Слух ВКонтакте Facebook. Вся эта логическая цепочка рецепции звука такова. Адекватный раздражитель звукового анализатора

Физиология слуха

Слуховая сенсорная система обеспечивает восприятие звуков и построение слуховых образов , т.е. слух . Адекватным раздражителем для неё является звук . Это означает, что именно к звукам слуховая сенсорная система имеет повышенную чувствительность и восприимчивость, а также создаёт такие сенсорные образы, которые правильно отражают важные характеристики звуковых раздражителей и позволяют ориентироваться в звуковых сигналах.

Для понимания физиологии слуха нам потребуется объяснить возникновение слухового сенсорного потока возбуждения, его движение по нервной системе и, наконец, формирование слухового сенсорного образа.

План объяснения слухового восприятия:

Раздражителем для слуховой сенсорной системы является звук.

Звук - это продольное колебание частиц той среды, которая передает звук. Звуковые колебания передаются по воздуху, воде, костям черепа, т.е. по газообразным, жидким и твердым средам.

Главные параметры звуковых волн - это частота колебаний, их амплитуда и тембр (спектр частот). Частота - это тон звука. Чем выше тон звука, тем выше частота звуковых колебаний. Диапазон восприятия звука человеком составляет примерно от 20 до 20000 гц (герц - одно колебание в секунду).

Звуки тоном ниже 20 гц называются инфразвуком , сознание их не воспринимает, но могут быть подсознательные реакции (беспокойство, тревога, страх и даже необъяснимый ужас). Инфразвуки с частотой 4 гц считаются самыми опасными, с частотой 8-14 гц - соответствуют альфа-ритму работы мозга и, видимо, могут вызывать трансовое состояние. Инфразвуки такой частоты способна производить профессиональная аппаратура на дискотеках и таким способом вызывать у присутствующих там людей особое изменённое состояние сознания.

Звуки тоном выше 20000 гц называются ультразвуком , человек их не воспринимает (однако кошки, собаки и другие животные воспринимают).

Наибольшая чувствительность уха находится в диапазоне от 1000 до 3000 гц – это как раз диапазон звуков человеческой речи.

Музыкальные воспроизводящие устройства имеют более широкий диапазон от 12-14 гц до 16000.

Рецепция (трансдукция) звука - это восприятие звука на уровне слуховых рецепторов уха, т.е превращение ( трансформация ) звуковых колебаний в нервное возбуждение.

Рецепторы звука - это волосковые клетки (точнее: внутренние волосковые клетки), они спрятаны в улитке внутреннего уха, сидят на базальной мембране кортиевого органа. Поэтому к ним надо ещё доставить звуковые колебания.

На рисунке справа - волоски (стереоцилии), торчащие из волосковой клетки. Волосков на внутренней волосковой клетке обычно бывает 30-40 штук.

Движение звука по звуковым средам уха к рецепторам

1. Наружное ухо.

Звуковые волны направляются ушными раковинами в наружный слуховой проход. В наружном слуховом проходе находится воздух, он передает звуковые колебания (звуковые волны) на барабанную перепонку. Особенность барабанной перепонки состоит в том, что в ней хаотично расположены волокна соединительной ткани, поэтому она не резонирует, т.е. у нее нет предпочтения к определенной частоте звука, её колеблют звуки любой частоты. Барабанная перепонка разделяет наружное и среднее ухо.

2. Среднее ухо.

За барабанной перепонкой находится среднее ухо - там тоже воздушная среда. Воздух попадает туда из носоглотки через евстахиевы трубы. Громкие звуки лучше слушать раскрыв рот, чтобы слишком сильные колебания не повредили барабанную перепонку. В среднем ухе находится сложный составной рычаг из трех косточек: молоточка, наковаленки, стремечка. Это самые мелкие косточки в организме человека, и самая мелкая из них - стремечко, оно в 10 раз меньше по массе, чем две других, его вес - всего 2,5 мг, а длина - до 4 мм. Стремечко упирается в овальное окно внутреннего уха. Косточки нужны для того, чтобы уменьшить амплитуду звуковых волн, но усилить их давление. Частота колебаний (высота звука) остается прежней.

3. Внутреннее ухо.

