Физический метод (термический) дезинфекции. Физические методы дезинфекции


Для стерилизации химическими веществами используют эмалированные или пластмассовые ёмкости с плотно закрываюшимися крышками. Изделия, подлежащие стерилизации, свободно раскладывают в емкости - раствором, расправляют их. При большой длине изделия, его укладывают по спирали. Изделие полностью погружают в раствор.
После стерилизации химическими веществами предметов медицинского назначения, их укладывают стерильным корнцангом в стерильный бикс, выложенный стерильной салфеткой. 3акрывают бикс, маркируют. Срок хранения - не более 3-х суток.
Внимание! 6% раствор перекиси водорода и 1% раствор Дезоксон-1 повторно использовать для стерилизации изделий медицинского назначения нельзя!
Периодически 1 раз в 2 недели проводят чистку инструментов. Готовят реактив из:

  • NaCl- l гр;
  • ледяная кислота - 5 грамм;
  • дистиллированной воды - 100 мл.

Приготовление 0,5% раствора перекиси водорода

Способы приготовления:
  • Из препарата гидроперит нужно развести 12 таблеток на литр воды - в итоге получаем 0,5 раствор перекиси водорода
  • Из препарата пергидроль концентрацией 29-30% растворяем в литре воды
  • 100 мл 6%-процентного перекиси водорода растворяем в 1000 мл воды
  • 200 мл 3%-процентного перекиси водорода растворяем в 1000 мл воды
Примечание. Раствор используется для предстерилизационной очистки инструментов с добавлением моющего средства: из расчета 5 г на 1 л 0,5% перекиси водорода.
Моющий раствор допускается применять до загрязнения (до появления розовой окраски, что свидетельствует о загрязнении раствора, снижающей эффективность очистки). Неизмененный
раствор можно подогревать 6 раз до температуры 450-500 с.
В процессе подогрева концентрация переписи водорода существенно не изменяется. В моющем растворе каждый предмет. медицинского назначения моется в течение 0,5 минуты с помощью ерша или щетки

Стерилизация предметов медицинского назначения термическим методом

Медицинский инструмент стерилизуют в сухожаровом шкафу при температуре 180 градусов цельсия в течение 60 минут. Инструмент раскладывается свободно на сетки
Медицинский инструмент из коррозийно-стойкого материала и стекла стерилизуют в автоклаве при температуре 132 градуса при давлении 2 атм. в течение 20 минут. Инструмент укладывают в стерилизационные коробки квадратной формы
Предметы медицинского назначения из пластмассы и резины стерилизуют в автоклаве при температуре 110-120 градусов цельсия при давлении 1-1,5 атм. в течение 45 минут

Изделия, стерилизованные в стерилизационных коробках без фильтров в двойной мягкой упаковке из бязи или пергамента, стерильны в течение 3 суток, в стерилизационных коробках с фильтром - 20 суток

Дезинфекция изделий медицинского назначения


Таблица. Дезинфицирующие растворы и методы дезинфекции при различных инфекционных заболеваниях. Нажмите, чтобы увеличить

Примечание. После дезинфекции способом погружения (изделия покрыты раствором полностью), изделия медицинского назначения необходимо про мыть проточной водой в течение 3 минут до полного удаления дезинфицирующего раствора. Дезинфицирующие растворы должны иметь температуру не ниже 18°с. Дезинфицирующий раствор применяется однократно на одно замачивание. При использовании физического метода (кипячения в дистиллированной воде или в 2% содовом растворе) время экспозиции отсчитывается с момента закипания.

К физическим методам дезинфекции относят механические, термические, лучистые и радиоактивные способы.

Физический метод дезинфекции представляет собой кипячение, обработку паром и горячим воздухом, и также ультрафиолетовое облучение. Физическая дезинфекция лучше всего выходит при кипячении, которое полностью убивает все микроорганизмы. Исключением являются некоторые разновидности бактериальных спор. Однако, если после кипячения применить иные методы дезинфекции, то можно достигнуть лучшего результата.

Механические методы дезинфекции

Механические методы дезинфекции - чистка, влажная уборка, мытье, стирка, выколачивание, вытряхивание, фильтрация, вентиляция. Эти способы обеспечивают в основном удаление, а не уничтожение микроорганизмов. При проветривании помещений в течение 15-30 мин через форточки, фрамуги, окна количество патогенных микроорганизмов в воздухе резко уменьшается, так как воздух помещения практически полностью замещается наружным. Однако проветривание (вентиляция) не всегда являются надежными дезинфекционными мероприятиями и рассматриваются как подсобная мера при условии продолжительности не менее 30-60 мин.

Термические способы дезинфекции

Термические способы - включают использование высоких температур, которые вызывают гибель микроорганизмов в результате коагуляции белка .

Обжигание и прокаливание - применяют для обеззараживания в бактериологической практике, а также в отдельных случаях на пищевых предприятиях для обработки металлических объектов.

Кипячение в течение 15-45 мин используют для обеззараживания воды, готовой пищи и др.

Кипящая вода (100 °С) - одно из самых простых и эффективных средств обеззараживания. Большинство вегетативных форм микроорганизмов погибают в ней в течение 1-2 мин. Этот способ широко применяется для обеззараживания посуды, инвентаря, оборудования.

Очень важно помнить, применяя такие физические методы дезинфекции как кипячение, что температура, при которой начинается кипение воды снижается по мере увеличения высоты над уровнем моря. А это значит, что при этом необходимо увеличивать время кипячения. Например, если вы кипятите на высоте 4 километров над уровнем моря, то вам потребуется минимум 20 минут для дезинфекции. Важно отметить и то, что кипячением нельзя достигнуть стерилизации.

Горячая вода (от 60 до 100 °С) - часто используется с растворенными моющими средствами при стирке и уборке. Многие патогенные вегетативные формы микроорганизмов не выдерживают нагревания при 80 °С свыше 2,5 мин, а большинство из них погибают при температуре 60-70 °С в течение 30 мин.

Пастеризация - прогревание пищевых продуктов при температуре 65-90 °С. Экспозиция зависит от температуры и колеблется от нескольких секунд до 30 мин. В этих условиях гибнут вегетативные формы микробов и остаются споры. Например, моментальная пастеризация проводится при 90 °С в течение 3 сек.

Водяной пар - при превращении в воду выделяет большую скрытую теплоту парообразования, обладает большой проникающей способностью и бактерицидным эффектом. Используется водяной пар для обработки фляг, цистерн, танков и т. п.

Горячий воздух применяют в воздушных стерилизаторах для обеззараживания посуды, столовых приборов, кондитерского инвентаря, инструментов. Горячий воздух по эффективности уступает пару, так как оказывает в основном поверхностное действие.

Глажение санитарной одежды, столовых скатертей, салфеток и др. белья горячим утюгом при температуре 200-250 ° С приводит к гибели вегетативных форм микробов и обеззараживанию тканей.

Сжигание - обеззараживание твердых отходов, опасной пищи, трупов животных больных сибирской язвой и т. д.

Холод . Установлено, что искусственное замораживание патогенных возбудителей до - 270 °С, т. е. до температуры, близкой к абсолютному нулю, не приводит к их гибели. Однако с течением времени количество микроорганизмов, находящихся в замороженном состоянии, снижается. Низкие температуры широко используются как консервирующее средство в пищевой промышленности, но в дезинфекционной практике холод не находит применения.

Лучистые способы дезинфекции

Лучистые способы - облучение различными бактерицидными лучами, действие ультразвука , токов ультравысокой частоты (УВЧ), а также сверхвысокочастотного облучения (СВЧ), радиоактивного излучения, высушивание и т. д., которые при определенных параметрах оказывают бактерицидное действие.

Солнечный свет, ультрафиолетовые лучи используют для снижения бактериальной обсемененности воздуха и различных поверхностей. Ультрафиолетовые лучи получают с помощью специальных бактерицидных ламп. Промышленность выпускает настенные, потолочные, стационарные, передвижные и комбинированные ультрафиолетовые установки различной мощности излучения, которые применяются в микробиологических лабораториях и на некоторых пищевых предприятиях (в кондитерском производстве, холодных цехах и т. д.).

