Нервно гуморальная регуляция сердечной деятельности. Влияние блуждающего и симпатического нервов на сердце. Распространенные виды нарушений

Под регуляцией работы сердца понимают ее приспособление к потребностям организма в кислороде и питательных веществах, реализуемое через изменение кровотока.

Поскольку является производным от частоты и силы сокращений сердца, то регуляция может осуществляться через изменение частоты и (или) силы его сокращений.

Особенно мощное влияние на работу сердца оказывают механизмы его регуляции при физической нагрузке, когда ЧСС и ударный объем могут увеличиваться в 3 раза, МОК — в 4-5 раз, а у спортсменов высокого класса — в 6 раз. Одновременно с изменением показателей работы сердца при изменении физической активности, эмоционального и психологического состояния человека изменяются его метаболизм и коронарный кровоток. Все это происходит благодаря функционированию сложных механизмов регуляции сердечной деятельности. Среди них выделяют внутрисердечные (интракардиальные) и внесердечные (экстракардиальные) механизмы.

Интракардиальные механизмы регуляции работы сердца

Интракардиальные механизмы, обеспечивающие саморегуляцию сердечной деятельности, подразделяют на миогенные (внутриклеточные) и нервные (осуществляемые внутрисердечной нервной системой).

Внутриклеточные механизмы реализуются за счет свойств миокардиальных волокон и проявляются даже на изолированном и денервированном сердце. Один из этих механизмов отражен в законе Франка — Старлинга, который называют также законом гетерометрической саморегуляции или законом сердца.

Закон Франка — Старлинга утверждает, что при увеличении растяжения миокарда во время диастолы увеличивается сила его сокращения в систолу. Такая закономерность выявляется при растяжении волокон миокарда не более чем на 45% от их исходной длины. Дальнейшее растяжение миокардиальных волокон приводит к снижению эффективности сокращения. Сильное растяжение создает опасность развития тяжелой патологии сердца.

В естественных условиях степень растяжения желудочков зависит от величины конечно-диастолического объема, определяемого наполнением желудочков кровью, поступающей во время диастолы из вен, величиной конечно-систолического объема, силой сокращения предсердий. Чем больше венозный возврат крови к сердцу и величина конечно-диастолического объема желудочков, тем больше сила их сокращения.

Увеличение притока крови к желудочкам называют нагрузкой объемом или преднагрузкой. Прирост сократительной активности сердца и возрастание объема сердечного выброса при увеличении преднагрузки не требуют большого увеличения энергетических затрат.

Одна из закономерностей саморегуляции сердца была открыта Анрепом (феномен Анрепа). Она выражается в том, что при увеличении сопротивления выбросу крови из желудочков сила их сокращения возрастает. Такое увеличение сопротивления изгнанию крови получило название нагрузки давлением или постнагрузки. Оно возрастает при повышении крови. В этих условиях резко возрастает работа и энергетические потребности желудочков. Увеличение сопротивления изгнанию крови левым желудочком может развиться также при стенозе аортального клапана и сужении аорты.

Феномен Боудича

Еще одна закономерность саморегуляции сердца отражена в феномене Боудича, называемом также феноменом лестницы или законом гомеометрической саморегуляции.

Лестница Боудича (ритмоионотропная зависимость 1878 г.) постепенное увеличение силы сердечных сокращений до максимальной амплитуды, наблюдаемое при последовательном нанесении на него раздражителей постоянной силы.

Закон гомеометрической саморегуляции (феномен Боудича) проявляется в том, что при увеличении частоты сердечных сокращений сила сокращений возрастает. Одним из механизмов усиления сокращения миокарда является увеличение содержания ионов Са 2+ в саркоплазме миокардиальных волокон. При частых возбуждениях ионы Са 2+ не успевают удаляться из саркоплазмы, что создает условия для более интенсивного взаимодействия между актиновыми и миозиновыми нитями. Феномен Боудича был выявлен на изолированном сердце.

В естественных условиях проявление гомеометрической саморегуляции можно наблюдать при резком повышении тонуса симпатической нервной системы и увеличении в крови уровня адреналина. В клинических условиях некоторые проявления этого феномена можно наблюдать у больных при тахикардии, когда частота сокращений сердца быстро возрастает.

Нейрогенный внутрисердечныи механизм обеспечивает саморегуляцию работы сердца за счет рефлексов, дуга которых замыкается в пределах сердца. Тела нейронов, составляющих эту рефлекторную дугу, располагаются во внутрисердечных нервных сплетениях и ганглиях. Интракардиальные рефлексы запускаются с рецепторов растяжения, имеющихся в миокарде и коронарных сосудах. Г.И. Косицким в эксперименте на животных было установлено, что при растяжении правого предсердия рефлекторно усиливается сокращение левого желудочка. Такое влияние с предсердий на желудочки выявляется лишь при низком давлении крови в аорте. Если же давление в аорте высокое, то активация рецепторов растяжения предсердий рефлекторно угнетает силу сокращения желудочков.

Экстракардиальные механизмы регуляции работы сердца

Экстракардиальные механизмы регуляции сердечной деятельности подразделяют на нервные и гуморальные. Эти механизмы регуляции происходят при участии структур, находящихся вне сердца (ЦНС, внесердечные вегетативные ганглии, железы внутренней секреции).

Внутрисердечные механизмы регуляции работы сердца

Внутрисердечные (интракардиальные) механизмы регуляции - регуляторные процессы, возникающие внутри сердца и продолжающие функционировать в изолированном сердце.

Внутрисердечные механизмы, подразделяются на: внутриклеточные и миогенные механизмы. Примером внутриклеточного механизма регуляции является гипертрофия клеток миокарда за счет усиления синтеза сократительных белков у спортивных животных или животных, занимающихся тяжелой физической работой.

Миогенные механизмы регуляции деятельности сердца включают гетерометрический и гомеометрический типы регуляции. Примером гетерометрической регуляции может служить закон Франка — Старлинга, который гласит, что чем больше приток крови к правому предсердию и соответственно увеличение длины мышечных волокон сердца во время диастолы, тем сильнее сокращается сердце во время систолы. Гомеометрический тип регуляции зависит от давления в аорте — чем больше давление в аорте, тем сильнее сокращается сердце. Другими словами, сила сердечного сокращения увеличивается при возрастании сопротивления в магистральных сосудах. При этом длина сердечной мышцы не меняется и поэтому данный механизм называется гомеометрическим.

Саморегуляция сердца — способность кардиомиоцитов самостоятельно изменять характер сокращения при изменении степени растяжения и деформации мембраны. Данный тип регуляции представлен гетерометрическим и гомеометрическим механизмами.

Гетерометрическии механизм - рост силы сокращения кардиомиоцитов при увеличении их исходной длины. Опосредован внутриклеточными взаимодействиями и связан с изменением взаиморасположения актиновых и миозиновых миофиламентов в миофибриллах кардиомиоцитов при растяжении миокарда кровью, поступающей в полости сердца (увеличение количества миозиновых мостиков, способных соединить миозиновые и актиновые нити во время сокращения). Этот вид регуляции был установлен на сердечно-легочном препарате и сформулирован в виде закона Франка — Старлинга (1912).

Гомеометрическии механизм — увеличение силы сердечных сокращений при возрастании сопротивления в магистральных сосудах. Механизм определяется состоянием кардиомиоцитов и межклеточными отношениями и не зависит от растяжения миокарда притекающей кровью. При гомеометрической регуляции растет эффективность энергообмена в кардиомиоцитах и активизируется работа вставочных дисков. Данный вид регуляции впервые открыт Г.В. Анрепом в 1912 г. и обозначается как эффект Анрепа.

Кардиокарднальные рефлексы — рефлекторные реакции, возникающие в механорецепторах сердца в ответ на растяжение его полостей. При растяжении предсердий сердечный ритм может как ускоряться, так и замедляться. При растяжении желудочков, как правило, наблюдается урежение сердечных сокращений. Доказано, что эти реакции осуществляются с помощью внутрисердечных периферических рефлексов (Г.И. Косицкий).

Внесердечные механизмы регуляции работы сердца

Внесердечные (экстракардиальные) механизмы регуляции - регуляторные влияния, возникающие вне пределов сердца и не функционирующие в нем изолированно. К экстракардиальным механизмам относятся нервно-рефлекторная и гуморальная регуляция деятельности сердца.

Нервная регуляция работы сердца осуществляется симпатическими и парасимпатическими отделами вегетативной нервной системы. Симпатический отдел стимулирует деятельность сердца, а парасимпатический угнетает.