За овальным окном начинается внутреннее ухо - улитка . По латыни улитка называется coсhlea (кохлеа) , поэтому некоторые связанные с ней структуры называются кохлеарными . Улитка - это соединительнотканная трубка с жидкостью (всего 1 мл), завёрнутая в спираль 2,5 раза. Она разделена вдоль на три отсека и все они заполнены жидкостью. Верхний отсек - «верхняя лестница», нижний отсек - «нижняя лестница». Средний отсек - «средняя лестница». От колебаний овального окна начинает колебаться вся жидкость в улитке и все её мембраны. Но максимальная амплитуда будет там, где собственная частота натянутых поперечных волокон базальной мембраны будет соответствовать частоте звука. Относительно недавно было обнаружено, что энергия звуковой волны распределяется по трубе улитки неравномерно, она концентрируется на внешней стенке тем больше, чем дальше движется волна колебаний вглубь улитки. Таким образом, улитка на 20 децибелл более чувствительна в глубине трубы, там, где воспринимаются более низкие частоты. Можно сказать, что улитка устроена «не логично». В её нижней части воспринимаются высокие звуки, а в в верхней, наоборот, низкие.

4. Кортиев орган.

На базальной мембране внутри улитки сидят слуховые рецепторы - это внутренние волосковые клетки , образующие кортиев орган. А над их торчащими в просвет волосками простирается покровная мембрана . Базальная мембрана с волосковыми клетками трясется от звуковых волн, рецепторные волосковые клетки подпрыгивают вместе с ней и бьются волосками о покровную мембрану. Волоски упираются в покровную мембрану при подскоке и отгибаются в сторону. Чем больше амплитуда, тем сильнее отогнется волосок. Отгибающийся волосок растягивает свою клеточную мембрану и в ней открываются стимулуправляемые (механоуправляемые) ионные каналы для натрия (Na+). С этого начинается трансформация звукового раздражения в нервное возбуждение . Таким образом, слуховые рецепторы являются механорецепторами , реагирующими на механическое раздражение - отгибание их волосков и растяжение мембраны.

От каждой внутренней волосковой клетки отходят по 10-20 афферентных волокон биполярных нейронов спирального ганглия - первого слухового нервного центра. Есть ещё наружные волосковые клетки, но они занимаются регуляцией работы внутренних волосковых клеток и движением базальной мембраны, а не восприятием звуков. От каждой наружной волосковой клетки отходит всего 1-2 афферентных нейрона. Наружных волосковых клеток в 3-4 раза больше, чем внутренних, однако от них отходит лишь 5-7% афферентных волокон. Зато к ним подходят эфферентные нервные окончания, передающие на них нервное возбуждение и торможение по оливо-кохлеарному пути (Слуховая система. Л.: Наука, 1990).

Видео : Кортиев орган

1. Волоски рецепторной волосковой клетки отгибаются в сторону, когда упираются в покровную мембрану, поднимаясь к ней вместе с базальной мембраной.

2. Из-за этого растягивается клеточная мембрана волоска, и в ней открываются ионные каналы для натрия (Na +). Это механочувствительные ионные каналы (стретч-каналы), открываемые напрямую растяжением клеточной мембраны. Я предлагаю называть такие каналы в рецепторных клетках «стимул-управляемыми» ионными каналами , потому что их открывает стимул - раздражитель. Смотри: Ионные каналы мембраны

3. Ионы Nа+ через открывшиеся для них каналы устремляются внутрь клетки.

4. Они приносят с собой положительные электрические заряды (+) и вызывают уменьшение электроотрицательности внутри клетки. Это - процесс деполяризации . Электроотрицательность рецепторных волосковых клеток уменьшается, поляризация мембраны снижается, и это означает, что рецепторные клетки переходят в возбуждённое состояние.

5. Теперь наступает важный момент, на который следует обратить особое внимание. В ответ на деполяризацию открываются уже другие каналы - потенциал-управляемые ионные каналы для Ca2 + . Обратите внимание на то, что в рецепторных клетках в отличие от обычных нейронов появляются «новые действующие лица» - кальциевые каналы, чувствительные к деполяризации . При деполяризационном возбуждении эти каналы открываются и впускают в рецепторную клетку ионы кальция. Собственно, именно для этого, для введения в клетку ионов кальция, и нужна была деполяризация, полученная за счёт открытия стимул-зависимых ионных каналов.

6. Итак, через открытые деполяризацией потенциал-зависимые ионные каналы Ca2+ поступает в клетку. Очень важно запомнить, что Cа2+ - это не только ион, но и биологически активное вещество, вторичный мессенджер . И ему предназначена важная роль в работе рецепторной клетки. Кальций связывается со специальным белком и побуждает пузырьки с медиатором двигаться к мембране и выбрасывать медиатор наружу . Без кальция ничего бы не вышло: медиатор не выделился бы.

