-5 на рис.2а), которые могут стимулироваться электродом, предавать сигнал на зрительный нерв, передающий зрительную информацию в виде электрических импульсов в головной мозг.

4) Макулодистрофия - болезнь, при которой поражается сетчатка глаза и нарушается центральное зрение . В основе макулодистрофии лежит патология сосудов и ишемия (нарушение питания) центральной зоны сетчатки, ответственной за центральное зрение. Макулодистрофия бывает двух типов - сухая и влажная. Большинство больных (около 90 %) страдают сухой формой этого заболевания, при которой образуется и накапливается желтоватый налет, впоследствии оказывающий пагубное воздействие на фоторецепторы в желтом пятне сетчатки. Сухая макулодистрофия развивается сначала только на одном глазу. Намного опаснее влажная ВМД, при которой за сетчаткой начинают расти новые кровеносные сосуды в направлении желтого пятна. Влажная макулодистрофия прогрессирует значительно быстрее, чем сухая, и практически всегда проявляется у тех людей, которые уже страдают сухой макулодистрофией.

Пигментная дистрофия относится к периферическим дистрофиям сетчатки и носит наследственный характер. Это наиболее часто встречающееся из наследственных заболеваний сетчатки. При этом виде дистрофий происходит поражение клеток сетчатки. Вначале страдают палочки, затем постепенно в процесс вовлекаются колбочки. Поражаются оба глаза. Первой жалобой пациентов бывает нарушение сумеречного зрения (куриная слепота). Больные плохо ориентируются в сумерках и при плохом освещении. В дальнейшем постепенно сужаются поля зрения. Болезнь может начаться в детском возрасте, но иногда первые признаки возникают только во второй половине жизни. На глазном дне несколько лет, после появления жалоб может быть нормальная картина. Потом появляются пигментные отложения темно-коричневого цвета. Эти отложения иногда называют «костные тельца». Постепенно количество «костных телец» увеличивается, увеличиваются их размеры, очаги сливаются и распространяются по сетчатке и приближаются к центру глазного дна. По мере прогрессирования процесса поля зрения все более сужаются, сумеречное зрение ухудшается. Постепенно сужаются сосуды, диск зрительного нерва становится бледным, возникает атрофия зрительного нерва. Может развиться катаракта , отслойка сетчатки. Зрение постепенно падает и к 40-60 годам наступает слепота.

Тапеторетинальные дистрофии (синоним: тапеторетинальные дегенерации, тапеторетинальные абиотрофии) - наследственные заболевания сетчатки, общим признаком которых является патологическое изменение ее пигментного эпителия. Тапеторетинальные дистрофии характеризуются прогрессирующим снижением зрительной функции вплоть до слепоты. При этом заболевании (тапеторетинальной дегенерации, тапеторетинальной абиотрофии) как правило, поражаются оба глаза. Первый симптом дистрофии сетчатки - понижение зрения в темноте (гемералопия), позже появляются дефекты поля зрения, снижается острота зрения, изменяется глазное дно.

5) Смысл искусственного глаза состоит в том, что информация детектируется с помощью миниатюрной видеокамеры, затем образы направляются на преобразователь, передаются на электроды, которые, в свою очередь, связаны со зрительным нервом, передающим зрительную информацию в виде электрических импульсов в головной мозг. В принципе, необязательно помещать электрод именно в сетчатку. Просто это самый, пожалуй, удобный способ. А вообще главное, чтобы электрод был помещен рядом со зрительным нервом, поскольку именно зрительный нерв передает зрительную информацию в головной мозг. Можно поместить электрод в любом месте у зрительного нерва, а можно и в зрительный тракт, в головной мозг, можно поместить электрод у наружного коленчатого тела (правда в этом случае в зрительную кору будет попадать только половина изображения, если использовать один электрод, т.к. в головном мозге два наружных коленчатых тела, но эту проблему можно решить, используя два электрода). Кроме того, возможно поместить электрод у слухового нерва (но это не возможно сделать без операционного вмешательства в головной мозг).