Ультразвук. Под действием ультразвука происходит разрыв клеточной стенки микроорганизмов, приводящий к гибели клетки. Ультразвуком обрабатывают воду, фруктовые соки и др.

Высушивание. Многие патогенные микроорганизмы под влиянием длительного высушивания погибают. Скорость отмирания зависит от вида возбудителя.


Термический метод дезинфекции

Для проведения эффективной дезинфекции применяют термический метод дезинфекции.

Термический метод дезинфекции очень эффективен.

Известно, что при нагревании предметов до высокой температуры, на предметах погибают все микроорганизмы. Термический метод дезинфекции применяется для ускоренной дезинфекции различных металлических предметов. Их прокаливают пламенем от газовой горелки.

Применят для этого также небольшие тампоны, предварительно смоченные в спирте.

Таким образом, можно обработать металлические тазы, ножницы, различные щипцы и кусачки.

Открытый огонь, как термический метод дезинфекции , также используют для сжигания зараженных ненужных вещей. Это и бинты, разное тряпьё, мусор, бумага и прочее.

Хорошим дезинфицирующим средством являются ультрафиолетовые лучи (УФЛ), они обладают огромной бактерицидной способностью. Для этого существуют специальные ультрафиолетовые лампы.

Нужно помнить, что проводить обработку ультрафиолетовыми лампами нужно проводить строго по расписанию, и в то время, когда в помещении нет людей.

Если этого не придерживаться, то ультрафиолетовые лучи могут вызвать болезни (острый конъюнктивит) и ожоги кожных покрытий. Направление света от ультрафиолетовых ламп должно быть на стены или потолок.

Солнечные лучи также имеют ультрафиолетовый спектр излучения, во время попадания солнечных лучей на предметы, происходит гибель болезнетворных микробов.

Поэтому дезинфицировать, тканевые вещи больного человека, можно вывешивая их на улице напротив солнечного облучения.

Методы дезинфекции:

Существуют следующие методы дезинфекции

  • механические,
  • физические,
  • химические

Включают вытряхивание, выколачивание, обработку пылесосом, стирку и мытье, проветривание и вентиляцию помещений, фильтрацию воды, подметание.

Механические методы дезинфекции рассчитаны на уменьшение концентрации микроорганизмов на объектах. Учитывая тот факт, что для проявления инфекции имеет значение доза возбудителя, это мероприятие может быть в ряде случаев весьма эффективным.

Физические методы дезинфекции основаны на уничтожении микроорганизмов под воздействием физических факторов. К ним относятся сжигание, прокаливание, обжигание, кипячение, использование сухого горячего воздуха, солнечного света, радиоактивного излучения и др.

Физическое воздействие на микроорганизмы можно осуществлять также в комбинации с химическими методами в специальных газовых камерах. В зависимости от действующего вещества камеры делят на:

  • паровые;
  • пароформалиновые;
  • горяче-воздушные;
  • газовые.

Газовые камеры должны быть надежно герметизированы.

Камерная газовая дезинфекция в связи с высокой токсичностью для человека применяется редко (для обработки документов и антикварных вешен). Однако газовые камеры стали все шире использоваться для стерилизации инструментария и некоторых других предметов в центральных стерилизационных отделениях (ЦСО) стационаров.

Химические методы дезинфекции основаны на применении химических препаратов, которые оказывают на микроорганизмы бактерицидное, спороцидное, вирулецидное и фунгицидное воздействие.

Для дезинфекции используют препараты, различающиеся по механизму действия. Чаще всего используют окислители, галоидные препараты, четвертичные аммониевые соединения (ЧАС), спирты, альдегиды и яр.

Надо понимать, что дезинфекционные мероприятия имеют большое значение в борьбе с инфекционными заболеваниями, однако их эффект чаще всего проявляется в комплексе с другими проводимыми мерами.

В госпитальных условиях стерилизациоиные мероприятия, т. е. полное уничтожение возбудителей заболеваний на различных объектах (комплекс мер по асептике и антисептике), являются основными для предотвращения гнойно-септических инфекций.

Помимо термической обработки применялись спиртосодержащие дезинфектанты, которые обладали не только достаточно хорошей способностью к эффективному обеззараживанию, но и очень важной характеристикой - гипоаплергенностью. Для жестких газопроницаемых контактных линз (ЖГКЛ), имеющих некоторые особые свойства, потребовался более тщательный уход.

Все методы дезинфекции контактных линз делятся на термические (например, обработка линзы в устойчивой к температурным воздействиям емкости на водяной бане при температуре 80 °С) и химические (активное вещество и нейтрализатор или многокомпонентные рецептуры). У каждого из них свои преимущества и недостатки: термические методы просты и экономичны, но существенно влияют на полимер и характеристики линзы; химические методы эффективны в отношении не всех микроорганизмов и могут вызывать токсикоаплергические реакции со стороны тканей поверхности глаза при длительном применении. Ведущие производители КЛ и фармакологические компании разработали достаточно много средств для ухода за линзами. К таким средствам относятся:

  • многофункциональные растворы (МФР);
  • одно- и двухступенчатые пероксидные системы очистки;
  • контейнеры для хранения;
  • ферментные очистители;
  • растворы для ополаскивания линз;
  • растворы для замачивания (химические дезинфектанты, в основном предназначенные для ЖГКЛ);
  • смазывающие капли;
  • увлажняющие капли.

В каждом конкретном случае выбор средства определяется с учетом не только типа линз и режима ношения, но также и индивидуальных особенностей пациента. Сегодня, когда носителям МКЛ хорошо известна идея частой плановой замены линз, можно предположить, что средства для ухода за линзами становятся побочным продуктом индустрии контактной коррекции зрения, и по прогнозам аналитиков рынка оптической индустрии медленно, но неуклонно снижается потребность в них. Однако этот естественный процесс оказался согласно анализу продаж МФР в последние годы чрезвычайно замедленным и ни в коей мере не умаляет актуальность основных требований к дезинфекции и соблюдению правил ухода за КЛ. Осведомленность об основных компонентах МФР обеспечивает специалисту возможность анализировать и прогнозировать пригодность каждой дезинфицирующей системы для определенного пациента.

Этапы ухода за контактными линзами

В технологическом регламенте процесса производства КЛ предусмотрена стандартная процедура стерилизации перед упаковкой в блистеры. Обычно стерилизация осуществляется в автоклаве при температуре 115-118 °С на протяжении 30 мин. В настоящее время все чаще используется стерилизация МКЛ физическим способом, в частности при помощи коротковолнового УФ-излучения.

Основные этапы ухода за линзами:

  • удаление загрязнений и отложений;
  • ополаскивание;
  • дезинфекция;
  • увлажнение;
  • хранение.

Удаление загрязнений и отложений

При ношении на поверхности КЛ могут образовываться отложения компонентов слезы, органических и неорганических субстанций, попавших в СП. Известны следующие виды отложений:

  • протеиновые;
  • липидные;
  • гелеобразные;
  • кальцификаты;
  • неорганические;
  • отложения солей железа;
  • прочие.