7. И вот теперь происходит самое главное: из рецепторной клетки под действием вошедшего в неё кальция начинает выделяться нейромедиатор. Нейромедиатор - это и есть вещество, передающее возбуждение на связанный с рецепторной волосковой клеткой биполярный нейрон. Как нейромедиатор передаст возбуждение? Он просто заставит биполярный нейрон породить нервный импульс.

Вся эта логическая цепочка рецепции звука такова:

Чем сильнее был звук, тем сильнее колебалась базальная мембрана с волосковыми клетками на ней,

Чем сильнее она колебалась, тем сильнее отогнулись волоски на рецепторных клетках,

Чем сильнее отогнулись волоски, тем сильнее получилась деполяризация,

Чем сильнее была деполяризация, тем больше вошло в клетку кальция через открытые ей кальциевые каналы,

Чем больше вошло ионов кальция, тем больше выделилось нейромедиатора из слуховой рецепторной клетки.

Таким образом, сила звука воплощается в количестве нейромедиатора, выделенного волосковыми рецепторными клетками.

В этом и заключаются молекулярные механизмы рецепции звука в кортиевом органе.

Удовлетворительно объяснить феномен слуха оказалось необычайно сложной задачей. Человек, представивший теорию, объяснявшую бы восприятие высоты и громкости звука, почти наверняка гарантировал бы себе Нобелевскую премию.

Оригинальный текст (англ.)

Explaining hearing adequately has proven a singularly difficult task. One would almost ensure oneself a Nobel prize by presenting a theory explaining satisfactorily no more than the perception of pitch and loudness.

A. S. Reber, E. S. Reber

Слух - способность биологических организмов воспринимать звуки органами слуха ; специальная функция слухового аппарата , возбуждаемая звуковыми колебаниями окружающей среды, например, воздуха или воды . Одно из биологических дистантных ощущений , называемое также акустическим восприятием . Обеспечивается слуховой сенсорной системой .

Общие сведения

Человек способен слышать звук в пределах от 16 Гц до 20 кГц при передаче колебаний по воздуху, и до 220 кГц при передаче звука по костям черепа. Эти волны имеют важное биологическое значение, например, звуковые волны в диапазоне 300-4000 Гц соответствуют человеческому голосу. Звуки выше 20 000 Гц имеют малое практическое значение, так как быстро тормозятся; колебания ниже 60 Гц воспринимаются благодаря вибрационному чувству. Диапазон частот, которые способен слышать человек, называется слуховым или звуковым диапазоном ; более высокие частоты называются ультразвуком , а более низкие - инфразвуком .

Физиология слуха

В начале 2011 г. в совместной работе двух израильских институтов было показано, что в человеческом мозге выделены специализированные нейроны, позволяющие оценить высоту звука вплоть до 0,1 тона. Животные, кроме летучих мышей, таким приспособлением не обладают, и для разных видов точность ограничена от 1/2 до 1/3 октавы. [ ]

Теории физиологии слуха

На сегодняшний день нет единой достоверной теории, объясняющей все аспекты восприятия звука человеком. Вот некоторые из них:

  • струнная теория Гельмгольца ;
  • теория бегущей волны Бекеши ;
  • микрофонная теория;
  • электромеханическая теория.

Поскольку достоверная теория слуха не разработана, на практике используются психоакустические модели, основанные на данных исследований, проводимых на различных людях [ ] .

Слуховые следы, слияние слуховых ощущений

Опыт показывает, что ощущение, вызываемое коротким звуковым импульсом, длится ещё некоторое время после прекращения звучания. Поэтому два достаточно быстро следующих друг за другом звука дают одиночное слуховое ощущение, являющееся результатом их слияния. Как и при зрительном восприятии, когда отдельные изображения, сменяющие друг друга с частотой ≈ 16 кадров/сек и выше, сливаются в плавно текущее движение, синусоидальный чистый звук получается в результате слияния отдельных колебаний с частотой повторения равной нижнему порогу чувствительности слуха, то есть ≈ 16 Гц. Слияние слуховых ощущений имеет огромное значение для чёткости восприятия звуков и в вопросах консонанса и диссонанса , играющих огромную роль в музыке [ ] .