6) а) В случае повреждения зрительного нерва зрительная информация не сможет полноценно, а может быть, и правильно передаваться в головной мозг. Однако повреждения и болезни зрительных нервов бывают разнообразные. Многие из них приводят к частичной потере зрения (ухудшению зрения). Поэтому можно предположить, что функционирование искусственного глаза хотя бы в минимальной степени будет возможно.

б) при полном отсутствии глаза при наличии здорового зрительного нерва возможно полноценное функционирование искусственного глаза. Даже при отсутствии глаза электрод может помещаться рядом со зрительным нервом, предавая на него сигнал, а затем сигнал передается в головной мозг.

в) только зная место повреждения зрительной коры, можно предсказать, какова будет потеря зрения. Но чего предсказать нельзя, так это реакции пациента: сам он этой потери может и не замечать. Бывает даже, что он отрицает факт полной слепоты, наступившей вслед за двусторонним разрушением зрительных областей. В итоге создается впечатление, что утрата этих областей означает также и утрату зрительной памяти. Этот неожиданный факт показывает, что процессов зрения мы еще по-настоящему не понимаем. В мозгу есть и такие места, локальное повреждение которых может лишить человека способности к узнаванию предметов, различению цветов, лиц и т. п. Это состояние называется психической слепотой (Seelenblindheit). Кроме того, подобные повреждения могут приводить к утрате одного из зрительных полуполей или к потере чувствительности какой-либо части тела. В общем случае можно сказать, что в случае повреждения зрительной коры мозга функционирование искусственного глаза будет частично возможно. Отметим, что возможно операционного вмешательство в головной мозг, приводящее к полному восстановлению функционирования искусственного глаза.

Сенсорные зоны в головном мозге не связаны в коре напрямую друг с другом, а взаимодействуют лишь с ассоциативными областями. Можно предположить, что переадресация соматосенсорной информации у слепых в зрительную кору и зрительной информации у глухих - в слуховую происходит с участием подкорковых структур. Такая переадресация представляется экономичной. При передаче информации от сенсорного органа в сенсорную область коры сигнал несколько раз переключается с одного нейрона на другой в подкорковых образованиях мозга. Одно из таких переключений происходит в таламусе (зрительном бугре) промежуточного мозга. Пункты же переключения нервных путей от разных сенсорных органов близко соседствуют (рис. 3, слева). При повреждении какого-либо сенсорного органа (или идущего от него нервного пути) его пункт переключения оккупируют нервные пути другого сенсорного органа. Поэтому сенсорные области коры, оказавшиеся отрезанными от обычных источников информации, вовлекаются в работу за счёт переадресации им иной информации. Но что происходит тогда с самими нейронами сенсорной коры, обрабатывающими чужую для них информацию?

Исследователи из Массачусетсского технологического института в США Джитендра Шарма, Алессандра Ангелуччи и Мриганка Сур брали хорьков в возрасте одного дня и делали зверькам хирургическую операцию: подсаживали оба зрительных нерва к таламокортикальным путям, ведущим в слуховую сенсорную кору (рис. 3). Целью эксперимента было выяснить, преобразуется ли слуховая кора структурно и функционально при передаче ей зрительной информации. (Напомним ещё раз, что для каждого типа коры характерна особая архитектура нейронов.) И в самом деле, это произошло: слуховая кора морфологически и функционально стала похожа на зрительную!

7) Для изготовления стимулирующих электродов должны применяться наноматериалы на основе металлов, в первую очередь, безвредные для организма человека. Это могут быть электроды на основе титана, золота, серебра, платины. Основными преимуществами их является безвредность для организма человека и миниатюрность. К недостаткам их можно отнести их чужеродность по отношению к телу человека, и как следствие, возможность возникновения отторжения при их внедрении в организм. Кроме того, металлы могут окисляться в организме до катионов, которые прекрасно растворимы в крови и разносятся по организму человека. И наконец, одна из самых главных проблем связанна с введением в организм наноматериала. Известно, что наночастицы имеют настолько малый размер, что могут самопроизвольно проникать к клетки, например, эритроциты, нейроны, приводя к нарушению их функционирования, и, следовательно, всего органа (или ткани).