Симпатическая иннервация берет начало в боковых рогах верхних грудных сегментов спиною мозга, где находятся тела преганглионарных симпатических нейронов. Достигнув сердца, волокна симпатических нервов проникают в миокард. Поступающие по постганглионарным симпатическим волокнам импульсы возбуждения вызывают высвобождение в клетках сократительного миокарда и клетках проводящей системы медиатора норадреналина. Активация симпатической системы и выделение при этом норадреналина оказывает определенные эффекты на сердце:

  • хронотропный эффект — увеличение частоты и силы сердечных сокращений;
  • инотропный эффект — увеличение силы сокращений миокарда желудочков и предсердий;
  • дромотропный эффект — ускорение проведения возбуждения в атриовентрикулярном (предсердно-желудочковый) узле;
  • батмотропный эффект — укорочение рефрактерного периода миокарда желудочков и повышение их возбудимости.

Парасимпатическая иннервация сердца осуществляется блуждающим нервом. Тела первых нейронов, аксоны которых образуют блуждающие нервы, находятся в продолговатом мозге. Аксоны, образующие преганглионарные волокна, проникают в кардиальные интрамуральные ганглии, где располагаются вторые нейроны, аксоны которых образуют постганглионарные волокна, иннервирующие синоатриальный (синусно-предсердный) узел, атриовентрикулярный узел и проводящую систему желудочков. Нервные окончания парасимпатических волокон выделяют медиатор ацетилхолин. Активация парасимпатической системы оказывает на сердечную деятельность отрицательный хроно-, ино-, дромо-, батмотропный эффекты.

Рефлекторная регуляция работы сердца также происходит при участии вегетативной нервной системы. Рефлекторные реакции могут тормозить и возбуждать сердечные сокращения. Эти изменения работы сердца возникают при раздражении различных рецепторов. Например, в правом предсердии и в устьях полых вен имеются механорецепторы, возбуждение которых вызывает рефлекторное учащение сердечных сокращений. В некоторых участках сосудистой системы имеются рецепторы, активирующиеся при изменении давления крови в сосудах — сосудистые рефлексогенные зоны, обеспечивающие аортальные и синокаротидные рефлексы. Рефлекторное влияние с механорецепоров каротидного синуса и дуги аорты особенно важно при повышении кровяного давления. При этом происходит возбуждение этих рецепторов и повышается тонус блуждающего нерва, в результате чего возникает торможение сердечной деятельности и понижается давление в крупных сосудах.

Гуморальная регуляция - изменение деятельности сердца под влиянием разнообразных, в том числе и физиологически активных, веществ, циркулирующих в крови.

Гуморальная регуляция работы сердца осуществляется с помощью различных соединений. Так, избыток ионов калия в крови приводит к уменьшению силы сердечных сокращений и снижению возбудимости сердечной мышцы. Избыток ионов кальция, наоборот, увеличивает силу и частоту сердечных сокращений, повышает скорость распространения возбуждения по проводящей системе сердца. Адреналин повышает частоту и силу сердечных сокращений, а также улучшает коронарный кровоток в результате стимуляции p-адренорецепторов миокарда. Аналогичное стимулирущее действие оказывает на сердце гормон тироксин, кортикостероиды, серотонин. Ацетилхолин уменьшает возбудимость сердечной мышцы и силу ее сокращений, а норадреналин стимулирует сердечную деятельность.

Недостаток кислорода в крови и избыток диоксида углерода угнетают сократительную активность миокарда.

Сердце человека, непрерывно работая, даже при спокойном образе жизни нагнетает в артериальную систему около 10 т крови в сутки, 4000 т в год и около 300 000 т за всю жизнь. При этом сердце всегда точно реагирует на потребности организма, постоянно поддерживая необходимый уровень кровотока.

Приспособление деятельности сердца к изменяющимся потребностям организма происходит при помощи ряда регуляторных механизмов. Часть из них расположена в самом сердце — это внутрисердечные регуляторные механизмы. К ним относятся внутриклеточные механизмы регуляции, регуляция межклеточных взаимодействий и нервные механизмы — внутрисердечные рефлексы. К внесердечным регуляторным механизмам относятся экстракардиальные нервные и гуморальные механизмы регуляции сердечной деятельности.

Внутрисердечные регуляторные механизмы

Внутриклеточные механизмы регуляции обеспечивают изменение интенсивности деятельности миокарда в соответствии с количеством притекающей к сердцу крови. Этот механизм получил название «закон сердца» (закон Франка-Стерлинга): сила сокращения сердца (миокарда) пропорциональна степени его растяжения в диастолу, т.е.исходной длине его мышечных волокон. Более сильное растяжение миокарда в момент диастолы соответствует усиленному притоку крови к сердцу. При этом внутри каждой миофибриллы актиновые нити в большей степени выдвигаются из промежутков между миозиновыми нитями, а значит, растет количество резервных мостиков, т.е. тех актиновых точек, которые соединяют актиновые и миозиновые нити в момент сокращения. Следовательно, чем больше растянута каждая клетка, тем больше она сможет укоротиться во время систолы. По этой причине сердце перекачивает в артериальную систему то количество крови, которое притекает к нему из вен.

Регуляция межклеточных взаимодействий. Установлено, что вставочные диски, соединяющие клетки миокарда, имеют различную структуру. Одни участки вставочных дисков выполняют чисто механическую функцию, другие обеспечивают транспорт через мембрану кардиомиоцита необходимых ему веществ, третьи - нексусы, или тесные контакты, проводят возбуждение с клетки на клетку. Нарушение межклеточных взаимодействий приводит к асинхронному возбуждению клеток миокарда и появлению сердечной аритмии.

Внутрисердечные периферические рефлексы. В сердце обнаружены так называемые периферические рефлексы, дуга которых замыкается не в ЦНС, а в интрамуральных ганглиях миокарда. Эта система включает в себя афферентные нейроны, дендриты которых образуют рецепторы растяжения на волокнах миокарда и коронарных сосудах, вставочные и эфферентные нейроны. Аксоны последних иннервируют миокард и гладкие мышцы коронарных сосудов. Указанные нейроны соединяются между собой синоптическими связями, образуя внутрисердечные рефлекторные дуги.

В эксперименте показано, что увеличение растяжения миокарда правого предсердия (в естественных условиях оно возникает при увеличении притока крови к сердцу) приводит к усилению сокращений левого желудочка. Таким образом, усиливаются сокращения не только того отдела сердца, миокард которого непосредственно растягивается притекающей кровью, но и других отделов, чтобы «освободить место» притекающей крови и ускорить выброс ее в артериальную систему. Доказано, что эти реакции осуществляются с помощью внутрисердечных периферических рефлексов.

Подобные реакции наблюдаются лишь на фоне низкого исходного кровенаполнения сердца и при незначительной величине давления крови в устье аорты и коронарных сосудах. Если камеры сердца переполнены кровью и давление в устье аорты и коронарных сосудах высокое, то растяжение венозных приемников в сердце угнетает сократительную активность миокарда. При этом сердце выбрасывает в аорту в момент систолы меньшее, чем в норме, количество содержащейся в желудочках крови. Задержка даже небольшого дополнительного объема крови в камерах сердца повышает диастолическое давление в его полостях, что вызывает снижение притока венозной крови к сердцу. Излишний объем крови, который при внезапном выбросе его в артерии мог бы вызвать пагубные последствия, задерживается в венозной системе. Подобные реакции играют важную роль в регуляции кровообращения, обеспечивая стабильность кровенаполнения артериальной системы.

Опасность для организма представляло бы и уменьшение сердечного выброса — оно могло бы вызвать критическое падение артериального давления. Такую опасность также предупреждают регуляторные реакции внутрисердечной системы.

Недостаточное наполнение кровью камер сердца и коронарного русла вызывает усиление сокращений миокарда посредством внутрисердечных рефлексов. При этом в момент систолы в аорту выбрасывается большее, чем в норме, количество содержащейся в них крови. Это и предотвращает опасность недостаточного наполнения кровью артериальной системы. К моменту расслабления желудочки содержат меньшее, чем в норме, количество крови, что способствует усилению притока венозной крови к сердцу.

В естественных условиях внутрисердечная нервная система не является автономной. Опалишь низшее звено в сложной иерархии нервных механизмов, регулирующих деятельность сердца. Более высоким звеном в иерархии являются сигналы, поступающие по симпатическим и блуждающим нервам, экстракардиальной нервной системе регуляции сердца.

Внесердечные регуляторные механизмы

Работа сердца обеспечивается нервными и гуморальными механизмами регуляции. Нервная регуляция для сердца не имеет пускового действия, так как оно обладает автоматизмом. Нервная система обеспечивает приспособление работы сердца в каждый момент адаптации организма к внешним условиям и к изменениям его деятельности.