Проецирование наружу слуховых ощущений

Как бы ни возникали слуховые ощущения, мы относим их обыкновенно во внешний мир, и поэтому причину возбуждения нашего слуха мы всегда ищем в колебаниях, получаемых извне с того или другого расстояния. Эта черта в сфере слуха выражена гораздо слабее, нежели в сфере зрительных ощущений, отличающихся своей объективностью и строгой пространственной локализацией и, вероятно, приобретается также путём долгого опыта и контроля других чувств. При слуховых ощущениях способность к проецированию , объективированию и пространственной локализации не может достигнуть столь высоких степеней, как при зрительных ощущениях. Виной этому такие особенности строения слухового аппарата, как, например, недостаток мышечных механизмов, лишающий его возможности точных пространственных определений. Известно то огромное значение, какое имеет мышечное чувство во всех пространственных определениях.

Суждения о расстоянии и направлении звуков

Наши суждения о расстоянии, на котором издаются звуки, являются весьма неточными, в особенности если глаза человека закрыты и он не видит источника звуков и окружающие предметы, по которым можно судить об «акустике окружения» на основании жизненного опыта, либо акустика окружения нетипична: так, например, в акустической безэховой камере голос человека, находящегося всего в метре от слушающего, кажется последнему в разы и даже десятки раз более удалённым. Также знакомые звуки представляются нам тем более близкими, чем они громче, и наоборот. Опыт показывает, что мы менее ошибаемся в определении расстояния шумов, нежели музыкальных тонов. Способность суждения о направлении звуков у человека весьма ограничена: не имея подвижных и удобных для собирания звуков ушных раковин , он в случаях сомнений прибегает к движениям головы и ставит её в положение, при котором звуки различаются наилучшим образом, то есть звук локализируется человеком в том направлении, с которого он слышится сильнее и «яснее».

Известно три механизма, при помощи которых можно различить направление звука:

  • Разница в средней амплитуде (исторически первый обнаруженный принцип): для частот выше 1 кГц, то есть таких, что длина звуковой волны меньше, чем размер головы слушающего, звук, достигающий ближнего уха, имеет бо́льшую интенсивность.
  • Разница в фазе: ветвистые нейроны способны различать фазовый сдвиг до 10-15 градусов между приходом звуковых волн в правое и левое ухо для частот в примерном диапазоне от 1 до 4 кГц (что соответствует точности в определении времени прихода в 10 мкс).
  • Разница в спектре: складки ушной раковины , голова и даже плечи вносят в воспринимаемый звук небольшие частотные искажения, по-разному поглощая различные гармоники, что интерпретируется мозгом как дополнительная информация о горизонтальной и вертикальной локализации звука.

Возможность мозга воспринимать описанные различия в звуке, слышимым правым и левым ухом, привело к созданию технологии бинауральной записи .

Описанные механизмы не работают в воде: определение направления по разности громкостей и спектра невозможно, так как звук из воды проходит практически без потерь напрямую в голову, и значит в оба уха, из-за чего громкость и спектр звука в обоих ушах при любом расположении источника звука с высокой точностью одинаковы; определение направления источника звука по фазовому сдвигу невозможно, так как из-за гораздо более высокой в воде скорости звука длина волны возрастает в несколько раз, а значит, фазовый сдвиг многократно уменьшается.

Из описания приведённых механизмов понятна и причина невозможности определения расположения источников низкочастотного звука.

Исследование слуха

Слух проверяют с помощью специального устройства или компьютерной программы под названием «аудиометр ».

Возможно определение ведущего уха с помощью специальных тестов. Например, в наушники подаются разные аудиосигналы (слова), а человек их фиксирует на бумаге. С какого уха больше правильно распознанных слов, то и ведущее [ ] .

Определяют и частотные характеристики слуха, что важно при постановке речи у слабослышащих детей.

Норма

Восприятие частотного диапазона 16 Гц − 20 кГц с возрастом изменяется - высокие частоты перестают восприниматься. Уменьшение диапазона слышимых частот связано с изменениями во внутреннем ухе (улитке) и развитием с возрастом нейросенсорной тугоухости .

Порог слышимости

Порог слышимости - минимальное звуковое давление, при котором звук данной частоты воспринимается ухом человека. Величину порога слышимости выражают в децибелах . За нулевой уровень принято звуковое давление 2⋅10 −5 Па на частоте 1 кГц. Порог слышимости у конкретного человека зависит от индивидуальных свойств, возраста, физиологического состояния.