8) Разрешающая способность существующих в настоящее время образцов искусственного глаза составляет порядка 256 пикселей. Она определяется, прежде всего, размером матрицы видеокамеры (см. ниже). Глаз человека, если сравнивать получаемое изображение с цифровыми устройствами, видит 100-мегапикселную картинку, что, естественно, на данном этапе развития технологии не достижимо.

9) Глаз человека, если сравнивать получаемое изображение с цифровыми устройствами, видит 100-мегапикселную картинку, это есть, видимо, некий предел для зрительного нерва человека, который предает зрительную информацию в головной мозг в виде электрических импульсов. Естественно, на данном этапе развития технологии такое разрешение искусственного глаза не достижимо. Понятно, что разрешение искусственного глаза определяется разрешением матрицы видеокамеры, которое зависит от ее размера. Размер матрицы, в свою очередь, влияет на размер и вес самой видеокамеры (размер оптической части линейно зависит от размера матрицы).

Размер матрицы фотокамеры влияет на количество цифрового шума, передаваемого вместе с основным сигналом на светочувствительные элементы матрицы. Физический размер матрицы и размер каждого пикселя в отдельности значительно влияют на количество шумов. Чем больше физический размер матрицы фотокамеры, тем больше ее площадь и тем больше света на нее попадает, в результате чего полезный сигнал матрицы будет сильнее и соотношение сигнал / шум будет лучше. Это позволяет получать более яркую, качественную картинку с естественными цветами. Кроме того, как уже было написано выше, матрица фотокамеры маленького размера (минимальный размер матрицы составляет 3,4 мм х 4,5 мм) из-за небольшого количества, попадающего на нее света, имеет слабый полезный сигнал, в результате его приходиться сильнее усиливать, а вместе с полезным сигналом усиливаются и шумы, которые становятся более заметными. Поскольку физический размер матрицы напрямую связан с количеством попадающего на матрицу света, то чем матрица больше, тем качественней будут фотографии в условиях плохой освещенности. Однако увеличение размера матрицы неминуемо повлечет за собой увеличение размеров и стоимости фотоаппарата. Матрица цифровой видеокамеры обладает несколькими важными характеристиками:

    размер матрицы тесно связан с ее чувствительностью. Чем крупнее матрица, тем больше чувствительных элементов может быть на ней расположено, соответственно выше чувствительность.

    чувствительность – способность матрицы воспринимать объекты при различных условиях освещения. Измеряется в люксах и обычно находится в диапазоне от 0 до 15 люкс. Чем меньше значение чувствительности, тем меньше видеокамере требуется света для работы. Так, например, при чувствительности 0 люкс вы можете вести съемку практически в полной темноте.

    количество пикселей (разрешение) – необходимое количество пикселей зависит исключительно от системы телевидения – PAL или NTSC. Известно, что максимальное требуемое для съемки количество пикселей – около 415 000. Если видеокамера поддерживает более высокое разрешение, это значит, что остальные пиксели используются для работы электронного стабилизатора изображения.

Ввиду всех этих параметров, влияющих на разрешение матрицы, можно предположить, что теоретически достижимая разрешающая способность искусственного глаза с матрицей (например, ССD) размером не меньше 4 мм х 4 мм составляет порядка 10 мегапикселей. В настоящее время уже созданы видеокамеры с подобными параметрами. Отметим, что видеокамера с большим разрешением CCD-матрицы не обязательно будет снимать высококлассное видео. Матрица обрабатывает то, что проецирует объектив. Установка большой CCD при малом диаметре объектива, в принципе, бессмысленна. Если полученное через маленький объектив изображение растянуть на большую матрицу, не избежать оптических искажений.