Удаление отложений и загрязнений, образовавшихся на поверхности КЛ, представляет собой первый этап обработки. Для механической очистки линзу обычно располагают на ладони, поверхность линзы омывают раствором и подушечкой ладонной поверхности концевой фаланги другой руки совершают легкие круговые движения по поверхности линзы. Для орошения линзы чаще используют МФР. Ранее применялись физиологический раствор или специальные средства, в состав которых входил очиститель (полоксамер 407, изо-пропиловый спирт или микрочастицы, оказывающие абразивное действие); эти препараты чаще используются для обработки ЖКЛ. Из СП протеины могут проникать в матрицу полимера МКЛ и адсорбироваться на их поверхности. С течением времени протеиновые отложения образуют крепкие связи с поверхностью линзы и переходят в денатурированное состояние. Удаление протеиновых отложений возможно до тех пор, пока они не перешли в денатурированное состояние, когда ферменты уже не способны разрушать молекулярные связи. Именно поэтому необходимо регулярно проводить очистку КЛ. Следовательно, снижаются комфортность ношения линз, качество зрения и общая удовлетворенность пациента средством коррекции зрения; способны развиваться такие осложнения, как гиперемия конъюнктивы и/или гигантоклеточный папиллярный конъюнктивит. Протеиновые отложения чаще встречаются на поверхности гидрогелевых КЛ и реже - на силикон-гидрогелевых линзах. Первоначально для борьбы с протеиновыми отложениями применяли специальные способы. Таблетки для удаления белка чаще всего содержат субтилизинпротеиназу, разрушающую белки, и позволяют разрушить молекулярные связи, после чего белковые отложения смываются с поверхности линзы. Ферментная таблетка растворяется в МФР, затем линза помещается в эту среду на 10-15 мин. Затем нужно извлечь линзу, тщательно промыть в чистом МФР и снова опустить в дезинфицирующий раствор еще на 4-6 ч. При использовании КЛ плановой замены нет необходимости проводить данную процедуру, поскольку МФР вполне справляются с поверхностной очисткой. В состав МФР добавляют компоненты, содействующие удалению протеинов, например этилендиаминтетраацетат (ЭДТА). Благодаря этим химическим агентам отдельные препараты для удаления протеинов используются все реже и реже. Многие пациенты часто пренебрегают этапом механической очистки. Отчасти это связано с тем, что в свое время выросла популярность растворов с пометкой No rub, применение которых не предполагает механической очистки линз. Производители изменили состав растворов таким образом, чтобы микрофлору можно было уничтожить и без механической очистки. Однако специалисты стали выражать сомнения относительно их безопасности, особенно в тех случаях, когда используются силикон-гидрогелевые МКЛ, на которых в больших объемах образуются липидные, а не протеиновые отложения. В настоящее время длительная полемика по поводу целесообразности проведения механической очистки закончилась однозначным решением экспертных органов: механическая обработка линзы необходима.

Ополаскивание

Ополаскивание линзы свежим раствором является необходимым этапом процедуры ухода за линзами, его обязательно проводят после механической очистки. Во время очистки и последующего ополаскивания с поверхности линзы смывается до 90% микроорганизмов. Очистка в сочетании с ополаскиванием особенно важна при подозрении на инфицирование линзы цистами или трофозонтами акантамебы. При ополаскивании удаляются субстанции, нестойко адсорбировавшиеся к поверхности контактных линз, остатки очистителя, избыток которого в полимерном материале линз может привести к ощущению дискомфорта при их надевании. Для достижения требуемого эффекта необходимо потратить больше времени, чем отводят на эту процедуру подавляющее число пациентов.

Методы дезинфекции контактных линз

Глаз обладает собственной защитной системой, которая подавляет рост патогенных микроорганизмов и удаляет различные инородные тела.

Этому содействуют следующие факторы:

  • постоянная температура тканей глазной поверхности;
  • вымывающее действие тока слезы;
  • наличие бактерицидных компонентов в составе слезы;
  • регулярное моргание (каждые 5-6 с);
  • целостность эпителия роговицы.

При ношении КЛ многие из перечисленных факторов нарушаются. При дезинфекции происходит уничтожение зрелых форм микроорганизмов, но не всегда погибают споровые формы, вот почему дезинфекция - важнейший этап ухода за жесткими и мягкими КЛ. В настоящее время действует стандарт, получивший обозначение ISO 14729. В этом документе определены требования к дезинфицирующей активности препарата по отношению к трем видам бактерий и двум видам грибов. Дезинфицирующий раствор также должен обеспечивать отсутствие микрофлоры при хранении линз. Вещества, используемые для дезинфекции, обычно выступают и в роли консервантов, которые предупреждают рост числа микроорганизмов в растворе, хранящемся в открытой упаковке. Известны два способа дезинфекции МКЛ: термический и химический.

Термическая дезинфекция

Термическая дезинфекция - первый и достаточно надежный способ обработки МКЛ, который не имел альтернативы до середины 1970-х гг. Высокая температура (около 80 °С) приводит к гибели микроорганизмов, она вызывает денатурацию компонентов их клетки и разрушает ДНК. Средой для термического нагрева является изотонический солевой раствор для хранения КЛ. Процедуру также можно проводить в специальном термостате с системой автоматического выключения.

Преимущества:

  • эффективное действие высоких температур выражается в том, что погибают практически все микроорганизмы, за исключением цист акантамебы;
  • экономичный способ ухода за КЛ.

Недостатки:

  • процент содержания воды уменьшается, МКЛ подвергаются дегидратации, поэтому нельзя проводить термическую обработку линз со средним и высоким содержанием влаги;
  • белковые отложения на поверхности КЛ подвергаются денатурации, это становится причиной образования нерастворимых комплексов чужеродного организму белка и провоцирует возникновение аллергических реакций;
  • внешний вид МКЛ изменяется: появляются желтизна и нерастворимые налеты на поверхности;
  • пациент должен проявлять внимательность и не жалеть времени на обработку МКЛ.

Поскольку у термической дезинфекции МКЛ недостатков значительно больше, чем достоинств, в настоящее время она применяется очень редко. Силикон-гидрогелевые КЛ не рекомендуется подвергать термической обработке.

Химическая дезинфекция

Соответствующие системы для ухода за линзами появились и получили признание в 1980-х гг. В процессе дезинфекции происходит химическое повреждение микроорганизма. Для этих целей выбираются специфические дезинфицирующие агенты со слабыми токсическими свойствами и избирательным воздействием на белки и клеточные мембраны микроорганизмов. В качестве дезинфицирующих агентов используют:

  • 3% перекись водорода;
  • соединения четвертичного аммония NH 4 + (в составе МФР);
  • бигуаниды (в составе МФР);
  • ртутьорганические соединения.

Пероксидные системы очистки

«Золотым стандартом» химической дезинфекции МКЛ считается использование 3% раствора H 2 O 2 . По химической природе это достаточно токсичное вещество, поэтому после воздействия на линзу спустя некоторое время следует удалить раствор. Для того чтобы избавиться от остатков действующего вещества, используется метод нейтрализации с помощью платины или каталазы. Его суть заключается в дезактивации этого соединения и его химическом разложении на воду и кислород.

Одноэтапный способ дезинфекции МКЛ предусматривает применение специальных, промышленно выпускаемых систем, которые содержат 3% водный раствор H 2 O 2 и снабжены специальным контейнером с нейтрализатором. В специальный контейнер наливается 3% раствор вещества, пока он не достигнет метки. Внутри контейнера находится платиновый элемент. КЛ помещаются в чашечки линзодержателя, который опускается в стаканчик контейнера. Крышка контейнера плотно закрывается, однако в ней есть специальное отверстие для выхода кислорода, образующегося в ходе химической реакции нейтрализации действующего дезинфектанта. В таком состоянии КЛ остаются в контейнере на 6 ч. Этого времени достаточно для дезинфекции и полного разложения H 2 O 2 . Существуют и другие одноэтапные пероксидные системы, где катализатором является каталаза.

Двухэтапный способ дезинфекции предполагает использование определенных компонентов:

  • 3,0% водного раствора H 2 O 2 ;
  • 2,5% водного раствора тиосульфата натрия;
  • 0,9% изотонического раствора.