Порог болевого ощущения

Порог болевого ощущения слуховой - величина звукового давления, при котором в слуховом органе возникают боли (что связано, в частности, с достижением предела растяжимости барабанной перепонки). Превышение данного порога приводит к акустической травме. Болевое ощущение определяет границу динамического диапазона слышимости человека, который в среднем составляет 140 дБ для тонального сигнала и 120 дБ для шумов со сплошным спектром.

Причины ухудшения слуха

Учеными было установлено, что громкие звуки повреждают слух. Например, музыка на концертах или шум станков на производстве. Такое нарушение выражается в том, что человек в шумной обстановке часто ощущает гул в ушах и не различает речь. Изучением этого феномена занимается Чарльз Либерман из Гарварда. Данное явление называют «скрытой потерей слуха».

Звук попадает в уши, усиливается и преобразуется в электрические сигналы посредством волосковых клеток . Потеря этих клеток вызывает ухудшение слуха. Она может быть связана с громким шумом, приемом определённых медикаментов или с возрастом. Данное изменение выявляет стандартный тест, аудиограмма. Однако, Либерман отмечает, что есть и иные причины потери слуха, не связанные с уничтожением волосковых клеток , так как многие люди с хорошими показателями аудиограммы жалуются на ухудшение слуха. Проведенные исследования показали, что потеря синапсов (связей между волосковыми клетками) более, чем на половину является той самой причиной ухудшения слуха, которая не отображается на аудиограмме. На данный момент ещё не изобретено такого лекарства, которое могло бы избавить от данной проблемы, поэтому ученые советуют избегать мест с повышенным уровнем шума.

Патология

См. также

Представляет собой сложный специализированный орган, состоящий из трех отделов: наружного, среднего и внутреннего уха.

Наружное ухо является звукоулавливающим аппаратом. Звуковые колебания улавливаются ушными раковинами и передаются по наружному слуховому проходу к барабанной перепонке, которая отделяет наружное ухо от среднего. Улавливание звука и весь процесс слушания двумя ушами, так называемый биниуральный слух, имеют значение для определения направления звука. Звуковые колебания, идущие сбоку, доходят до ближайшего уха на несколько десятичных долей секунды (0,0006 с) раньше, чем до другого. Этой предельно малой разницы во времени прихода звука к обоим ушам достаточно, чтобы определить его направление.

Среднее ухо представляет собой воздушную полость, которая через евстахиеву трубу соединяется с полостью носоглотки. Колебания от барабанной перепонки через среднее ухо передают 3 слуховые косточки, соединенные друг с другом, - молоточек, наковальня и стремечко, а последнее через перепонку овального окна передает эти колебания жидкости, находящейся во внутреннем ухе - перилимфе. Благодаря слуховым косточкам амплитуда колебаний уменьшается, а сила их увеличивается, что позволяет приводить в движение столб жидкости во внутреннем ухе. В среднем ухе имеется особый механизм адаптации к изменениям интенсивности звука. При сильных звуках специальные мышцы увеличивают натяжение барабанной перепонки и уменьшают подвижность стремечка. Тем самым снижается амплитуда колебаний, и внутреннее ухо предохраняется от повреждений.

Внутреннее ухо с расположенной в нем улиткой находится в пирамидке височной кости. Улитка у человека образует 2,5 спиральных витка. Улитковый канал разделен двумя перегородками (основной мембраной и вестибулярной мембраной) на 3 узких хода: верхний (вестибулярная лестница), средний (перепончатый канал) и нижний (барабанная лестница). На вершине улитки имеется отверстие, соединяющее верхний и нижний каналы в единый, идущий от овального окна к вершине улитки и далее к круглому окну. Полость их заполнена жидкостью - перилимфой, а полость среднего перепончатого канала заполнена жидкостью иного состава - эндолимфой. В среднем канале расположен звуковоспринимающий аппарат - кортиев орган, в котором находятся рецепторы звуковых колебаний - волосковые клетки.