10) При эксплуатации искусственного глаза могут возникнуть, во-первых, проблемы, которые сродни проблемам при эксплуатации обычной видеокамеры:

    Необходимо будет очищать объектив (линзу) видеокамеры, и это будет непростой задачей, учитывая ее размер. Кроме того, это создаст большие неудобства и дискомфорт человеку с искусственным глазом.

    Известно, что оптика работает в ограниченном интервале температур, при выходе из этого интервала случаются сбои. Кроме того, при перепаде температур происходит запотевание линзы, что опять приводит к неудобствам (см. пункт 1)

    Известно, что видеокамера выходит из строя при повышенной влажности, такие же проблемы могут возникнуть и при эксплуатации искусственного глаза. Человек может банально попасть под дождь, и это приведет к выходу из строя камеры. Естественно, что человек с искусственным глазом будет иметь затруднения при приеме душа, умывании, не говоря уже о плавании в бассейне. Эти проблемы, конечно, разрешимы путем создания водонепроницаемого футляра для камеры, но это требует отдельного исследования с учетом размеров камеры и удобства для человека.

    Кроме того, видеокамера отличается ударонестойкостью.

    Невозожность работы при плохом освещении или ночью без использовании спецоборудования (правда, здесь есть одно большое преимущество искусственного глаза перед естественным: можно использовать видеокамеру, работающую в ИК-области. Получится своеобразный прибор ночного видения)

    При ходьбе человека происходит встряска камеры, что приведет к ухудшению изображения. Эту проблему можно решить, применяя стабилизаторы изображения, но это требует отдельного исследования с учетом размеров камеры и удобства для человека.

Во-вторых, весь описанный механизм действия исскуственного глаза, в том числе и видеокамера, должны иметь элемент питания. А он требует периодической подзарядки. Понятно, что это создает ограничения при использовании и неудобства человеку. Наконец, могут возникать проблемы управления видеокамерой, ведь когда человек спит, камера должна быть выключена. И необходимо создать такое устройство, которое будет легко подчиняться человеку, например, выключаться или включаться по его голосу.

11) Преимущества искусственного глаза по сравнению с глазом человека:

    Можно использовать видеокамеру, работающую в ИК-области. Получится своеобразный прибор ночного видения.

    Возможна запись информации, которую человек увидел.

    Возможно использование видеокамеры для просмотра фильмов

Недостатки искусственного глаза по сравнению с глазом человека:

    более низкая разрешающая способность, а следовательно, качество изображения

    ограничения по температурному интервалу, в котором работает глаз

    неустойчивость к воздействию влаги (без использования специальных защитных чехлов)

    неустойчивость к встряске

    отсутствие “бокового зрения”

Бионический глаз - что это? Именно такой вопрос возникает у людей, которые впервые столкнулись с этим термином. В приведенной статье мы подробно на него ответим. Итак, приступим.

Определение

Бионический глаз - это устройство, позволяющее слепым различать ряд визуальных объектов и компенсировать в определённом объёме отсутствие зрения. Хирурги имплантируют его в повреждённый глаз в качестве протеза сетчатки. Тем самым они дополняют искусственными фоторецепторами сохранившиеся в сетчатке неповреждённые нейроны.

Принцип действия

Бионический глаз состоит из полимерной матрицы, снабжённой фотодиодами. Она фиксирует даже слабые электрические импульсы и транслирует их нервным клеткам. То есть сигналы преобразуются в электрическую форму и воздействуют на нейроны, которые сохранились в сетчатке. У полимерной матрицы есть альтернативы: инфракрасный датчик, видеокамера, особые очки. Перечисленные устройства могут восстановить функцию периферийного и центрального зрения.

Встроенная в очки видеокамера записывает картинку и отправляет её в процессор-конвертор. А тот, в свою очередь, преобразует сигнал и отсылает его ресиверу и фотосенсору, который вживлён в сетчатку глаза больного. И только потом электрические импульсы передаются в мозг пациента через оптический нерв.