Сначала линзы помещаются в емкость с пероксидом водорода на 20 мин, затем в сосуд с раствором тиосульфата натрия на 20 мин, далее в контейнер с изотоническим раствором хлорида натрия на 5-6 ч. Можно утверждать следующее: чем проще и удобнее система по уходу, тем выше вероятность того, что пациент будет правильно ухаживать за линзами, не нарушая основных требований, изложенных в аннотации к раствору, или рекомендаций врача. Сложность соблюдения хронологии действий при дезинфекции линз с помощью многоступенчатых пероксидных систем импонирует не всем пациентам, однако когда были разработаны более удобные одноступенчатые системы, у них обнаружилась более низкая бактерицидная эффективность, поскольку сократилось время нахождения линзы в растворе H 2 O 2 . Рассматриваемые средства могут влиять на параметры КЛ, которые чувствительны к изменениям рН. Например, пребывание в таком растворе может вызывать уменьшение диаметра и радиуса базовой кривизны задней поверхности МКЛ из ионных материалов. Такие изменения обратимы, но для этого потребуется до 60 мин после нейтрализации H 2 O 2 . Если надевать линзы после нейтрализации в течение 20 мин, то примерно в 20% случаев пациенты будут ощущать дискомфорт. Для того чтобы посадка линзы стала обычной, потребуется примерно час.

Недостатки:

  • пациент должен быть очень внимательным при использовании пероксидной системы;
  • нельзя закапывать H 2 O 2 в конъюнктивальную полость и промывать ею КЛ;
  • если применяется средство с истекшим сроком годности, может произойти неполная нейтрализация H 2 O 2 ;
  • остатки H 2 O 2 на КЛ способны вызвать жжение или небольшую токсическую реакцию;
  • требуется определенное время для завершения процесса нейтрализации H 2 O 2 ;
  • не все системы имеют индикатор, указывающий на окончание нейтрализации.

Увлажнение

Увлажняющие растворы первоначально были разработаны для улучшения комфортности ношения ЖКЛ. Основные цели применения таких растворов:

  • минимизация дискомфорта;
  • содействие равномерному распределению слезы под линзой;
  • создание пленки между поверхностью линзы и кожей пальца при надевании линзы для снижения вероятности ее загрязнения.

Эффект, достигаемый с помощью увлажняющего раствора, отличается кратковременностью: он проходит примерно через 15 мин при ношении ЖКЛ. Появление силикон-гидрогелевых МКЛ привело к тому, что в состав МФР стали включать увлажняющие агенты. Поверхностно активные вещества добавляют в МФР в целях ускорения очистки поверхности линзы от загрязнений и отложений, а также для повышения комфортности линзы при ношении за счет улучшения ее смачиваемости.

Хранение

Хранение - один из существенных компонентов ухода за линзами, при этом важны характеристики раствора, который не только определяет качество очистки, дезинфекции и увлажнения, но и влияет на физико-химические параметры линзы. Большое значение в процессе дезинфекции КЛ при хранении имеет контейнер, а точнее материал и состояние поверхности его резервуаров.

Характеристики растворов и их влияние на контактные линзы

Поскольку средства для ухода за КЛ контактируют с тканями глаза, необходимо, чтобы они были сбалансированы по своим свойствам, не представляли опасности для здоровья пациента и содействовали комфортности ношения линз. Для специалиста очень важно иметь представление об основных свойствах растворов, тогда, в случае возникновения проблем у пациента, врач будет понимать, какой альтернативный раствор можно назначить. Свойства и эффективность растворов со временем меняются. Среднее значение осмолярности слезы человека составляет около 325 ммоль/кг и варьирует в пределах 330-350 моль/кг. Аналогичное значение данного показателя имеет 0,9% раствор хлорида натрия. Средства для ухода за КЛ должны обладать такой же осмолярностью. Если у раствора значение данного показателя выше, чем у слезы, комфорт при использовании линз снижается и может развиться гиперемия конъюнктивы. Дискомфорт и гиперемия являются ранними признаками, предшествующими повреждению роговицы. С точки зрения осмолярности вода является гипотоническим раствором. В воде КЛ набухают, что приводит к разрыву полимерных цепей в материале, к стойкой деформации линзы и потере ее свойств. МКЛ нельзя хранить в воде. Следует заметить, что поведение линз в дистиллированной воде зависит от природы полимера, из которого они изготовлены. У МКЛ из неионных материалов набухание в воде выражено очень слабо. Наоборот, те, что изготовлены из ионных материалов, могут набухать весьма значительно. Однако при длительной экспозиции в воде, когда система «полимер - вода» приходит в равновесное состояние, размеры МКЛ из ионных материалов оказываются даже меньше исходных. Во избежание подобных трансформаций для хранения и дезинфекции МКЛ следует использовать растворы, которые содержат буферные добавки, обеспечивающие поддержание рН на необходимом уровне. Для достижения комфортности ношения МКЛ нужно, чтобы значение рН раствора находилось в пределах 6,60-7,80 и было как можно ближе к значению рН слезы (7,10±0,16). В человеческом глазу имеются буферные системы, способные возвращать рН слезы к нормальному значению. Слеза может смешиваться с раствором, рН которого находится вне указанного интервала. Однако возникающий при этом дискомфорт свидетельствует о том, что лучше использовать раствор со значением рН, соответствующим аналогичному показателю слезы. Значения рН варьируют у разных марок растворов. Традиционно используемые в растворах буферные вещества - бораты и фосфаты. Очень кислые или щелочные среды также способны влиять на состояние химических связей в полимере, вызывая изменение степени ионизации функциональных групп или гидролиз сложноэфирных групп, входящих в состав макромолекул. В кислых растворах МКЛ из ионных материалов коллапсируют вследствие превращения карбоксилатанионов в слабо ионизированные карбоксильные группы. В щелочных растворах сложноэфирные группы 2-гидрокси-этилметакрилата (основного мономера, входящего в состав большинства полимеров для МКЛ) подвергаются гидролизу, и образуются ионные функциональные группы, вызывающие дополнительное набухание гидрогеля. Этот эффект можно использовать для получения КЛ большого диаметра и их последующего применения в терапевтических целях.

Дезинфицирующие агенты

В связи с тем, что после нарушения герметичной упаковки любой раствор становится уязвимым для заражения микрофлорой, в средства для ухода за линзами (если упаковка не одноразовая) добавляют консерванты. Их главная задача - уничтожение микроорганизмов, попадающих в раствор. Химические вещества, которые применяются в качестве пассивных консервантов, можно использовать и в дезинфицирующих растворах. Мишени для воздействия большинства дезинфицирующих агентов - мембраны микроорганизмов. К сожалению, они не обладают способностью к селективному воздействию и одинаково отрицательно влияют и на мембраны клеток эпителия. Вязкость регулируется с помощью специальных агентов, которые позволяют контролировать стабильность раствора. Чаще всего с этой целью используется гидроксипропилметилцеллюлоза. Ее добавляют в увлажняющие капли для увеличения времени контакта увлажняющего агента с линзой, а также в препараты искусственной слезы для повышения продолжительности достигаемого эффекта. Таким образом, МКЛ следует хранить в изотоническом растворе. Для сохранения физических свойств МКЛ, находящейся не на глазу, используются солевые растворы, соответствующие слезной жидкости по ионному составу.

Состав растворов для хранения линз

Солевые растворы применяются в следующих случаях:

  • хранение КЛ;
  • термическая дезинфекция;
  • ополаскивание после очистки и дезинфекции КЛ;
  • растворение ферментных препаратов в виде таблеток;
  • увлажнение и промывка глаз.

В настоящее время использование солевых растворов для хранения линз ограничено, так как основными средствами, предназначенными для хранения и дезинфекции КЛ, являются МФР.

Многофункциональные растворы

МФР значительно облегчают уход за КЛ. По своему составу они во многом близки солевым растворам для хранения линз, но спектр их функций шире. Кроме того, они используются для дезинфекции, поверхностной очистки и увлажнения КЛ.

Консерванты - вещества, обладающие антибактериальными или бактериостатическими свойствами. К ним относятся:

  • сорбиновая кислота;
  • аммониевые соединения (хлорид бензалкония, поликватерниум-1);
  • бигуаниды (хлоргексидин, полигексаметиленбигуанид, полиаминопропилбигуанид);
  • ртутьорганические соединения (тимеросал).