Эфферентная иннервация сердца. Работа сердца регулируется двумя нервами: блуждающим (или вагусом), относящимся к парасимпатической нервной системе, и симпатическим. Эти нервы образованы двумя нейронами. Тела первых нейронов, отростки которых составляют блуждающий нерв, расположены в продолговатом мозге. Отростки этих нейронов заканчиваются в инграмуральных ганглиях сердца. Здесь находятся вторые нейроны, отростки которых идут к проводящей системе, миокарду и коронарным сосудам.

Первые нейроны симпатической нервной системы, регулирующей работу сердца, лежат в боковых рогах I-V грудных сегментов спинного мозга. Отростки этих нейронов заканчиваются в шейных и верхних грудных симпатических узлах. В этих узлах находятся вторые нейроны, отростки которых идут к сердцу. Большая часть симпатических нервных волокон направляются к сердцу от звездчатого ганглия. Нервы, идущие от правого симпатического ствола, в основном подходят к синусному узлу и к мышцам предсердий, а нервы левой стороны — к атриовентрикулярному узлу и мышцам желудочков (рис. 1).

Нервная система вызывает следующие эффекты:

  • хронотропный - изменение частоты сердечных сокращений;
  • инотропныи - изменение силы сокращений;
  • батмотропный - изменение возбудимости сердца;
  • дромотропный - изменение проводимости миокарда;
  • тонотропный - изменение тонуса сердечной мышцы.

Нервная экстракардиальная регуляция. Влияние блуждающего и симпатического нервов на сердце

В 1845 г. братья Вебер наблюдали при раздражении продолговатого мозга в области ядра блуждающего нерва остановку сердца. После перерезки блуждающих нервов этот эффект отсутствовал. Отсюда был сделан вывод о том, что блуждающий нерв тормозит деятельность сердца. Дальнейшими исследованиями многих ученых были расширены представления о тормозящем влиянии блуждающего нерва. Было показано, что при его раздражении уменьшаются частота и сила сердечных сокращений, возбудимость и проводимость сердечной мышцы. После перерезки блуждающих нервов вследствие снятия их тормозящего влияния наблюдалось увеличение амплитуды и частоты сердечных сокращений.

Рис. 1. Схема иннервации сердца:

С — сердце; М — продолговатый мозг; CI — ядро, тормозящее деятельность сердца; СА — ядро, стимулирующее деятельность сердца; LH — боковой рог спинного мозга; 75 — симпатический ствол; V- эфферентные волокна блуждающего нерва; Д — нервдепрессор (афферентные волокна); S — симпатические волокна; А — спинномозговые афферентные волокна; CS — каротидный синус; В — афферентные волокна от правого предсердия и полой вены

Влияние блуждающего нерва зависит от интенсивности раздражения. При слабом раздражении наблюдаются отрицательные хронотропный, инотропный, батмотропный, дромотропный и тонотропный эффекты. При сильном раздражении наступает остановка сердца.

Первые детальные исследования симпатической нервной системы на деятельность сердца принадлежит братьям Цион (1867), а затем И.П. Павлову (1887).

Братья Цион наблюдали увеличение частоты сердечных сокращений при раздражении спинного мозга в области расположения нейронов, регулирующих деятельность сердца. После перерезки симпатических нервов такое же раздражение спинного мозга не вызывало изменений деятельности сердца. Было установлено, что симпатические нервы, иннервирующие сердце, оказывают положительное влияние на все стороны деятельности сердца. Они вызывают положительные хронотропный, инотропный, батморопный, дромотропный и тонотропный эффекты.

Дальнейшими исследованиями И.П. Павлова было показано, что нервные волокна, входящие в состав симпатического и блуждающего нервов, влияют на разные стороны деятельности сердца: одни изменяют частоту, а другие — силу сердечных сокращений. Веточки симпатического нерва, при раздражении которых наступает усиление силы сердечных сокращений, были названы усиливающим нервом Павлова. Было установлено, что усиливающее влияние симпатических нервов связано с повышением уровня обмена веществ.

В составе блуждающего нерва также были найдены волокна, влияющие только на частоту и только на силу сердечных сокращений.

На частоту и силу сокращений влияют волокна блуждающего и симпатического нервов, подходящие к синусному узлу, а сила сокращений изменяется под влиянием волокон, подходящих к атриовентрикулярному узлу и миокарду желудочков.

Блуждающий нерв легко адаптируется к раздражению, поэтому его эффект может исчезнуть, несмотря на продолжающееся раздражение. Это явление получило название «ускользание сердца от влияния вагуса». Блуждающий нерв обладает более высокой возбудимостью, вследствие чего он реагирует на меньшую силу раздражения, чем симпатический, и коротким латентным периодом.

Поэтому при одинаковых условиях раздражения эффект блуждающего нерва появляется раньше, чем симпатического.

Механизм влияния блуждающего и симпатического нервов на сердце

В 1921 г. исследованиями О. Леви было показано, что влияние блуждающего нерва на сердце передается гуморальным путем. В опытах Леви наносил сильное раздражение на блуждающий нерв, что приводило к остановке сердца. Затем из сердца брали кровь и действовали ею на сердце другого животного; при этом возникал тот же эффект — торможение деятельности сердца. Точно гак же можно перенести и эффект симпатического нерва на сердце другого животного. Эти опыты свидетельствуют о том, что при раздражении нервов в их окончаниях выделяются активно действующие вещества, которые или тормозят, или стимулируют деятельность сердца: в окончаниях блуждающего нерва выделяется ацетилхолин, а в окончаниях симпатического — норадреналин.

При раздражении сердечных нервов под влиянием медиатора изменяется мембранный потенциал мышечных волокон сердечной мышцы. При раздражении блуждающего нерва происходит гиперполяризация мембраны, т.е. увеличивается мембранный потенциал. Основу гиперполяризации сердечной мышцы составляет увеличение проницаемости мембраны для ионов калия.

Влияние симпатического нерва передается с помощью медиатора норадреналина, который вызывает деполяризацию постсинаптической мембраны. Деполяризация связана с увеличением проницаемости мембраны для натрия.

Зная, что блуждающий нерв гиперполяризует, а симпатический — деполяризует мембрану, можно объяснить все эффекты действия этих нервов на сердце. Поскольку при раздражении блуждающего нерва увеличивается мембранный потенциал, требуется большая сила раздражения для достижения критического уровня деполяризации и получения ответной реакции, а это свидетельствует об уменьшении возбудимости (отрицательный батмотропный эффект).

Отрицательный хронотропный эффект связан с тем, что при большой силе раздражения вагуса гиперполяризация мембраны столь велика, что возникающая спонтанная деполяризация не может достичь критического уровня и ответ не возникает — наступает остановка сердца.

При малой частоте или силе раздражения блуждающего нерва степень гиперполяризации мембраны меньше и спонтанная деполяризация постепенно достигает критического уровня, вследствие чего наступают редкие сокращения сердца (отрицательный дромотропный эффект).

При раздражении симпатического нерва даже небольшой силой возникает деполяризация мембраны, которая характеризуется уменьшением величины мембранного и порогового потенциалов, что свидетельствует о повышении возбудимости (положительный батмотропный эффект).

Поскольку под влиянием симпатического нерва мембрана мышечных волокон сердца деполяризуется, время спонтанной деполяризации, необходимой для достижения критического уровня и возникновения потенциала действия, уменьшается, что приводит к увеличению частоты сердечных сокращений.

Тонус центров сердечных нервов

Нейроны ЦНС, регулирующие деятельность сердца, находятся в тонусе, т.е. в определенной степени активности. Поэтому импульсы от них постоянно поступают к сердцу. Особенно ярко выражен тонус центра блуждающих нервов. Тонус симпатических нервов выражен слабо, а иногда отсутствует.

Наличие тонических влияний, идущих от центров, можно наблюдать на опыте. Если перерезать оба блуждающих нерва, то наступает значительное увеличение частоты сердечных сокращений. У человека можно выключить влияние блуждающего нерва действием атропина, после чего также наблюдается учащение сердцебиения. О наличии постоянного тонуса центров блуждающих нервов свидетельствуют и опыты с регистрацией потенциалов нерва в момент раздражения. Следовательно, по блуждающим нервам из ЦНС поступают импульсы, тормозящие деятельность сердца.

После перерезки симпатических нервов наблюдается небольшое уменьшение числа сердечных сокращений, что свидетельствует о постоянно стимулирующем влиянии на сердце центров симпатических нервов.