Специфика восприятия изображения

За годы исследований бионический глаз претерпел множество изменений и доработок. В ранних моделях картинка передавалась с видеокамеры сразу в глаз пациента. Сигнал фиксировался на матрице фотодатчика и поступал по нервным клеткам в мозг. Но в этом процессе был один недостаток - разность в восприятии изображения камерой и глазным яблоком. То есть они работали не синхронно.

Другой подход состоял в следующем: вначале видеоинформация отправлялась в компьютер, который преобразовывал видимое изображение в инфракрасные импульсы. Они отражались от стёкол очков и попадали через хрусталик в глазную сетчатку на фотосенсоры. Естественно, пациент не может видеть ИК-лучи. Но их воздействие аналогично процессу получения изображения. Иными словами, перед человеком с бионическими глазами формируется доступное для восприятия пространство. А происходит это так: картинка, полученная от действующих фоторецепторов глаза, накладывается на изображение от камеры и проецируется на сетчатку.

Новые стандарты

С каждым годом биомедицинские технологии развиваются семимильными шагами. В данный момент собираются внедрять новый стандарт для системы искусственного зрения. Это матрица, каждая сторона которой будет содержать по 500 фотоэлементов (9 лет назад их было всего 16). Хотя, если провести аналогию с человеческим глазом, содержащим 120 млн палочек и 7 млн колбочек, то становится понятен потенциал дальнейшего роста. Стоит отметить, что информация передаётся в головной мозг через миллионы нервных окончаний, а потом их уже самостоятельно обрабатывает сетчатка.

Argus II

Этот бионический глаз был разработан и сделан в США компанией «Ясновидение». 130 пациентов с заболеванием пигментный ретинит воспользовались его возможностями. Argus II состоит из двух частей: встроенной в очки мини-видеокамеры и имплантата. Все объекты окружающего мира фиксируются на камеру и передаются в имплантат через процессор по беспроводной связи. Ну а имплантат с помощью электродов активирует имеющиеся у больного клетки сетчатки, отправляя информацию прямиком в зрительный нерв.

Пользователи бионического глаза уже через неделю чётко различают горизонтальные и вертикальные линии. В дальнейшем качество зрения через это устройство только возрастает. Argus II стоит 150 тысяч фунтов стерлингов. Однако исследования не прекращаются, так как разработчики получают различные денежные гранты. Естественно, искусственные глаза ещё довольно несовершенны. Но учёные делают всё, чтобы качество передаваемой картинки улучшилось.

Бионический глаз в России

Первым пациентом, которому в нашей стране вживили устройство, стал 59-летний челябинец Александр Ульянов. Операция шла на протяжении 6 часов в Научно-клиническом центре оториноларингологии ФМБА. За периодом реабилитации пациента следили лучшие офтальмологи страны. На протяжении этого времени в установленный Ульянову чип регулярно пускали электрические импульсы и отслеживали реакцию. Александр показывал отличные результаты.

Конечно, он не различает цветов и не воспринимает многочисленные объекты, доступные здоровому глазу. Окружающий мир Ульянов видит размыто и в чёрно-белом цвете. Но и этого ему достаточно для абсолютного счастья. Ведь последние 20 лет мужчина вообще был слепым. А сейчас его жизнь полностью изменил установленный бионический глаз. Стоимость операции в России составляет 150 тыс. рублей. Ну и плюс цена самого глаза, которая была указана выше. Пока устройство выпускают только в Америке, но со временем в России должны появиться аналоги.

В нашей сегодняшней статье:

Новая технология под названием бионическое позволила больным с пигментным ретинитом восстановить некоторую часть их полей зрения. Это дало возможность людям различать предметы и даже читать заголовки текста, но спокойно передвигаться по улице они пока не могут.