Сорбиновая кислота - слабый консервант, антибактериальные свойства которого требуют усиления, например с помощью эти-лендиаминтетраацетата (ЭДТА), который обладает синергизмом в сочетании с разными консервирующими веществами. Он менее токсичен для глаза по сравнению с бигуанидами.

Поликватерниум-1 (поликвад) - аммониевое соединение с длинной полимерной цепью (22,5 нм). Поскольку размер поры гидрогеля около 3,0-5,0 нм, полимерная молекула почти не проникает в структуру материала КЛ, соответственно, консервант не накапливается в нем и в дальнейшем не оказывает токсического воздействия на роговицу и другие ткани глаза. Благодаря значительному размеру молекулы поликватерниума-1, с одной стороны, обеспечивается ее большая поверхностная активность и возможность применения низкой концентрации этого вещества в составе МФР, а с другой - возникает препятствие при взаимодействии с некоторыми микроорганизмами. При применении таких МФР рекомендуется обрабатывать КЛ не менее 6 ч.

Хлоргексидин - один из первых бигуанидов. Вследствие малых размеров реакционноспособных групп действие хлоргексидина ограничивается наружной частью клетки. К его недостаткам относят ограниченное воздействие на грибки, из-за чего этот бигуанид раньше часто использовался в сочетании с тимеросалом. В некоторых случаях частое применение хлоргексидина вызывает раздражение глаза.

Полигексаметиленбигуанид (полигексанид) входит в число самых распространенных бигуанидов, используемых в качестве консервантов в солевых и МФР.

Полиаминопропилбигуанид даймед - высокомолекулярное полимерное соединение, которое содержит большое количество бигуанидных групп. Молекула размером около 15 нм примерно в 2-3 раза больше пор КЛ. Ее структура идентична фосфолипидам плазматической мембраны бактериальной клетки, с которыми она взаимодействует. Это приводит к повреждению их мембраны и гибели клеток. Вещество особенно активно в отношении грамотрицательных бактерий.

Тимеросал - органическое соединение ртути, которое действует путем связывания сульфидгидридных групп специфических протеинов и ферментов микроорганизмов, вызывая их гибель. В низких концентрациях тимеросал нетоксичен. Для более эффективного воздействия на микроорганизмы он используется в сочетании с хлоргексидином. Однако такое соединение отличается большей токсичностью и провоцирует гиперчувствительность. Применение средств с тимеросалом приводит к развитию ощущения сухости глаз у некоторых пациентов. Минимальное время дезинфекции МКЛ в МФР, содержащем консервант из группы бигуанидов, составляет 4 ч; если в качестве консерванта задействовано аммониевое соединение - 6 ч.

Поверхностно-активные вещества (ПАВ) - амфифильные химические вещества. Если гидрофильная часть молекулы представляет собой катион или анион, то ПАВ является ионным. К ионным ПАВ относятся часто применяемые хлорид бензалкония и лаурилсульфат натрия. Если гидрофильная часть ПАВ представляет собой полярную группу (обычно это несколько звеньев этиленоксида), то ПАВ оказывается неионным. Примерами неионных ПАВ являются различные вещества из группы плюроников. Неионные ПАВ существуют в виде нейтральных молекул, поэтому они менее токсичны и чаще используются в МФР. Моющее действие ПАВ зависит от комплекса свойств их растворов, как поверхностных, так и объемных (мицеллообразование, солюбилизация). Как правило, ПАВ предназначены для того, чтобы удалять с поверхности МКЛ гидрофобные вещества (липиды и некоторые белки). ПАВ сорбируются на поверхности МКЛ вследствие гидрофобных взаимодействий углеводородных радикалов и загрязняющих гидрофобных органических веществ (например, липидов). Молекулы ПАВ обволакивают загрязняющие вещества, преобразуя их в микрокапли, которые при легком механическом воздействии удаляются с поверхности МКЛ. Благодаря присутствию в растворе мицелл ПАВ происходит дальнейшее эмульгирование микрокапель и их стабилизация (углеводородные радикалы находятся в объеме микрокапель, а полярные головки - на поверхности). ПАВ эффективны в отношении липидных отложений и слабосвязанного белка, они способствуют удалению и неорганических отложений.

Гиалуроновая кислота - естественное увлажняющее вещество нашего организма, содержится во многих тканях человека: кожа, синовиальная жидкость суставов, роговица и ее эпителий, конъюнктива, слезная пленка, стекловидное тело. Гиалуроновая кислота используется в косметологии, травматологии и ортопедии,витреоретинальной и катарактальной глазной хирургии, при лечении синдрома сухого глаза. Гиалуронат натрия образует рыхлую сеть на поверхности контактной линзы, создавая равномерную увлажняющую «подушку», обладает самой высокой гигроскопичностью: удерживает огромное количество воды на поверхности линзы. Использование гиалуроната снижает испарение воды с поверхности линзы, сохраняет активность в сухой атмосфере и под воздействием UV, стабилизирует слезную пленку и белки слезы, уменьшает трение и защищает эпителий роговицы.

Контейнер

Для хранения КЛ используются контейнеры, изготовленные из полимерных материалов. Современные МФР содержат высокомолекулярные увлажняющие компоненты, частицы которых остаются на стенках контейнера, что повышает вероятность бактериальной обсемененности последнего.

В качестве примера следует назвать несколько видов бактерий и указать, какое негативное влияние они оказывают на состояние контейнеров и линз:

  • S. aureus - очень распространенный микроорганизм, живущий на коже; часто является причиной глазных инфекций, встречается в 70% контаминированных контейнеров;
  • P. aeruginosa - самая частая причина возникновения микробных кератитов, размножается в водной среде;
  • Serratia marcescens - очень распространенный микроорганизм, встречается на коже, в капельках воды на различных поверхностях, часто является причиной глазных инфекций.

Некоторые производители предлагают антимикробные контейнеры, в материал которых встроены ионы серебра. Они обладают бактерицидным и бактериостатическим эффектом.

Общая тенденция совершенствования средств по уходу за МКЛ: уменьшение токсичности, увеличение бактерицидной активности и повышение комфорта при использовании МКЛ.

Ежегодно в качестве приложения к журналу «Вестник оптометрии» издается справочное пособие по средствам по уходу за МКЛ, в котором перечислены все МФР, допущенные к применению на территории РФ, в виде таблиц отражены их химический состав и особенности использования.

Область техники.

Изобретение относится к области термического обеззараживания отходов и может быть использовано в различных отраслях народного хозяйства, связанных с дезинфекцией крупнотоннажных отходов биомассы, в частности навоза и помета, с обеззараживанием почв, содержащих ботулотоксины, яды столбняка, споры и семена сорных растений, с обеззараживанием и переработкой погибших животных, обеззараживанием и переработкой скотомогильников, медицинских, муниципальных и других отходов.

Предпосылка создания изобретения, аналоги изобретения. Одной из основных проблем в животноводстве сегодня является увеличение количества отходов от каждой животноводческой фермы за счет интенсивного ведения хозяйства. Интенсивное разведение животных, в частности свиней, приводит к образованию огромного количества навоза, представляющего экологическую проблему. Тенденция к интенсификации животноводства, несомненно, будет продолжаться и в будущем.

По данным Всероссийского научно-исследовательского, конструкторского и проектно-технологического института органических удобрений и торфа (ВНИПТИОУ ежедневно в Российской Федерации производится более 450 тыс. тонн помета, навоза и стоков и сегодня в РФ более 2 млн. га земли занято под хранение навоза. То есть отходами животноводства покрыта площадь, равная почти половине территории Московской области. Эти отходы содержат семена сорных растений, распространяют неприятные запахи и могут быть источниками заразных болезней.