Тонус центров сердечных нервов поддерживается различными рефлекторными и гуморальными влияниями. Особенно существенное значение имеют импульсы, поступающие от сосудистых рефлексогенных зон , расположенных в области дуги аорты и каротидного синуса (места разветвления сонной артерии на наружную и внутреннюю). После перерезки нерва депрессора и нерва Геринга, идущих от этих зон в ЦНС, уменьшается тонус центров блуждающих нервов, вследствие чего наступает учащение сердечных сокращений.

На состояние сердечных центров влияют импульсы, приходящие с любых других интеро- и экстерорецепторов кожи и некоторых внутренних органов (например, кишечника и др.).

Обнаружен ряд гуморальных факторов, влияющих на тонус сердечных центров. Например, гормон надпочечников адреналин повышает тонус симпатического нерва, таким же действием обладают ионы кальция.

На состояние тонуса сердечных центров влияют и вышележащие отделы , включая кору больших полушарий.

Рефлекторная регуляция деятельности сердца

В естественных условиях деятельности организма частота и сила сердечных сокращений постоянно изменяются в зависимости от воздействия факторов среды: выполнения физической нагрузи, передвижения тела в пространстве, влияния температуры, изменения состояния внутренних органов и др.

Основу приспособительных изменений сердечной деятельности в ответ на различные внешние воздействия составляют рефлекторные механизмы. Возбуждение, возникшее в рецепторах, по афферентным путям приходит к различным отделам ЦНС, влияет на регуляторные механизмы сердечной деятельности. Установлено, что нейроны, регулирующие деятельность сердца, располагаются не только в продолговатом мозге, но и в коре больших полушарий, промежуточном мозге (гипоталамусе) и мозжечке. От них импульсы идут в продолговатый и спинной мозг и изменяют состояние центров парасимпатической и симпатической регуляции. Отсюда импульсы поступают по блуждающим и симпатическим нервам к сердцу и вызывают замедление и ослабление или учащение и усиление его деятельности. Поэтому говорят о вагусных (тормозных) и симпатических (стимулирующих) рефлекторных влияниях на сердце.

Постоянные коррективы в работу сердца вносят влияния сосудистых рефлексогенных зон — дуги аорты и каротидного синуса (рис. 2). При повышении кровяного давления в аорте или сонных артериях раздражаются барорецепторы. Возникшее в них возбуждение проходит в ЦНС и повышает возбудимость центра блуждающих нервов, вследствие чего увеличивается количество идущих по ним тормозящих импульсов, что приводит к замедлению и ослаблению сердечных сокращений; следовательно, уменьшается количество крови, выбрасываемое сердцем в сосуды, и давление понижается.

Рис. 2. Синокаротидная и аортальная рефлексогенные зоны: 1 — аорта; 2 — общие сонные артерии; 3 — каротидный синус; 4 — синусный нерв (Геринга); 5 — аортальный нерв; 6 — каротидное тельце; 7 — блуждающий нерв; 8 — языкоглоточный нерв; 9 — внутренняя сонная артерия

К вагусным рефлексам относятся глазо-сердечный рефлекс Ашнера, рефлекс Гольца и др. Рефлекс Литера выражается в возникающем при надавливании на глазные яблоки рефлекторном уменьшении числа сердечных сокращений (на 10-20 в минуту). Рефлекс Гольца заключается в том, что при нанесении механического раздражения на кишечник лягушки (сдавливание пинцетом, поколачивание) возникает остановка или замедление деятельности сердца. Остановку сердца можно наблюдать и у человека при ударе в области солнечного сплетения или при погружении его вхолодную воду (вагусный рефлекс с рецепторов кожи).

Симпатические сердечные рефлексы возникают при различных эмоциональных влияниях, болевых раздражениях и физической нагрузке. При этом учащение сердечной деятельности может наступить вследствие не только усиления влияния симпатических нервов, но и понижения тонуса центров блуждающих нервов. Возбудителем хеморецепторов сосудистых рефлексогенных зон могут быть повышенное содержание в крови различных кислот (углекислого газа, молочной кислоты и др.) и колебание активной реакции крови. При этом наступает рефлекторное усиление деятельности сердца, обеспечивающее быстрейшее удаление этих веществ из организма и восстановление нормального состава крови.

Гуморальная регуляция деятельности сердца

Химические вещества, влияющие на деятельность сердца, условно делятся на две группы: парасимпатикотропные (или ваготропные), действующие, подобно вагусу, и симпатикотропные — подобно симпатическим нервам.

К парасимпатикотропным веществам относятся ацетилхолин и ионы калия. При увеличении содержания их в крови наступает торможение деятельности сердца.

К симпатикотропным веществам относятся адреналин, норадреналин и ионы кальция. При увеличении содержания их в крови наступает усиление и учащение сердечных сокращений. Глюкагон, ангиотензин и серотонин оказывают положительный инотропный эффект, тироксин — положительный хронотропный эффект. Гипоксемия, гиперкаиния и ацидоз угнетают сократительную активность миокарда.

Регуляция работы сердца

Работа сердца регулируется нервной системой в зависимости от воздействия внутренней и внешней среды: концентрации ионов калия и кальция, гормона щитовидной железы, состояния покоя или физической работы, эмоционального напряжения.

Нервная и гуморальная регуляция деятельности сердца согласует его работу с потребностями организма в каждый данный момент независимо от нашей воли. Вегетативная нервная система иннервирует сердце, как и все внутренние органы. Нервы симпатического отдела увеличивают частоту и силу сокращений сердечной мышцы (например, при физической работе). В условиях покоя (во время сна) сердечные сокращения становятся слабее под влиянием парасимпатических (блуждающих) нервов. Гуморальная регуляция деятельности сердца осуществляется с помощью имеющихся в крупных сосудах специальных хеморецепторов, которые возбуждаются под влиянием изменений состава крови. Повышение концентрации углекислого газа в крови раздражает эти рецепторы и рефлекторно усиливает работу сердца. Особенно важное значение в этом смысле имеет адреналин, поступающий в кровь из надпочечников и вызывающий эффекты, подобные тем, которые наблюдаются при раздражении симпатической нервной системы. Адреналин вызывает учащение ритма и увеличение амплитуды сердечных сокращений. Важная роль в нормальной жизнедеятельности сердца принадлежит электролитам. Изменения концентрации в крови солей калия и кальция оказывают весьма значительное влияние на автоматию и процессы возбуждения и сокращения сердца. Избыток ионов калия угнетает все стороны сердечной деятельности, действуя отрицательно хронотропно (урежает ритм сердца), инотропно (уменьшает амплитуду сердечных сокращений), дромотропно (ухудшает проведение возбуждения в сердце), батмотропно (уменьшает возбудимость сердечной мышцы). При избытке ионов К+сердце останавливается в диастоле. Резкие нарушения сердечной деятельности наступают и при уменьшении содержания ионов К+ в крови (при гипокалиемии). Избыток ионов кальция действует в обратном направлении: положительно хронотропно, инотропно, дромотропно и батмотропно. При избытке ионов Са2+ сердце останавливается в систоле. При уменьшении содержания ионов Са2+ в крови сердечные сокращения ослабляются.

Таблица. Нейрогуморальная регуляция деятельности сердечно-сосудистой системы

Работа сердца связана и с деятельностью других органов. Если возбуждение в центральную нервную систему передается от работающих органов, то из центральной нервной системы оно передается на нервы, усиливающие функцию сердца. Так рефлекторным путем устанавливается соответствие между деятельностью различных органов и работой сердца.

Нервная регуляция.

Сердце, как и все внутренние органы, иннервируется вегетативной нервной системой.

Парасимпатические нервы являются волокнами блуждающего нерва, которые иннервируют образования проводящей системы, а также миокард предсердий и желудочков. Центральные нейроны симпатических нервов залегают в боковых рогах спинного мозга на уровне I-IV грудных позвонков, отростки этих нейронов направляются в сердце, где иннервируют миокард желудочков и предсердий, образования проводящей системы.

Центры нервов, иннервирующих сердце, всегда находятся в состоянии умеренного возбуждения. За счет этого к сердцу постоянно поступают нервные импульсы. Тонус нейронов поддерживается за счет импульсов, поступающих из ЦНС от рецепторов, заложенных в сосудистой системе. Эти рецепторы располагаются в виде скопления клеток и носят название рефлексогенной зоны сердечно-сосудистой системы. Наиболее важные рефлексогенные зоны располагаются в области каротидного синуса, в области дуги аорты.