Ученые из университета в Калифорнии работают над улучшением данной технологии, позволяющей специфическим клеткам сетчатки преобразовывать свет в электрическую активность. Исследование было опубликовано в журнале Neuron.

Сетчатка состоит из нескольких слоев клеток. Первый слой содержит фоторецепторы, которые обнаруживают свет и преобразуют его в электрические сигналы. Пигментный ретинит приводит к снижению функции этих клеток.

Несколько видов протезов сетчатки находятся на стадии разработки. Argus II - является наиболее известным из этих устройств. В Соединенных Штатах он был одобрен для лечения пигментного ретинита в 2013 году. Он состоит из камеры, установленной на оправе очков, которая передает радиосигналы к сети электродов, имплантированных в сетчатку. Электроды стимулируют ганглиозные клетки сетчатки и показывает человеку то, что снимает камера.

«Это грандиозный успех в лечении и новый шанс для больных с пигментным ретинитом. С другой стороны, бионическое зрение все еще далеко от естественного», - объясняет профессор E.J. Chichilnisky

Современным технологиям не хватает специфики или точности воспроизведения. Хотя большая часть визуальной обработки происходит в мозге, некоторая часть её осуществляется с помощью ганглиозных клеток сетчатки, а их от 1 до 1,5 млн клеток в каждом глазе. Природное зрение, позволяющее получать более подробную информацию о форме, цвете, глубине и движении требует активации определённых клеток сетчатки в нужный момент времени.

Ученые сосредоточили свои усилия на типе ганглиозных клеток сетчатки под названием «зонт» - клетки. Эти клетки очень важны для обнаружения движения, его направления и скорости в визуальной сцене. Когда движущийся объект проходит через визуальное пространство, клетки активируют в волны через сетчатку.

Исследователи помещали в участки сетчатки 61-электроднуюе сеть и начали стимулировать её с помощью импульсов тока. Это позволило им отличать «зонт» клетки, которые имеют различные ответы, от других ганглиозных клеток сетчатки. Кроме того, ученые определили, какое количество стимуляции необходимо для активации каждой ячейки. Далее исследователи записали ответы импульсов для простого скользящего изображения - это белая полоса, проходящая на сером фоне. Наконец, они смогли воспроизводить такие же волны активности, какие производят «зонт» клетки при движущих изображениях.

«Требуется очень много работы перед разработкой готового устройства, которое смогло бы обеспечить слепого человека зрением высокого качества. Если мы сможем справиться с многочисленными техническими препятствиями, тогда мы сможем общаться с нервной системой на её родном языке и восстановить нормальную функцию глаза»,-добавил Chichilnisky.

Человеческое тело весьма уязвимо. До недавнего времени при повреждении какого-либо органа заменить его не было возможно, и человек оставался калекой, получая достаточно зачастую очень неудобные и мало функуиональные протезы. Но уже сегодня исследователи добились существенных результатов в протезировании человеческих органов. Мы собрали 10-ку последних научных разработок, которые позволят уже в недалёком будущем заменять повреждённые части тела.


Кожа, покрывая и защищая всё тело человека, является наиболее легко повреждаемым органом. Стэнфордские ученые разработали супергибкий, сверхпрочный и суперчувствительный материал, который может стать основой для будущей синтетической кожи. Люди пытались разработать синтетическую кожу и раньше, но новый материал имеет гораздо большую сенсорную чувствительность. Он содержит органические транзисторы и слой эластичного материала, позволяющий ему растягиваться без повреждений. И она обладает автономным питанием - кожа содержит ряд упругих солнечных батарей.

2. Бьющееся сердце, созданное в чашке Петри


Ученые давно исследовали потенциал стволовых клеток для выращивания сердца, и недавно им удалось достичь существенного успеха в этом году, создав сердце в чашке Петри, которое могло биться самостоятельно. В течение 20 дней новое сердце билось со скоростью от 40 до 50 ударов в минуту. Оно пока слишком слабое, чтобы на самом деле перекачивать кровь, но подобная ткань имеет большой потенциал.