Увеличение количества животных на одном производственном объекте, несмотря на успехи ветеринарии, чревато вспышками эпизоотий, приводящих к их массовому падежу (африканская чума свиней, птичий грипп и др.). Самыми опасными бациллами являются:

Ботулотоксин - нейротоксин белковой природы, вырабатываемый бактериями. Сильнейший яд из известных науке органических токсинов и веществ в целом. Образуется в анаэробных условиях, например, при домашнем консервировании продуктов при отсутствии необходимых мероприятий по стерилизации сырья. Летальная доза составляет около 0,001 мг/кг веса человека. Не имеет вкуса, запаха и цвета. Разрушается при кипячении в течение 5-10 минут. Является бактериологическим оружием;

Сибирская язва - острое инфекционное заболевание животных и человека, вызываемое бациллой Bacillus anthracis. Возбудитель сибирской язвы образует споры, которые способны годами сохраняться в почве и выдерживать кипячение до 1 ч. Для человека основной источник инфекции - больные сибирской язвой животные, Заражение может наступить при уходе за ними, вынужденном убое и разделке туши, при употреблении в пищу инфицированных продуктов животноводства (мясо, молоко) и контакте с ними (шерсть, кожа, щетина и т.д.), а также через инфицированные почву и воду. Может быть профессиональной болезнью (например, животноводов). Заражение кожной формой происходит через поврежденные кожные покровы, а также при укусах насекомыми (слепни, мухи-жигалки и др.). Известна с глубокой древности. Часто ее эпизоотии вызывали гибель огромной массы скота. В России в 1901-1914 гг. заболело свыше 660 тысяч животных (без северных оленей), из которых 84% пало. Сибирская язва регистрируется на всех континентах, особенно распространена в Восточной Африке и Западной Азии. В 1972 зарегистрирована в 99 странах. В естественных условиях заражаются грызуны. Высокая устойчивость спор возбудителя во внешней среде ведет к тому, что зараженные участки почвы десятки лет опасны для травоядных. Выносу спор из глубины почвы могут способствовать разливы рек, распашка и земляные работы в местах захоронения трупов животных. Основной путь заражения животных - с кормом и водой, чаще на пастбище. Возможно проникновение возбудителя через поврежденную кожу, слизистую оболочку рта, конъюнктиву.

Африкáнская чумá свиней (Pestis africana suum). С 2007 года продолжается АЧС распространяется среди диких кабанов и домашних свиней на территории европейской части России. Под угрозой развития эпизоотии находятся Беларусь и Украина. Суммарно в России было зафиксировано более 500 вспышек заболевания, экономические потери превысили за последние 10 лет 30 млрд рублей, уничтожено порядка миллиона животных.

Важнейшей эпизоотологической особенностью («коварством») африканской чумы свиней является чрезвычайно быстрое изменение форм течения инфекции среди домашних свиней от острого со 100% летальностью до хронического и бессимптомного носительства и непредсказуемого распространения.

Экономический ущерб, наносимый африканской чумой свиней, складывается из прямых потерь по радикальной ликвидации болезни, ограничений в международной торговле и измеряется десятками миллионов долларов. В частности, при ликвидации инфекции путем тотальной депопуляции свиней потери составили на острове Мальта $29,5 млн (1978), в Доминиканской Республике- около $60 млн (1978-79). Вследствие первичной вспышки инфекции в Кот-д′Ивуар (1996) убито 25% популяции свиней с прямым и косвенным ущербом в сумме от $13 до $32 млн. Угроза африканской чумы свиней - основной фактор, сдерживающий развитие свиноводства в Африке; до последнего времени на континенте насчитывается немногим более 1% мировой популяции свиней.

Эффективных средств профилактики африканской чумы свиней до настоящего времени не разработано, лечение запрещено. Вакцин и прививок против АЧС не существует. В случае появления очага инфекции практикуется тотальное уничтожение больного свинопоголовья бескровным методом, а также ликвидация всех свиней в очаге и радиусе 20 км от него.

В случае возникновения африканской чумы на неблагополучное хозяйство накладывается карантин. Всех свиней в данном очаге инфекции уничтожают бескровным способом. Трупы свиней, навоз, остатки корма, малоценные предметы ухода сжигают (термический метод обезвреживания). Карантин снимают через 6 месяцев с момента последнего случая падежа, а разведение свиней в неблагополучном пункте разрешается не ранее, чем через год после снятия карантина.

Существует также естественный падеж животных, который пропорционален количеству находящихся на откорме животных и птиц. Остается важной проблема новых скотомогильников, которые являются потенциальными источниками заражения окружающей среды.

Существуют старые скотомогильники, содержащие, например, споры сибирской язвы, которые десятилетиями могут сохраняться в почве и по существу могут являться бомбами замедленного действия.

Крупнотоннажные отходы от интенсивного ведения сельского хозяйства требуют на современном этапе развития сельского хозяйства проведения своевременных соответствующих интенсивных мероприятий по обезвреживанию возможных источников биологического заражения окружающей среды.

С другой стороны, при соответствующей переработке крупнотоннажные отходы сельского хозяйства и пищевой промышленности могут быть ценным сырьем для получения органоминеральных удобрений и кормов для животных. Обеззараживание почвы позволяет избавляться от сорняков и источников болезней растений, сохраняя в ней минеральные удобрения, и восстанавливать ее первоначальные свойства.

Однако известные в настоящее время технологии обращения с такого рода крупнотоннажными отходами (сырьем для переработки в товарные продукты) отстают от современных потребностей.

Одними из основных видов обеззараживания являются стерилизация и дезинфекция.

Под стерилизацией понимается полное освобождение различных предметов, пищевых продуктов от живых микроорганизмов. Наиболее распространенные в настоящее время методы стерилизации - действие высоких температур, а для жидкостей - фильтрация, в результате которой клетки микроорганизмов задерживаются на фильтрах.

Вегетативные клетки большинства бактерий, дрожжей и микроскопических грибов погибают при 50-70°C в течение 30 минут, тогда как споры ряда бактерий выдерживают продолжительное кипячение. Этим объясняется применение высоких температур при стерилизации.

Простейший способ стерилизации - обжигание металлических и стеклянных предметов в пламени горелки. Стерилизацию сухим жаром проводят в сушильных шкафах при 160-165°C в течение 2 часов. Таким методом стерилизуют лабораторную посуду, металлические предметы, не портящиеся при нагревании вещества и т.п.

Стерилизацию водяным паром под давление производят в автоклавах. Питательные среды для микроорганизмов обычно стерилизуют при давлении 0,4 МПа и температуре 120°C в течение 20-30 минут. Хирургические инструменты, перевязочные и шовные материалы, различные консервы в пищевой промышленности стерилизуют обычно при атмосферном давлении в течение 30 минут. Стерилизация почвы возможна, например, при давлении 0,2 МПа и температуре 130°C в течение 2 часов.

Некоторые жидкости и растворы нельзя стерилизовать при высоких температурах, так как при этом происходит их испарение или инактивация витаминов и других биологически активных соединений, разложение лекарственных веществ, карамелизация сахаров, денатурация белков и т.п. В этих случаях осуществляют «холодную» стерилизацию:

Фильтрацию жидкости через мелкопористые бактериальные фильтры;

Обработку газами пластмасс, электронной аппаратуры (этилен, СО 2 , бромистый метил и т.п.);

Лучевую (ионизирующее излучение в дозах 3-10 млн. рад);

Ультрафиолетовым излучением (обработка помещений).

Стерильность объектов доказывается полным отсутствием в них живых организмов. Для этого производят посевы в жидкие или на плотные богатые питательными веществами среды, чтобы обеспечить прорастание поврежденных, но не убитых клеток.

Дезинфекция - обеззараживание, мероприятие, имеющее целью уничтожение микроорганизмов - возбудителей заразных болезней - во всей окружающей обстановке и на всех находящихся в ней предметах. Особую важность дезинфекция имеет в сельском хозяйстве для предупреждения возникновения в хозяйстве заразных заболеваний.