Блуждающие и симпатические нервы оказывают на деятельность сердца противоположное влияние по 5 направлениям:

  1. хронотропное (изменяет частоту сердечных сокращений);
  2. инотропное (изменяет силу сердечных сокращений);
  3. батмотропное (оказывает влияние на возбудимость);
  4. дромотропное (изменяет способность к проводимости);
  5. тонотропное (регулирует тонус и интенсивность обменных процессов).

Парасимпатическая нервная система оказывает отрицательное влияние по всем пяти направлениям, а симпатическая нервная система – положительное.

Таким образом, при возбуждении блуждающих нервов происходит уменьшение частоты, силы сердечных сокращений, уменьшение возбудимости и проводимости миокарда, снижает интенсивность обменных процессов в сердечной мышце.

При возбуждении симпатических нервов происходитувеличение частоты, силы сердечных сокращений, увеличение возбудимости и проводимости миокарда, стимуляция обменных процессов.

Рефлекторные механизмы регуляции деятельности сердца.



В стенках сосудов располагаются многочисленные рецепторы, реагирующие на изменения величины артериального давления и химического состава крови. Особенно много рецепторов имеетсяв области дуги аорты и сонных (каротидных) синусов.

При уменьшении АД происходит возбуждение этих рецепторов и импульсы от них поступают в продолговатый мозг к ядрам блуждающих нервов. Под влиянием нервных импульсов снижается возбудимость нейронов ядер блуждающих нервов, усиливается влияние симпатических нервов на сердце, в результате чего частота и сила сердечных сокращений увеличиваются, что является одной из причин нормализации величины АД.

При увеличении АД нервные импульсы рецепторов дуги аорты и сонных синусов усиливают активность нейронов ядер блуждающих нервов. В результате замедляется ритм сердца, ослабляются сердечные сокращения, что также является причиной восстановления исходного уровня АД.

Деятельность сердца рефлекторно может измениться при достаточно сильном возбуждении рецепторов внутренних органов, при возбуждении рецепторов слуха, зрения, рецепторов слизистых оболочек и кожи. Сильные звуковые и световые раздражения, резкие запахи, температурные и болевые воздействия могут обусловить изменения в деятельности сердца.

Влияние коры головного мозга на деятельность сердца.

КГМ регулирует и корригирует деятельность сердца через блуждающие и симпатические нервы. Доказательством влияния КГМ на деятельность сердца является возможность образования условных рефлексов, а также изменения в деятельности сердца, сопровождающие различные эмоциональные состояния (волнение, страх, гнев, злость, радость).

Условнорефлекторные реакции лежат в основе так называемых предстартовых состояний спортсменов. Установлено, что у спортсменов перед бегом, то есть в предстартовом состоянии, увеличиваются систолический объем сердца и частота сердечных сокращений.

Гуморальная регуляция деятельности сердца.

Факторы, осуществляющие гуморальную регуляцию деятельности сердца, делятся на 2 группы: вещества системного действия и вещества местного действия.

К веществам системного действия относятся электролиты и гормоны.

Избыток ионов калия в крови приводит к замедлению ритма сердца, уменьшению силы сердечных сокращений, торможению распространения возбуждения по проводящей системе сердца, снижению возбудимости сердечной мышцы.

Избыток ионов кальция в крови оказывает на деятельность сердца противоположное влияние: увеличивается ритм сердца и сила его сокращений, повышается скорость распространения возбуждения по проводящей системе сердца и нарастает возбудимость сердечной мышцы. Характер действия ионов калия на сердце сходен с эффектом возбуждения блуждающих нервов, а действие ионов кальция – с эффектом раздражения симпатических нервов

Адреналин увеличивает частоту и силу сердечных сокращений, улучшает коронарный кровоток, тем самым повышая интенсивность обменных процессов в сердечной мышце.

Тироксин вырабатывается в щитовидной железе и оказывает стимулирующее влияние на работу сердца, обменные процессы, повышает чувствительность миокарда к адреналину.

Минералокортикоиды (альдостерон) улучшают реабсорбцию (обратное всасывание) ионов натрия и выведение ионов калия из организма.

Глюкагон повышает содержание глюкозы в крови за счет расщепления гликогена, что оказывает положительный инотропный эффект.

Вещества местного действия действуют в том месте, где образовались. К ним относят:

  1. Медиаторы – ацетилхолин и норадреналин, которые оказывают противоположные влияния на сердце.

Действие АХ неотделимо от функций парасимпатических нервов, так как он синтезируется в их окончаниях. АХ уменьшает возбудимость сердечной мышцы и силу ее сокращений. Норадреналин оказывает на сердце влияние, аналогичное воздействию симпатических нервов. Стимулирует обменные процессы в сердце, повышает расход энергии и тем самым увеличивает потребность миокарда в кислороде.

  1. Тканевые гормоны – кинины – вещества, обладающие высокой биологической активностью, но быстро подвергающиеся разрушению, они действуют на гладкомышечные клетки сосудов.
  2. Простагландины – оказывают разнообразное действие на сердце в зависимости от вида и концентрации
  3. Метаболиты – улучшают коронарный кровоток в сердечной мышце.

Гуморальная регуляция обеспечивает более длительное приспособление деятельности сердца к потребностям организма.

нерв сердце сосуд сокращение

Деятельность сердца регулируется двумя парами нервов: блуждающими и симпатическими. Блуждающие нервы берут начало в продолговатом мозге, а симпатические нервы отходят от шейного симпатического узла. Блуждающие нервы тормозят сердечную деятельность. Под влиянием импульсов, поступающих к сердцу по симпатическим нервам, учащается ритм сердечной деятельности и усиливается каждое сердечное сокращение. Изменение просвета кровеносных сосудов происходит под влиянием импульсов, предающихся на стенки сосудов по симпатическим сосудосуживающим нервам. Ритм и сила сердечных сокращений меняются в зависимости от эмоционального состояния человека, выполняемой им работы. Состояние человека влияет и на кровеносные сосуды, меняет их просвет. При страхе, гневе, физическом напряжении из-за изменения просвета кровеносных сосудов человек бледнеет или краснеет. Раздражением любых чувствительных окончаний можно рефлекторно вызвать урежение или учащение сокращений сердца. Тепло, холод, укол и другие раздражения вызывают в окончаниях центростремительных нервов возбуждение, которое передается в центральную нервную систему и оттуда по блуждающему или симпатическому нерву достигает сердца. Центробежные нервы сердца получают импульсы не только из продолговатого и спинного мозга, но и от вышележащих отделов центральной нервной системы, в том числе и от коры больших полушарий головного мозга. Известно, что боль вызывает учащение сердечных сокращений. Импульсы из центральной нервной системы предаются одновременно по нервам к сердцу и из сосудодвигательного центра по другим нервам к кровеносным сосудам. Поэтому обычно на раздражение, поступившее из внешней или внутренней среды организма, рефлекторно отвечают и сердце, и сосуды.