Механизм восприятия звука. Физиологический механизм восприятия звука основан на двух процессах, происходящих в улитке: 1) разделение звуков различной частоты по месту их наибольшего воздействия на основную мембрану улитки и 2) преобразование рецепторными клетками механических колебаний в нервное возбуждение. Звуковые колебания, поступающие во внутреннее ухо через овальное окно, передаются перилимфе, а колебания этой жидкости приводят к смещениям основной мембраны. От высоты звука зависит высота столба колеблющейся жидкости и, соответственно, место наибольшего смещения основной мембраны. Таким образом, при различных по высоте звуках возбуждаются разные волосковые клетки и разные нервные волокна. Увеличение силы звука приводит к увеличению числа возбужденных волосковых клеток и нервных волокон, что позволяет различать интенсивность звуковых колебаний.
Преобразование колебаний в процесс возбуждения осуществляется специальными рецепторами - волосковыми клетками. Волоски этих клеток погружены в покровную мембрану. Механические колебания при действии звука приводят к смещению покровной мембраны относительно рецепторных клеток и изгибанию волосков. В рецепторных клетках механическое смещение волосков вызывает процесс возбуждений.

Проводимость звука. Различают воздушную и костную проводимость. В обычных условиях у человека преобладает воздушная проводимость: звуковые волны улавливаются наружным ухом, и воздушные колебания передаются через наружный слуховой проход в среднее и внутреннее ухо. В случае костной проводимости звуковые колебания передаются через кости черепа непосредственно улитке. Этот механизм передачи звуковых колебаний имеет значение при погружениях человека под воду.
Человек обычно воспринимает звуки с частотой от 15 до 20 000 Гц (в диапазоне 10-11 октав). У детей верхний предел достигает 22 000 Гц, с возрастом он понижается. Наиболее высокая чувствительность обнаружена в области частот от 1000 до 3000 Гц. Эта область соответствует наиболее часто встречающимся частотам человеческой речи и музыки.

Чувство слуха - одно из главных в жизни человека. Слух и речь вместе составляют важное средство общения между людьми, служат основой взаимоотношений людей в обществе. Потеря слуха может привести к нарушениям в поведении человека. Глухие дети не могут научиться полноценной речи.

С помощью слуха человек улавливает различные звуки, сигнализирующие о том, что происходит во внешнем мире, звуки окружающей нас природы - шорохи леса, пение птиц, звуки моря, а также различные музыкальные произведения. С помощью слуха восприятие мира становится ярче и богаче.

Ухо и его функция. Звук, или звуковая волна, - это чередующее еся разрежение и сгущение воздуха, распространяющееся во все стороны от источника звука. А источником звука может быть любое колеблющееся тело. Звуковые колебания воспринимаются нашим органом слуха.

Орган слуха построен очень сложно и состоит из наружного, среднего и внутреннего уха. Наружное ухо состоит из ушной раковины и слухового прохода. Ушные раковины многих животных могут двигаться. Это помогает животному улавливать, откуда раздается даже самый тихий звук. Ушные раковины человека также служат для определения направления звука, хотя они и лишены подвижности. Слуховой проход соединяет наружное ухо со следующим отделом - средним ухом.

Слуховой проход перегорожен на внутреннем конце туго натянутой барабанной перепонкой. Звуковая волна, ударяя в барабанную перепонку, заставляет ее колебаться, вибрировать. Частота вибрации барабанной перепонки тем больше, чем выше звук. Чем сильнее звук, тем сильнее колеблется перепонка. Но если звук совсем слабый, еле слышимый, то эти колебания очень малы. Минимальная слышимость натренированного уха находится почти на границе тех колебаний, которые создаются беспорядочным движением молекул воздуха. Значит, человеческое ухо - уникальный по чувствительности слуховой прибор.

За барабанной перепонкой лежит заполненная воздухом полость среднего уха. Эта полость соединена с носоглоткой узким проходом - слуховой трубой. При глотании происходит обмен воздухом между глоткой и средним ухом. Изменение давления наружного воздуха, например в самолете, вызывает неприятное ощущение - "закладывает уши". Оно объясняется прогибом барабанной перепонки из-за разницы между атмосферным давлением и давлением в полости среднего уха. При глотании слуховая труба открывается и давление по обе стороны барабанной перепонки выравнивается.

В среднем ухе расположены три маленькие, последовательно связанные между собой косточки: молоточек, наковальня и стремя. Молоточек, соединенный с барабанной перепонкой, передает ее колебания сначала на наковальню, а затем усиленные колебания передаются на стремя. В пластинке, отделяющей полость среднего уха от полости внутреннего уха, два окна, затянутые тонкими перепонками. Одно окно овальное, в него "стучится" стремя, другое - круглое.

За средним ухом начинается внутреннее ухо. Оно расположено в глубине височной кости черепа. Внутреннее ухо представляет собой систему лабиринта и извитых каналов, заполненных жидкостью.