Дезинфекция проводится при помощи различных средств:

Механических (очистка помещений механическим путем);

Физических (солнечным светом, высушиванием, кипячением, сжиганием);

Химическим (хлорная известь, сулема, хлор, озон и др.);

Биологическим (обеззараживание навоза посредством укладывания в особые кучи для создания в них условий самосогревания).

Приведенный выше краткий обзор и анализ широкоизвестных методов обеззараживания показывает, что практически единственным универсальным методом гарантированного обеззараживания сырья является термический метод, там, где его можно применять. Нагрев до температур 120-200°C приводит к гибели всех известных опасных микроорганизмов и сорняков, а также к разрушению ядов органического происхождения.

Наряду со стерилизацией и дезинфекцией в настоящее время особое место в решении проблем обеззараживания термическим методом играет кардинальный метод решения проблем уничтожения микроорганизмов путем сжигания органической части отходов в специальном оборудовании, имеющем функции печи. Это оборудование называется инсинератором (его еще называют «сжигатель», крематор), технология - инсинерация. Главным его свойством является уничтожение отходов воздействием очень высоких температур, от 800 до 1300°C. В сельском хозяйстве с целью обеззараживания он применяется в основном для уничтожения погибших от заразных болезней животных.

Однако этот метод является достаточно энергозатратным для уничтожения крупнотоннажных отходов (скажем, крупная свиноферма производит более 3000 тонн жидких отходов в сутки, испарение 1 тонны воды требует более 1 МВт*ч энергии, т.е. на проведение обеззараживания жидкого навоза нужно тратить примерно 3 млн. кВт*ч энергии в сутки). Кроме того, работа инсинераторов сама создает экологические проблемы из-за газовых выбросов продуктов сгорания.

Прототип. Из описанных в литературе технологий обеззараживания отходов наиболее близкой к настоящему изобретению является общеизвестная технология термического обеззараживания сырья в автоклавах при повышенных давлениях воды и водяного пара. Согласно данной технологии сырье сначала измельчают, чтобы добиться более быстрого прогрева кусков сырья во всем объеме, затем его подают в термическую камеру, называемую автоклавом или дигестором, герметизируют эту камеру, нагревают сырье подачей острого пара или испарением находящейся в автоклаве воды до температур сырья 120-150°C, выдерживают камеру при таких условиях нескольких десятков минут, затем охлаждают, разгерметизируют, удаляют стерилизованный материал и при необходимости повторяют цикл с новой порцией сырья.

Повышенные давления воды и пара позволяют без сушки достигать высоких температур во всем объеме обрабатываемого материала, гарантирующих его полную стерилизацию от всех типов микроорганизмов за ограниченное время.

Однако производительность указанной технологии невысока, что делает ее малоприменимой к переработке больших количеств отходов. Кроме того, использование данной технологии требует затрат больших количеств энергии на нагрев до температур стерилизации.

Цель изобретения. Целью настоящего изобретения является повышение производительности термической технологии обеззараживания отходов и снижение энергетических затрат на ее осуществление.

Для достижения указанной цели в известном способе термического обеззараживания, включающего в себя измельчение сырья, подачу сырья в нагреваемую термическую камеру, нагрев сырья и выдержку сырья в термической камере до обеспечения стерилизации указанного выше сырья, охлаждение и последующее извлечение из термической камеры обеззараженных продуктов, измельченное сырье смешивают с водой до создания пульпы текучей консистенции, полученную пульпу непрерывно подают насосом через рекуперативный теплообменник в нагреваемую проточную термическую камеру, где установленные температура и выдержка обеспечивают обеззараживание сырья, при этом насос обеспечивает давление пульпы в указанном выше теплообменнике и термической камере выше давления насыщенных паров воды при температурах в указанных теплообменнике и термической камере, охлаждение продуктов переработки осуществляют в рекуперативном теплообменнике за счет теплообмена с поступающей на термическую обработку пульпой путем, исключающим смешение термически не обработанного сырья и термически обработанных продуктов, а извлечение обеззараженных продуктов производят через дросселирующий клапан, поддерживающий заданное давление в теплообменнике и термической камере.

В предлагаемом способе размеры измельченного сырья составляют не более 5 см, предпочтительно не более 1-3 мм, относительное содержание воды в пульпе создают выше 30%, предпочтительно 85-99%, температуру обеззараживания поддерживают в пределах 50-200°C, давление в теплообменнике и термической камере поддерживают в пределах 0,1-2,5 МПа, время выдержки сырья в термической камере при температуре стерилизации обеспечивают в пределах 1-1000 с.

Вода является естественной составляющей большинства крупнотоннажных органических отходов - биомасс различного типа, подвергаемых заражению болезнетворными микроорганизмами. В животной и растительной массе, а также в навозе и помете обычно содержится от 70% до 95% воды. Текучая водяная пульпа в предлагаемом способе является движущимся по каналам теплообменника теплоносителем, позволяющим по мере движения нагревать до заданных температур и охлаждать обрабатываемое сырье. Повышенное давление необходимо, чтобы, во-первых, не происходило в процессе стерилизации высушивания сырья и, во-вторых, в каналах теплообменника на происходило образование паровых пробок, снижающих эффективность теплообмена.

На фиг. 1 представлен пример принципиальной технологической схемы для осуществления предлагаемого способа.

Сырье, исходная биомасса, поступает в измельчитель 1, где размеры кусков сырья уменьшают, как правило, до 1-10 мм. Измельченное сырье смешивается с водой в смесителе 2 до получения текучей среды - пульпы. Эта пульпа с помощью насоса высокого давления 3 через рекуперативный теплообменник 4 подается в термическую камеру 5, где при заданной температуре происходит стерилизация сырья. Подогрев сырья в термической камере производится от внешнего источника энергии. Выходящие непрерывно из термический камеры обеззараженные продукты выходят через теплообменник 4, отдавая тепло через стенку поступающему в термическую камеру сырью. Разгрузка стерилизованных продуктов производится через дросселирующий клапан 6, который служит также для поддержания повышенного давления, создаваемого насосом 3.

Еще одно из существенных преимуществ предлагаемого изобретения перед прототипом то, что вход сырья в аппарат обеззараживания и выход продуктов переработки сырья пространственно разнесены друг от друга, что исключает возможность случайного вторичного заражения стерилизованных продуктов от исходного сырья. Все сырье практически без перемешивания проходит через термическую зону стерилизации. Таким образом гарантированно обеспечивается обеззараживание сырья.

Эффективность. В отличие от аналогов и прототипов данное изобретение позволяет существенно уменьшить затраты энергии на обеззараживание отходов. В Таблице 1 приведены типичные экспериментальные и расчетно-теоретические значения энергозатрат на стерилизацию крупнотоннажных отходов (жидкого свиного навоза) при различных способах стерилизации, приведенные на 1 тонну (1 м3) сырья. Аппарат для обеззараживания отходов, изготовленный согласно настоящему изобретению, перерабатывал 75 тонн свиного навоза в сутки средней влажностью 92%. Температура в термическом реакторе поддерживалась в первой серии опытов на уровне 130°C и во второй серии опытов около 160°C. Давление пульпы составляло около 1 МПа, время переработки (прохождения пульпы через термическую камеру) около 20 минут. В обоих случаях достигалась полная стерилизация исходного сырья. Разница температур продукта на выходе и сырья на входе составила в первом случае 5°C, во втором - 8°C, при температуре исходного сырья около 18°C.

Из приведенной Таблицы видно, что по энергетическим характеристикам предлагаемая технология существенно превосходит известные в применении для обеззараживания крупнотоннажных отходов.

Существенно, что при стерилизации отходов влажность исходного сырья (если не добавлять воду) практически не меняется и испарения влаги в окружающую среду не происходит. Работа аппарата не ухудшает экологическую обстановку в месте переработки сырья, а получаемые стерилизованные продукты в зависимости от состава сырья уже могут использоваться как в качестве органоминеральных удобрений, так и на кормовые добавки в рацион животных и птиц после переработки мясных отходов.