Движение крови по сосудам обусловлено градиентом давления в артериях и венах. Оно подчинено законам гидродинамики и определяется двумя силами: давлением, влияющим на движение крови, и сопротивлением, которое она испытывает при трении о стенки сосудов. Силой, создающей давление в сосудистой системе, является работа сердца, его сократительная способность. Сопротивление кровотоку зависит прежде всего от диаметра сосудов, их длины и тонуса, а также от объема циркулирующей крови и ее вязкости. При уменьшении диаметра сосуда в два раза сопротивление в нем возрастает в 16 раз. Сопротивление кровотоку в артериолахв 106 раз превышает сопротивление ему в аорте. Различают объемную и линейную скорости движения крови. Объемной скоростью кровотока называют количество крови, которое протекает за 1 минуту через всю кровеносную систему. Эта величина соответствует МОК и измеряется в миллилитрах в 1 мин. Как общая, так и местная объемные скорости кровотока непостоянны и существенно меняются при физических нагрузках. Линейной скоростью кровотока называют скорость движения частиц крови вдоль сосудов. Эта величина, измеренная в сантиметрах в 1 с, прямо пропорциональна объемной скорости кровотока и обратно пропорциональна площади сечения кровеносного русла. Линейная скорость неодинакова: она больше в центре сосуда и меньше около его стенок, выше в аорте и крупных артериях и ниже в венах. Самая низкая скорость кровотока в капиллярах, общая площадь сечения которых в 600-800 раз больше площади сечения аорты. О средней линейной скорости кровотока можно судить по времени полного кругооборота крови. В состоянии покоя оно составляет 21 -23 с, при тяжелой работе снижается до 8-10 с. При каждом сокращении сердца кровь выбрасывается в артерии под большим давлением. Вследствие сопротивления кровеносных сосудов ее передвижению в них создается давление, которое называют кровяным давлением. Величина его неодинакова в разных отделах сосудистого русла. Наибольшее давление в аорте и крупных артериях. В мелких артериях, артериолах, капиллярах и венах оно постепенно снижается; в полых венах давление крови меньше атмосферного. На протяжении сердечного цикла давление в артериях неодинаково: оно выше в момент систолы и ниже при диастоле, Наибольшее давление называют систолическим (максимальным), наименьшее -- диастолическим (минимальным). Колебания кровяного давления при систоле и диастоле сердца происходят лишь в аорте и артериях; в артериолах и венах давление крови постоянно на всем протяжении сердечного цикла. Среднее артериальное давление представляет собой ту величину давления, которое могло бы обеспечить течение крови в артериях без колебаний давления при систоле и диастоле. Это давление выражает энергию непрерывного течения крови, показатели которого близки к уровню диастолического давления. Величина артериального давления зависит от сократительной силы миокарда, величины МОК, длины, емкости и тонуса сосудов, вязкости крови. Уровень систолического давления зависит, в первую очередь, от силы сокращения миокарда. Отток крови из артерий связан с сопротивлением в периферических сосудах, их тонусом, что в существенной мере определяет уровень диастолического давления. Таким образом, давление в артериях будет тем выше, чем сильнее сокращения сердца и чем больше периферическое сопротивление (тонус сосудов). Артериальное давление у человека может быть измерено прямым и косвенным способами. В первом случае в артерию вводится полая игла, соединенная с манометром. Это наиболее точный способ, однако, он мало пригоден для практических целей. Второй, так называемый манжеточный способ, был предложен Рива-Роччив 1896 г. и основан на определении величины давления, необходимой для полного сжатия артерии манжетой и прекращения в ней тока крови. Этим методом можно определить лишь величину систолического давления. Для определения систолического и диастолического давления применяется звуковой или аускультативный способ. При этом способе также используется манжета и манометр, о величине давления судят по возникновению и исчезновению звуков, выслушиваемых на артерии ниже места наложения манжеты (звуки возникают лишь тогда, когда кровь течет по сжатой артерии). В последние годы для измерения артериального давления у человека на расстоянии используются радиотелеметрические приборы. В состоянии покоя у взрослых здоровых людей систолическое давление в плечевой артерии составляет 110-120 ммрт. ст., диастолическое -- 60-ЗОммрт. ст. Артериальное давление до 140/90 мм рт. ст. является нормотоническим, выше этих величин -- гипертоническим, а ниже 100/60 мм рт. ст. -- гипотоническим. Разница между систолическим и диастолическим давлениями называется пульсовым давлением или пульсовой амплитудой; ее величина в среднем равна 40-50 мм рт. ст. В капиллярах происходит обмен веществ между кровью и тканями, поэтому количество капилляров в организме человека очень велико. Оно больше там, где интенсивнее метаболизм. Кровяное давление в разных капиллярах колеблется от 8 до 40 мм рт. ст.; скорость кровотока в них небольшая -- 0.3-0.5 мм * с"1. В начале венозной системы давление крови равно 20-30 мм рт. ст., в венах конечностей -- 5-10 мм рт. ст. и в полых венах оно колеблется около 0. Стенки вен тоньше, и их растяжимость в 100-200раз больше, чем у артерий. Поэтому емкость венозного сосудистого русла может возрастать в 5-6 раз даже при незначительном повышении давления в крупных венах. В этой связи вены называют емкостными сосудами в отличие от артерий, которые оказывают большое сопротивление току крови и называются резистивными сосудами (сосудами сопротивления). Линейная скорость кровотока даже в крупных венах меньше, чем в артериях. Например, в полых венах скорость движения крови почти в два раза ниже, чем в аорте. Участие дыхательных мышц в венозном кровообращении образно называется дыхательным насосом, скелетных мышц-- мышечным насосом. При динамической работе мышц движению крови в венах способствуют оба этих фактора. При статических усилиях приток крови к сердцу снижается, что приводит к уменьшению сердечного выброса, падению артериального давления и ухудшению кровоснабжения головного мозга. В легких имеется двойное кровоснабжение. Газообмен обеспечивается сосудами малого круга кровообращения, т. е. легочными артериями, капиллярами и венами. Питание легочной ткани осуществляется группой артерий большого круга -- бронхиальными артериями, отходящими от аорты. Сопротивление току крови в сосудах малого круга кровообращения примерно в 10раз меньше, чем в сосудах большого круга. Это в значительной мере обусловлено широким диаметром легочных артериол. В связи с пониженным сопротивлением правый желудочек сердца работает с небольшой нагрузкой и развивает давление в несколько раз меньшее, чем левый. Систолическое давление в легочной артерии составляет 25-30 мм рт. ст., диастолическое -- 5-10 мм рт. ст. Капиллярная сеть малого круга кровообращения имеет поверхность около 140м2. Одномоментно в легочных капиллярах находится от 60 до 90 мл крови Эритроциты проходят через легкие за 3-5 с, находясь в легочных капиллярах (где происходит газообмен) в течение 0.7 с, при физической работе -- 0.3с. Большое количество сосудов в легких приводит к тому, что кровоток здесь в 100 раз выше, чем в других тканях организма. Кровоснабжение сердца осуществляется коронарными, или венечными, сосудами. В сосудах сердца кровоток происходит преимущественно во время диастолы. В период систолы желудочков сокращение миокарда настолько сдавливает расположенные в нем артерии, что кровоток в них резко снижается. В покое через коронарные сосуды протекает в 1 минуту 200-250 мл крови, что составляет около 5% МОК. Во время физической работы коронарный кровоток может возрасти до 3-4 л -мин"1. Кровоснабжение миокрада в 10-15 раз интенсивнее, чем тканей других органов. Через левую венечную артерию осуществляется 85% коронарного кровотока, через правую--15%. Венечные артерии являются концевыми и имеют мало анастомозов, поэтому их резкий спазм или закупорка приводят к тяжелым последствиям. Наиболее распространенными сердечно-сосудистыми заболеваниями являются три: стенокардия, или ишемическая болезнь сердца, гипертония, характеризующаяся стойким повышением кровяного давления, и атеросклероз -- патологические изменения стенок кровеносных сосудов (Г. И. Косицкий, 1971). Стенокардия (грудная жаба) -- заболевание, связанное в большинстве случаев с атеросклеротическими изменениями коронарных сосудов и нарушением кровоснабжения сердечной мышцы. Выше уже указывалось, что сердце нуждается в обильном кровоснабжении, т. е. в постоянном поступлении в сердечную мышцу значительных количеств энергосодержащих веществ и кислорода. Сужение же венечных сосудов вследствие атеросклеротических изменений, а также спазмы сосудов нервно-рефлекторного порядка, вызванные перенапряжением нервной системы, ухудшают обмен веществ и энергии в сердечной мышце. Субъективно это выражается в приступообразных болях, возникающих в области сердца. Длительное нарушение кровоснабжения сердца может вызвать омертвение -- некроз его отдельных участков, и тогда развивается особо опасное поражение сердца -- инфаркт миокарда. Гипертоническая болезнь в большинстве случаев имеет нейрогенную природу и связана с нарушением нервной регуляции сосудистого тонуса. Дело в том, что мышечные клетки, входящие в состав сосудистой стенки, постоянно находятся в состоянии некоторого напряжения -- тонуса. Это тоническое напряжение мышц сосудов, а соответственно и величина кровяного давления поддерживаются на определенном уровне благодаря деятельности головного мозга, в том числе и его высшего отдела -- коры больших полушарий. Вот почему нервно-психическое напряжение, сопровождающееся возбуждением коры головного мозга и его подкорковых образований, одновременно вызывает и повышение кровяного давления. Действие на нервную систему чрезвычайных факторов может повредить ее регуляторные механизмы, нарушить нормальную регуляцию сосудистого тонуса и способствовать развитию гипертонической болезни, которая в свою очередь является причиной склеротических изменений сосудов. Атеросклероз («ржавчина» сосудов) -- склеротические изменения сосудов меняют их функциональные свойства, они становятся хрупкими, теряют свою эластичность и прочность. Это нередко приводит к разрыву сосудов и массивным кровоизлияниям в органы со смертельным исходом. Склеротические изменения сосудистой стенки сопровождаются также сужением просвета отдельных сосудов вплоть до их полной закупорки, что нарушает кровоснабжение органов. При атеросклерозе наблюдается и явление внутрисосудистого тромбообразования, характеризующееся повышением свертывающей способности крови. Вопрос о внутрисосудистом тромбообразовании является одним из самых актуальных в современной медицине и биологии и ввиду своей сложности и важности требует специального рассмотрения.