3. Протезы рук, которые чувствуют прикосновение


Нынешние протезы рук, конечно, могут захватывать вещи, но им не хватает одной из самых важных способностей настоящей человеческой руки - осязания. Люди с протезами не могут почувствовать, когда они находятся в контакте с объектом, не смотря на него напрямую. Исследовательская группа из Университета Чикаго решила эту проблему, создав руки, которые посылают электрические сигналы в мозг. Ученые провели эксперименты с обезьянами, изучая то, как их мозг реагирует на прикосновения.


Хотя бионические ноги, конечно, являются огромным благом для тех, кто подвергся ампутированию, в них есть существенный недостаток - отсутствие реального соединения нервов с телом. Но в прошлом году, житель Сиэтла Зак Вотер получил первые в мире конечности, которые управляются силой мысли, благодаря тому, что воспринимают сигналы непосредственно от его мозга. Для оптимизирования этих искусственных ног, компания-производитель собирается сделать их еще тоньше и легче.

5. Миниатюрный человеческий мозг


Смерть мозга - это фатально. Может быть, в один прекрасный день, человек будет в состоянии пересадить новый мозг в череп, но стоит помнить, что это не просто обычный орган. Он содержит все мысли и воспоминания, поэтому идея создания искусственных мозгов может показаться абсурдной. Но это не остановило ученых, которые вырастили из стволовых клеток настоящий человеческий мозг в лаборатории. Он, правда, пока размером с горошину и неспособен мыслить.


Уже существует технология, с помощью которой можно искусственно восстановить слух, но внутренние имплантаты ничего не делают с видимой частью уха. Обычные искусственные уши выглядели как пластиковые игрушки. Но исследователи в этом году придумали новый метод, который обеспечивает возможность вырастить гибкие реалистичные уши из живых клеток. Эти клетки берут у крыс и коров, и из них формируется гель. Затем из этого геля с помощью 3D-принтера менее чем за час делают искусственное ухо.

7. Нос, который может чувствовать болезнь по запаху


Исследователи из Университета Иллинойса решили создать устройство, которое идентифицирует химические вещества по запаху, но их не устроила чувствительность человеческого носа. Вместо этого, они создали искусственный нос, который использует запах бактерий, чтобы выявить и диагностировать специфические заболевания.

8. Искусственная поджелудочная железа


Поджелудочная железа вырабатывает гормон инсулин, который в случае отсутствия его в организме необходимо вводить вручную. Диабетики постоянно проверяют уровень сахара в крови, а затем вводят инсулин, когда возникает необходимость. Искусственная поджелудочная железа, однако, сможет вводить инсулин в тело автоматически. Она контролирует уровень сахара в крови в любое время и регулирует его.


Люди уже давно имеют возможность восстановить слух глухим, но восстановление зрения слепым - пока гораздо более сложный вопрос. Когда люди теряют зрение, их сетчатка больше не посылает сигналы от фоторецепторов в мозг. Для того, чтобы создать искусственный глаз, сначала нужно понять, как сетчатка обрабатывает эти сигналы, а этого ученые до недавнего времени не могли добиться. Ученые Weill Cornell Medical College смогли сделать это, по крайней мере с мышами и обезьянами, создав искусственную сетчатку, чьи чипы конвертируют изображения в электронные сигналы.

10. Пальцы и гигабайтами информации


Когда финский программист Джерри Джалава попал в аварию на мотоцикле в 2008 году, он потерял палец. Байкер нашел необычный выход из ситуации - он создал протез пальца, в который можно записать два гигабайта цифровой информации. Теперь он может просто вставлять необычный протез в разъем USB. В будущем Джалава планирует модернизировать своё изобретение, добавив поддержку беспроводной связи. Также он хочет добавить больше памяти.

В последнее время разработчики повернулись лицом к людям с ограниченными возможностями, предложив .



Понравилась статья? Поделитесь ей
Наверх