1. Способ термического обеззараживания, включающий в себя измельчение сырья, подачу сырья в нагреваемую термическую камеру, нагрев сырья и выдержку сырья в термической камере до обеспечения стерилизации указанного выше сырья, охлаждение и последующее извлечение из термической камеры обеззараженных продуктов, отличающийся тем, что измельченное сырье смешивают с водой до создания пульпы текучей консистенции, полученную пульпу непрерывно подают насосом через рекуперативный теплообменник в нагреваемую проточную термическую камеру, где установленные температура и выдержка обеспечивают обеззараживание сырья, при этом насос обеспечивает давление пульпы в указанном выше теплообменнике и термической камере выше давления насыщенных паров воды при температурах в указанных теплообменнике и термической камере, охлаждение продуктов переработки осуществляют в рекуперативном теплообменнике за счет теплообмена с поступающей на термическую обработку пульпой путем, исключающим смешение термически не обработанного сырья и термически обработанных продуктов, а извлечение обеззараженных продуктов производят через дросселирующий клапан, поддерживающий заданное давление в теплообменнике и термической камере.

2. Способ по п.1, отличающийся тем, что размеры измельченного сырья составляют не более 5 см, предпочтительно не более 1-3 мм, относительное содержание воды в пульпе создают выше 30%, предпочтительно 85-99%, температуру обеззараживания поддерживают в пределах 50-200°C, давление в теплообменнике и термической камере поддерживают в пределах 0,1-2,5 МПа, время выдержки сырья в термической камере при температуре стерилизации обеспечивают в пределах 1-1000 с.

Похожие патенты:

Изобретение относится к методам термической деполимеризации природных и вторичных органических ресурсов, например твердых бытовых отходов (ТБО). Способ переработки органических и полимерных отходов включает загрузку сырья с предварительной сепарацией, измельчение с подсушкой, отличается тем, что подсушку осуществляют совместно с катализатором и низкокалорийным природным топливом, затем готовят пасту из измельченного материала и растворителя - дистиллята, получаемого при дистилляции жидких продуктов, при этом предусматривают дальнейшую ступенчатую деполимеризацию реакционной массы с температурой 200-400°C при нормальном атмосферном давлении, осуществляемую в каскаде из двух пар последовательно соединенных реакторов, в которых температура деполимеризации достигает в 1-й паре 200°C, и во 2-й паре - более 200°C и не превышает 310°C, объединяющихся друг с другом рециркулирующими потоками: газообразным, формирующем в реакционной системе восстановительную среду в виде синтез-газа (CO и H2), образующуюся путем паровой каталитической конверсии углеводородных газов, выходящих из реакторов деполимеризации, перемещающуюся посредством газового насоса через подогреватель восстановительных газов из реакционной системы, обеспечивают также вывод синтез-газа для получения моторных топлив - метанола, диметилового эфира или бензина; жидкую же углеводородную фазу отделяют от твердых непрореагировавших компонентов с выходом последних до 40% от общей исходной массы твердых бытовых отходов (ТБО), которые выводят из системы с помощью циркуляционных насосов и направляют для производства нефтяных брикетов и/или горючих капсул, причем жидкую реакционную углеводородную смесь, после отделения от нее твердого остатка, направляют на горячую сепарацию, охлаждение и дистилляцию, кроме того, меньшую часть дистиллята возвращают в мешалку для приготовления пасты на стадию приготовления пасты, а большую часть разделяют на целевые фракции: первую с температурой кипения до 200°C и вторую с температурой кипения выше 200°C, но не более 310°C.

Изобретение относится к комплексной, безотходной переработке токсичных отходов, включающей процессы: сортировки и брикетирования отходов с получением твердотопливных брикетов и отделенных металлических примесей, которые подаются на участок переработки металлов в электрошлаковый переплав, сушки брикетов с последующим их направлением на участок пиролиза при температуре 900-1600°С.

Изобретение относится к области утилизации и переработки бытового мусора с извлечением ценных утильных компонентов и может быть использовано на действующих мусоросжигающих и мусоросортировочных заводах и других производствах, перерабатывающих вторичное сырье.

Изобретение относится к технологии переработки конденсированных вредных веществ и промышленных отходов, а именно к способам иммобилизации и безопасного хранения непригодных для дальнейшего использования порошкообразных, гранулированных или жидких опасных и токсичных веществ, являющихся отходами химических производств, в том числе пестицидов, ядохимикатов, дефолиантов, опасных соединений тяжелых металлов, боевых отравляющих веществ и др.

Изобретение относится к экологии и может использоваться для микроволнового обеззараживания. Устройство содержит рабочую камеру, один или несколько микроволновых генераторов, выходы которых через микроволновые адаптеры подключены к рабочей камере.

Настоящее изобретение относится к контейнеру (1) для мусора, содержащему проем (3) для размещения внутри него мусора и включающему в себя устройство очистки или дезинфекции (2), размещенное внутри полости и разработанное для обеспечения подачи очищающей или дезинфицирующей жидкости внутрь контейнера (1); причем устройство очистки или дезинфекции (2) содержит средства подачи дозированного количества жидкости внутрь контейнера, которые рассчитаны таким образом, чтобы осуществлять подачу дозированного количества жидкости после наклона контейнера (1), с последующим его возвращением в стандартное рабочее положение.

Комплекс термического обеззараживания, переработки и утилизации медицинских, биологических, бытовых и промышленных отходов // 2600836

Изобретение относится к микроволновым устройствам, предназначенным для дезинфекции медицинских, биологически опасных и потенциально опасных отходов. Устройство обеззараживания отходов содержит микроволновую камеру, содержащую рабочую камеру с контейнером для размещения смоченных водой опасных отходов, причем в верхней части рабочей камеры с внешней стороны контейнера соосно отверстию в крышке контейнера установлен прижимной блок, имеющий возможность вертикального перемещения внутри рабочей камеры. В прижимном блоке со стороны, обращённой в сторону контейнера, выполнена проточка, образующая внутреннюю полость, в которой в непосредственной близости от отверстия в крышке контейнера установлен основной датчик для измерения температуры выходящего из контейнера пара, соединенный с платой управления. Плата управления выполнена с возможностью регулирования мощности магнетронов в штатном режиме работы устройства только на основе показаний указанного основного датчика для измерения температуры выходящего из контейнера пара. Регулирование мощности магнетронов в нештатном режиме работы устройства происходит только на основе показаний датчика для измерения температуры пара, установленного на трубке для отвода выходящего из контейнера пара за пределами контейнера. Изобретение позволяет повысить надежность работы устройства при возникновении нештатных ситуаций и минимизировать участие оператора в процессе обеззараживания отходов. 1 з.п. ф-лы, 8 ил.

Способ предназначен для дезинфекции крупнотоннажных отходов биомассы, в частности навоза и помета, обеззараживания почв, содержащих ботулотоксины, яды столбняка, споры и семена сорных растений, обеззараживания и переработки погибших животных, скотомогильников, медицинских, муниципальных и других отходов. Для термического обеззараживания измельчают сырье. Измельченное сырье смешивают с водой до создания пульпы текучей консистенции. Пульпу непрерывно подают насосом через рекуперативный теплообменник в нагреваемую проточную термическую камеру. Сырье нагревают и выдерживают в камере для стерилизации. Насос обеспечивает давление пульпы выше давления насыщенных паров воды при текущих температурах в теплообменнике и камере. Продукты переработки охлаждают в теплообменнике за счет теплообмена с поступающей на обработку пульпой. Пульпа поступает на обработку путем, исключающим смешивание термически не обработанного сырья и термически обработанных продуктов. Обеззараженные продукты извлекают из камеры через дросселирующий клапан. Клапан поддерживает заданное давление в теплообменнике и камере. Изобретение повышает производительность обеззараживания отходов. 1 з.п. ф-лы, 1 ил., 1 табл.



Понравилась статья? Поделитесь ей
Наверх