Сосуды снабжены нервами, регулирующими их просвет и вызывающими сужение или расширение их. Сосудосуживающие нервы - вазоконстрикторы - относятся к симпатической нервной системе. Существование этих нервов было впервые обнаружено в 1842 г. в опытах на лягушках, а затем Кл. Бернаром (1852) в экспериментах на ухе кролика. Если раздражать симпатический нерв на шее кролика, то соответствующее ухо бледнеет вследствие сужения его, артерий и артериол, а температура и объем уха уменьшаются. Главными сосудосуживающими нервами органов брюшной полости являются симпатические волокна. К конечностям симпатические сосудосуживающие волокна идут, во-первых, в составе спинномозговых смешанных нервов, раздражение которых, как правило, суживает сосуды конечностей, во-вторых, по стенкам артерий (в их адвентиции). Перерезка сосудосуживающих симпатических нервов вызывает расширение сосудов в той области, которая иннервируется этими нервами. Доказательством этого служит опыт Кл. Бернара с перерезкой симпатического нерва на одной стороне шеи, что вызывает расширение сосудов, проявляющееся в покраснении и потеплении уха оперированной стороны. Равным образом после перерезки п. 8р1апсЬ.шсиз кровоток через органы брюшной полости, лишенной сосудосуживающей симпатической иннервации, резко увеличивается. Описанные опыты показывают, что кровеносные сосуды находятся под непрерывным сосудосуживающим влиянием симпатических нервов, поддерживающим постоянный уровень сокращения мышечных стенок артерии (артериальный тонус). Если после перерезки симпатических нервов раздражать периферический конец их, то можно восстановить нормальный уровень артериального тонуса. Для этого достаточно раздражать симпатические нервные волокна с частотой 1-2 импульса в секунду (Б. Фолков, В. М. Хаютин). Изменение частоты импульсов, поступающих к артериям, может вызвать их сужение (при учащении импульсации) или расширение (при урежении импульсации). Сосудорасширяющие эффекты - вазодилятацию - впервые обнаружили при раздражении нескольких нервных веточек, относящихся к парасимпатической нервной системе. В некоторых органах, например в скелетной мускулатуре, расширение артерий и артериол происходит при раздражении симпатических нервов, в составе которых имеются, кроме вазоконстрикторов, также и вазодилятаторы. В большинстве случаев раздражение симпатических нервов вызывает сужение сосудов, и лишь в особых условиях, например после введения яда - эрготоксина, парализующего симпатические вазоконстрикторы, возникает расширение сосудов. Расширение сосудов (главным образом кожи) можно вызвать, кроме того, раздражением периферических концов задних корешков спинного мозга, в составе которых проходят афферентные (чувствительные) волокна. Расширение сосудов наступает при этом в тех областях кожи, чувствительные нервные волокна которых проходят в раздражаемом корешке. Вопрос о механизме действия сосудорасширяющих нервов недостаточно выяснен. В последние годы доказано, что расширение сосудов обусловлено при раздражении сосудорасширяющих нервов образованием сосудорасширяющих веществ. Так, при раздражении симпатических вазодилататоров скелетной мускулатуры в их окончаниях образуется ацетилхолин; расширяющий артериолы. При раздражении задних корешков спинного мозга сосудорасширяющие вещества, по-видимому, образуются не в стенке сосуда, а вблизи его. Сосудодвигательные центры Сужение или расширение сосудов наступает под влиянием импульсов из центральной нервной системы. Было установлено, что нервный центр, обеспечивающий определенную степень сужения артериального русла, - сосудодвигательный центр находящийся в продолговатом мозгу. Локализация этого центра определена путем перерезки ствола мозга на разных уровнях. Если перерезка произведена у собаки или у кошки выше четверохолмия, то кровяное давление не изменяется. Если же перерезать мозг между продолговатым и спинным, максимальное давление крови в сонной артерии понижается с нормальных 100 - 120 до 60 - 70 мм рт. ст. Отсюда следует, что сосудосуживающий центр локализован в продолговатом мозгу, и что он находится в состоянии длительного постоянного возбуждения (тонуса). Устранение его влияния вызывает расширение сосудов и падение артериального давления. Более детальный анализ показал, что сосудодвигательный центр продолговатого мозга расположен на дне 4 желудочка и состоит из двух отделов: прессорного и депрессорного. Раздражение первого вызывает сужение артерии и подъем кровяного давления, а раздражение второго - расширение артерий и падение давления. Импульсы от сосудосуживающего центра продолговатого мозга поступают к нервным центрам симпатической нервной системы, расположенными в боковых рогах спинного мозга. 0ни образуют сосудосуживающие центры, связанные с сосудами отдельных участков тела. Спинномозговые центры способны через некоторое время после выключения сосудосуживающего центра продолговатого мозга немного повысить давление крови, снизившееся вследствие расширения артерий и артериол. Кроме сосудодвигательных центров продолговатого и спинного мозга, на состояние сосудов оказывают влияние нервные центры промежуточного мозга и больших участков промежуточного мозга в области гипоталамуса, в котором расположены высшие центры вегетативной нервной системы, вызывает сужение артерий и артериол и повышение кровяного давления.

Сердце находится под постоянным действием нервной системы и гуморальных факторов. Организм находится в разных условиях существования. Результатом работы сердца - нагнетание крови в большой и малый круги кровообращения.

Оценивается минутным объемом крови. В нормальном состоянии за 1 минуту - 5л крови выталкивают оба желудочка. Таким образом мы можем оценить работу сердцу.

Систолический объем крови и частота сердечных сокращений - минутный объем крови.

Для сопоставления у разных людей - введен сердечный индекс - какое количество крови в минуту приходится на 1 квадратный метр тела.

Для того чтобы изменять величину объема - нужна менять данные показатели, это происходит за счет механизмов регуляции сердца.

Минутный объем крови(МОК)=5л/мин

Сердечный индекс=МОК/Sм2=2,8-3,6л/мин/м2

МОК=систолический объем*частота/мин

Механизмы регуляции сердца

  1. Внутрисердечные(интракардиальные)
  2. Внесердечные(Экстракардиальные)

К внутрисердечным механизмам относятся наличие плотных контактов между клетками рабочего миокарда, проводящая система сердца координирует отдельную работу камер, внутрисердечные нервные элементы, гидродинамическое взаимодействие между отдельными камерами.

Внесердечные - нервный и гуморальный механизм , который изменяют работу сердца и приспосабливают работу сердца к запросам организма.

Нервная регуляция сердце осуществляется автономной нервной системой . Сердце получает иннервацию и от парасимпатического (блуждающий) и симпатических (боковые рога спинного мозга T1-T5) нервов.

Ганглии парасимпатической системы лежат внутри сердца и там преганглионарное волокна переключаются на постганглионарные. Ядра преганглионарных - продолговатый мозг.

Симпатические - прерываются в звездчатом ганглии, где уже будут располагаться постганглионары, которые идут к сердцу.

Правый блуждающий нерв - иннервирует сино-атриальный узел, правое предсердие,

Левый блуждающий нерв к атрио-вентрикулярному узлу и правому предсердию

Правый симпатический нерв - к синусному узлу, правому предсердию и желудочку

Левый симпатический нерв - к атриовентрикулярному узлы и к левой половине сердца.

В ганглиях ацетилхолин действует на N - холинорецепторы

Симпатические выделяют норадреналин, который действует на адренорецепторы(B1)

Парасимпатические - ацетилхолин на М-холино рецепторы(мускарино)

Влияние на работу сердца.

  1. Хронотропное влияние (на частоту сердечных сокращений)
  2. Инотропное (на силу сердечных сокращений)
  3. Батмотропное влияние (на возбудимость)
  4. Дромотропное (на проводимость)

1845 - братья Веберы - открыли влияние блуждающего нерва . Они перерезали нерв на шее. При раздражении правого блуждающего нерва - уряжалась частота сокращений, а могла и остановиться - отрицательный хронотропный эффект (подавление автоматии синусного узла). Если раздражался левый блуждающий нерв - ухудшалась проводимость. Атриовентрикулярный нерв отвечает за задержку возбуждения.

Блуждающие нервы понижают возбудимость миокарда и понижают частоту сокращений.

Под действием блуждающего нерва - замедление диастолической деполяризации p - клеток, водителей ритма. Увеличивается выход калия. Хотя блуждающий нерв вызывает остановку сердца, полностью этого сделать нельзя. Происходит возобновление сокращения сердца - ускользание из под влияния блуждающего нерва и возобновление работы сердца связано с тем, что автоматия от синусного узла переходит к атриовентрикулярному узлу, который и возвращает работу сердца с частотой в 2 раза реже.