В лабиринте находится сразу два органа: орган слуха - улитка и орган равновесия - вестибулярный аппарат. Улитка - эта спирально закрученный костный канал, имеющий у человека два с половиной оборота. Колебания перепонки овального окна передаются жидкости, заполняющей внутреннее ухо. И она, в свою очередь, начинает колебаться с той же частотой. Вибрируя, жидкость раздражает слуховые рецепторы, расположенные в улитке.

Канал улитки по всей длине разделен пополам перепончатой перегородкой. Часть этой перегородки состоит из тонкой перепонки - мембраны. На мембране находятся воспринимающие клетки - слуховые рецепторы. Колебания жидкости, заполняющей улитку, раздражают отдельные слуховые рецепторы. В них возникают импульсы, которые передаются по слуховому нерву в головной мозг. На схеме показаны все последовательные процессы превращения звуковой волны в нервную сигнализацию.

Слуховое восприятие. В головном мозге происходит различение силы, высоты и характера звука, его местоположения в пространстве.

Мы слышим двумя ушами, и это имеет большое значение для определения направления звука. Если звуковые волны приходят одновременно в оба уха, то мы воспринимаем звук посередине (спереди и сзади). Если звуковые волны чуть раньше придут в одно ухо, чем в другое, то мы воспринимаем звук либо справа, либо слева.



Слуховой анализатор воспринимает колебания воздуха и трансформирует механическую энергию этих колебаний в импульсы, которые в коре головного мозга воспринимаются как звуковые ощущения.

Воспринимающая часть слухового анализатора включает - наружное, среднее и внутреннее ухо (рис. 11.8.). Наружное ухо представлена ушной раковиной (звукоуловитель) и наружным слуховым проходом, длина которого составляет 21-27 мм, а диаметр 6-8 мм. Наружное и среднее ухо разделяет барабанная перепонка - мало податливая и слабо растягивающаяся мембрана.

Среднее ухо состоит из цепи соединенных между собой косточек: молоточек, наковальня и стремечко. Рукоятка молоточка прикрепляется к барабанной перепонке, основание стремечка - к овальному окну. Это своеобразный усилитель который в 20 раз усиливает колебания. В среднем ухе, кроме того, имеется две маленькие мышцы, прикрепляющиеся к косточкам. Сокращение этих мышц приводит к уменьшению колебаний. Давление в среднем ухе выравнивается за счет евстахиевой трубы, которая открывается в ротовую полость.

Внутреннее ухо соединено со средним при помощи овального окна, к которому прикрепляется стремечко. Во внутреннем ухе находится рецепторный аппарат двух анализаторов - воспринимающего и слухового (рис. 11.9.). Рецепторный аппарат слуха представлен улиткой . Улитка, длиной 35 мм и имеющая 2,5 завитка, состоит из костной и перепончатой части. Костная часть разделена двумя мембранами: основной и вестибулярной (рейснеровой) на три канала (верхний - вестибулярный, нижний - тимпанический, средний - барабанный). Средняя часть, называется улиточный ход (перепончатый). У верхушки - верхние и нижние каналы связаны геликотремой. Верхние и нижние каналы улитки заполнены перилимфой, средние - эндолимфой. Перилимфа по ионному составу напоминает плазму, эндолимфа - внутриклеточную жидкость (в 100 раз больше ионов К и в 10 раз ионов Nа).

Основная мембрана состоит из слабо натянутых эластических волокон, поэтому может колебаться. На основной мембране - в среднем канале расположены звуковоспринимающие рецепторы - кортиев орган (4 ряда волосковых клеток - 1 внутренний (3,5 тыс. клеток) и 3 наружных - 25-30 тыс. клеток). Сверху - тектореальная мембрана.

Механизмы проведения звуковых колебаний . Звуковые волны пройдя через наружный слуховой проход колеблют барабанную перепонку, последняя приводит в движение косточки и мембрану овального окна. Колеблется перилимфа и к вершине колебания затухают. Колебания перилимфы передаются на вестибулярную мембрану, а последняя начинает колебать эндолимфу и основную мембрану.