Симпатические влияния - изучили братья Ционы - 1867 год. При раздражении симпатических нервов Ционы обнаружили что симпатические нервы дают положительный хронотропный эффект . Дальше изучал Павлов. В 1887 году он опубликовал свою работу по влиянию нервов на работу сердца. В своих исследованиях о обнаружил, что отдельные веточки не меняя частоты увеличивают силу сокращений - положительный инотропный эффект . Дальше были открыты бамотропный и дромотропный эффект.

Положительные влияния на работу сердца идет за счет влияния норадреналин на бета 1 адрено рецепторы, который активируют аденилатциклазу, способствуют образованию циклического АМФ, повышается ионная проницаемость мембраны. Диастолическая деполяризация происходит с большей скоростью и это вызывает более частый ритм. Симпатические нервы увеличивают распад гликогена, АТФ, тем самым они предоставляют миокарду энергетические ресурсы, повышается возбудимость сердца. Минимальная продолжительность потенциала действия в синусном узле установлена 120 мс, т.е. теоретически сердце могло бы дать нам число сокращений - 400 в минуту, но атривентрикулярный узел не способен провести более 220. Желудочки максимально сокращаются с частотой 200-220. Участи медиаторов в передаче возбуждения на сердца - установил Отто Леви в 1921. Он использовал 2 изолированных сердца лягушки, причем эти сердце питались из 1ой канюли. В одном сердце сохранялись нервные проводники. При раздражении одного сердца он наблюдал что происходило в другом. При раздражении блуждающего нерва выделялся ацетилхолин - через жидкость он оказывал влияние на работу другого сердца.

Выделение норадреналина усиливает работу сердца. Открытие этого медиаторного возбуждения принесло Леви нобелевскую премию.

Нервы сердца находятся в состоянии постоянного возбуждения - тонуса. В состоянии покоя особенно хорошо выражен тонус блуждающего нерва. При перерезке блуждающего нерва наблюдается учащение работы сердца в 2 раза. Блуждающие нервы постоянно угнетают автоматию синусного узла. Нормальная частота - 60-100 сокращений. Выключение блуждающих нервов(перерезка, блокаторы холино-рецепторов(атропин)) вызывают учащение работы сердца. Тонус блуждающих нервов определяется тонусом его ядер. Возбуждение ядер поддерживается рефлекторно за счет импульсов, которые приходят с барорецепторов кровеносных сосудов в продолговатый мозг от дуги аорты и каротидного синуса. На тонус блуждающих нервов влияет и дыхание. В связи с дыханием - дыхательная аритмия, когда на выдохе происходит уряжение работы сердца.

Тонус симпатических нервов сердца в состоянии покоя выражен слабо. Если перерезать симпатические нервы - частота сокращений уменьшается на 6-10 ударов в минуту. Этот тонус увеличивается при физической нагрузке, увеличивается при различных заболеваниях. Тонус хорошо выражен у детей, у новорожденных(129-140 ударов в минуту)

Сердце еще подвержено действию гуморального фактора - гормоны(надпочечеников - адреналин, норадареналин, щитовидной железы - тироксин и медиатор ацетилхолин)

Гормоны оказывают + влияние на все 4 свойства сердца. На сердце влияет электролитный состав плазмы и изменяется работа сердца при изменении концентрации калия и кальция. Гиперкалимия - повышенное содержания калия в крови - очень опасное состояние, это может приводить к остановке сердца в диастолу. Гипокалими я - мене опасное состояние на кардиограмме изменение расстояния PQ, извращение зубца T. Сердце останавливается в систолу. На сердце оказывает влияние и температура тела - повышение температуры тела на 1 градус - увеличение работы сердца - на 8-10 ударов в минуту.

Систолический объем

  1. Преднагрузка(степень растяжения кардиомиоцитов перед их сокращением. Степень растяжения будет определяться тем объемом крови, что будет находится в желудочках.)
  2. Сократимость(Растяжение кардиомиоцитов, где меняется длина саркомера. Обычно толщина 2 мкм. Максимальная сила сокращения кардиомиоцитов до 2,2 мкм. Это оптимальное соотношение между мостиками миозина и актиновых нитей, когда их взаимодействие максимально. Это определяет силу сокращения дальнейшее растяжение до 2,4 уменьшает сократимость. Это приспосабливает сердце к притоку крови, при его увеличение - большая сила сокращения. Сила сокращения миокарда может меняться без изменения количества крови, за счет гормонов адреналина и норадреналина, ионов кальция и пр. - увеличивается сила сокращениямиокарда)
  3. Постнагрузка(Постнагрузка это то напряжение миокарда, которое должно возникнуть в систолу для открытия полулунных клапанов. Величина постнагрузки определяется величиной систолического давления в аорте и легочном стволе)

Закон Лапласа

Степень напряжения стенки желудочка = Внутрижелудочное давление * радиус / толщина стенки. Чем больше внутрижелудочковое давление и чем больше радиус(величина просвета желудочка), тем напряжение стенки желудочка больше. Увеличение толщины - влияет обратнопропорционално. T=P*r/W

Величина кровотока зависит не только от минутного объема, но и она определяется величиной периферического сопротивления, возникающего в сосудах.

Кровеносные сосуды оказывают мощное влияние на кровоток. Все кровеносные сосуды выстланы эндотелием. Дальше эластический каркас, а в мышечных еще и гладко мышечные клетки и коллагеновые волокна. Стенка сосудов подчиняется закону Лапласа. Если внутри сосуда имеется внутрисосудистое давление и давление вызывает растяжение в стенке сосуда, то в стенке - состояние напряжения. Также влияет радиус сосудов. Напряжение будет определяться произведением давления на радиус. В сосудах мы можем различить базальный тонус сосудов. Тонус сосудов который определяется степенью сокращения.

Базальный тонус - определяется степенью растяжения

Нейрогуморальный тонус - влияние нервных и гуморальных факторов на тонус сосудов.

Увеличенный радиус дает больше напряжения в стенки сосудов чем в баллончике, где радиус меньше. Для того, чтобы осуществлялся нормальный кровоток и обеспечивалось адекватное кровоснабжение существуют механизмы регуляции сосудов.

Они представлены 3мя группами

  1. Местная регуляция кровотока в ткани
  2. Нервная регуляция
  3. Гуморальная регуляция

Тканевой кровоток обеспечивает

Доставку кислорода клеткам

Доставку питательных веществ(глюкоза, аминокислоты, жирные кислоты и др.)

Удаление CO2

Удаление протонов H+

Регуляция кровотока - краткосрочная(несколько секунд или минут в результате локальных изменений в тканях) и долгосрочная(происходит в течении часов, дней и даже недель. Эта регуляция связана с образование в тканях новых сосудов)

Образование новых сосудов связано с увеличением объема ткани, увеличение интенсивности обмена веществ в ткани.

Ангеогенез - образование сосудов. Это идет под действием факторов роста - сосудистый эндотелиальный фактор роста. Фактор роста фибробласта и ангиогенин

Гуморальная регуляция сосудов

  1. 1. Вазоактивные метаболиты

а. Расширение сосудов обеспечивают - уменьшение pO2, Увеличение - CO2, t, K+ молочной кислоты, аденозина, гистамина

б.сужение сосудов вызывают - увеличение серотонина и уменьшение температуры.

2. Влияние эндотелия

Эндотелины(1,2,3). - сужение

Оксид азота NO - расширение

Образование оксида азота(NO)

  1. Освобождение Ach, брадикинина
  2. Открытие Ca+ каналов в эндотелии
  3. Связывание Ca+ с кальмодулином и его активация
  4. Активация фермента (синтетазы оксида азота)
  5. Превращение L фргинина в NO

Механизм действия NO

NO - активирует гуанилциклазу ГТФ - цГМФ- открытие К каналов - выход K+ - гиперполяризация - снижение проницаемости кальция-расширение гладких мышц и расширение сосудов.

Обладает цитотоксическим действием на бактерии и клетки опухоли при выделение из лейкоцитов

Является медиатором передачи возбуждеия в некотоырх нейронах головного мозга

Медиатор парасимпатических постганглионарных волокон для сосудов полового члена

Возможно принимает участие в механизмах памяти и мышления

А.Брадикинин

Б.Каллидин

Кининоген с ВМВ - брадикинин(при Плазменный калликреине)

Кининоген с YVD - каллидин(при тканевом калликреине)

Кинины образуются при активной деятельности потовых желез, слюнных желез и поджелудочной железы.



Понравилась статья? Поделитесь ей
Наверх