В улитке регистрируется: 1) Суммарный потенциал (между кортиевым органом и средним каналом - 150 мВ). Он не связан с проведением звуковых колебаний. Он обусловлен уравнем окислительно-восстановительных процессов. 2) Потенциал действия слухового нерва. В физиологии также известен и третий - микрофонный - эффект заключающий в следующем: если в улитку ввести электроды и соединить с микрофоном, предварительно усилив его, и произносить в ухо кошке различные слова, то микрофон воспроизводит эти же слова. Микрофонный эффект генерируется поверхностью волосковых клеток, т. к. деформация волосков приводит к появлению разности потенциалов. Однако, этот эффект превосходит энергию вызвавших его звуковых колебаний. Отсюда микрофонный потенциал - непростое преобразование механической энергии в электрическую, а связан с обменными процессами в волосковых клетках. Местом возникновения микрофонного потенциала является область корешков волосков волосковых клеток. Звуковые колебания, действующие на внутреннее ухо, накладывают возникающий микрофонный эффект на эндокохлеарный потенциал.


Суммарный потенциал отличается от микрофонного тем, что отражает не форму звуковой волны, а ее огибающую и возникает при действии на ухо высокочастотных звуков (рис. 11.10.).

Потенциал действия слухового нерва генерируется в результате электрического возбуждения, возникающего в волосковых клетках в виде микрофонного эффекта и суммарного потенциала.

Между волосковыми клетками и нервными окончаниями имеются синапсы, при этом имеет место и химический и электрический механизмы передачи.

Механизм передачи звука различной частоты. В течение длительного времени в физиологии господствовала резонаторная теория Гельмгольца : на основной мембране натянуты струны различной длины, подобно арфе они имеют разную частоту колебаний. При действии звука начинает колебаться та часть мембраны, которая настроена в резонанс данной частоте. Колебания натянутых нитей раздражают соответствующие рецепторы. Однако, эта теория критикуется, т. к. струны не натянуты и их колебания в каждый данный момент включают слишком много волокон мембраны.

Заслуживает внимания теория Бекеше . В улитке имеется явление резонанса, однако, резонирующим субстратом являются не волокна основной мембраны, а столб жидкости определенной длины. По данным Бекеше, чем больше частота звука, тем меньше длина колеблющегося столба жидкости. При действии звуков низкой частоты длина колеблющегося столба жидкости увеличивается, захватывая большую часть основной мембраны, причем колеблются не отдельные волокна, а значительная их часть. Каждой высоте тона соответствует определенное количество рецепторов.

В настоящее время наиболее распространенной теорией восприятия звука разной частоты является “теория места ”, согласно которой не исключается участие воспринимающих клеток в анализе слуховых сигналов. Предполагается что волосковые клетки, расположенные на различных участках основной мембраны обладают различной лабильностью, что оказывает влияние на звуковые восприятия, т. е. речь идет о настройке волосковых клеток на звуки разной частоты.

Повреждения в различных участках основной мембраны приводит к ослаблению электрических явлений, возникающих при раздражении звуков разной частоты.

Согласно резонансной теории, различные участки основной пластинки реагируют колебанием своих волокон на звуки разной высоты. Сила звука зависит от величины колебаний звуковых волн, которые воспринимаются барабанной перепонкой. Звук будет тем сильнее, чем больше величина колебаний звуковых волн и соответственно барабанной перепонки, Высота звука зависит от частоты колебаний звуковых волн, Большая частота колебаний в единицу времени будет. восприниматься органом слуха в виде более высоких тонов (тонкие, высокие звуки голоса) Меньшая частота колебаний звуковых волн воспринимается органом слуха в виде низких тонов (басистые, грубые звуки и голоса) .

Восприятие высоты, силы звука и локализации источника звука начинается с попадания звуковых волн в наружное ухо, где они приводят в движение барабанную перепонку. Колебания барабанной перепонки через систему слуховых косточек среднего уха передаются на мембрану овального окна, что вызывает колебание перилимфы вестибулярной (верхней) лестницы. Эти колебания через геликотрему передаются перилимфе барабанной (нижней) лестницы и доходят до круглого окна, смещая его мембрану по направлению к полости среднего уха. Колебания перилимфы передаются также на эндолимфу перепончатого (среднего) канала, что приводит в колебательные дви­жения основную мембрану, состоящую из отдельных волокон, натянутых, как струны рояля. При действии звука волокна мембраны приходят в колебательные движения вместе с рецепторны-ми клетками кортиева органа, расположенными на них. При этом волоски рецепторных клеток контактируют с текториальной мембраной, реснички волосковых клеток деформируются. Возникает вначале рецепторный потенциал, а затем потенциал действия (нервный импульс), который далее проводится по слуховому нерву и передается в другие отделы слухового анализатора.



Понравилась статья? Поделитесь ей
Наверх