Мейоз хромосомный набор. Стадии мейоза

Мейоз - деление эукариотической клетки с уменьшением числа хромосом в два раза и образованием гамет. Происходит в два этапа (редукционный и эквационный этапы мейоза).

Значение.

Биологическое значение мейоза заключается в поддержании постоянства числа хромосом при наличии полового процесса. Кроме того, вследствие кроссинговера происходит рекомбинация – появление новых сочетаний наследственных задатков в хромосомах. Мейоз обеспечивает также комбинативную изменчивость – появление новых сочетаний наследственных задатков при дальнейшем оплодотворении.

Фазы мейоза.

Мейоз состоит из 2 последовательных делений с короткой интерфазой между ними.

Профаза I - профаза первого деления очень сложная и состоит из 5 стадий:

Лептотена или лептонема - упаковка хромосом, конденсация ДНК с образованием хромосом в виде тонких нитей (хромосомы укорачиваются).

Зиготена или зигонема - происходит конъюгация - соединение гомологичных хромосом с образованием структур, состоящих из двух соединённых хромосом, называемых тетрадами или бивалентами и их дальнейшая компактизация.

Пахитена или пахинема - (самая длительная стадия) - в некоторых местах гомологичные хромосомы плотно соединяются, образуя хиазмы. В них происходит кроссинговер - обмен участками между гомологичными хромосомами.

Диплотена или диплонема - происходит частичная деконденсация хромосом, при этом часть генома может работать, происходят процессы транскрипции (образование РНК), трансляции (синтез белка); гомологичные хромосомы остаются соединёнными между собой. У некоторых животных в ооцитах хромосомы на этой стадии профазы мейоза приобретают характерную форму хромосом типа ламповых щёток.

Диакинез - ДНК снова максимально конденсируется, синтетические процессы прекращаются, растворяется ядерная оболочка; центриоли расходятся к полюсам; гомологичные хромосомы остаются соединёнными между собой. К концу Профазы I центриоли мигрируют к полюсам клетки, формируются нити веретена деления, разрушаются ядерная мембрана и ядрышки

Метафаза I - бивалентные хромосомы выстраиваются вдоль экватора клетки, наступает пауза.

Анафаза I - микротрубочки сокращаются, биваленты делятся и хромосомы расходятся к полюсам. Важно отметить, что, из-за конъюгации хромосом в зиготене, к полюсам расходятся целые хромосомы, состоящие из двух хроматид каждая, а не отдельные хроматиды, как в митозе.

Телофаза I - хромосомы деспирализуются и появляется ядерная оболочка.

Второе деление мейоза следует непосредственно за первым, без выраженной интерфазы: S-период отсутствует, поскольку перед вторым делением не происходит репликации ДНК.

Профаза II - происходит конденсация хромосом, клеточный центр делится и продукты его деления расходятся к полюсам ядра, разрушается ядерная оболочка, образуется веретено деления, перпендикулярное первому веретену.

Метафаза II - унивалентные хромосомы (состоящие из двух хроматид каждая) располагаются на «экваторе» (на равном расстоянии от «полюсов» ядра) в одной плоскости, образуя так называемую метафазную пластинку.

Анафаза II - униваленты делятся и хроматиды расходятся к полюсам.

Телофаза II - хромосомы деспирализуются и появляется ядерная оболочка.

В результате из одной диплоидной клетки образуется четыре гаплоидных клетки. В тех случаях, когда мейоз сопряжён с гаметогенезом (например, у многоклеточных животных), при развитии яйцеклеток первое и второе деления мейоза резко неравномерны. В результате формируется одна гаплоидная яйцеклетка и три так называемых редукционных тельца.

Динамика хромосом (n) и ДНК (с).

Профаза 1:

Лептотена Появление тонких нитей хромосом (хромосомы удвоены)

Зиготена Конъюгация хромосом

Пахитена Видны конъюгированные хромосомы

Диплотена Начало отталкивания гомологов – различима фигура, похожая на греческ. Х

Метафаза 1: Разрушение ядерной мембраны. Хромосомы выстраиваются в метафазную пластинку.

Анафаза 1: К разным полюсам расходятся гомологичные хромосомы, состоящие из 2 хроматид.

Телофаза 1 может отсутствовать, или ядро может восстанавливаться

Профаза 2, Метафаза 2: по митотическому типу.

Анафаза 2: Расхождение хроматид удвоенных хромосом.

Телофаза 2: 4 гаплоидных ядра.

Схема: 2n2c – 2n4c – 1n2c – 1n1c.

Схема нарушения расхождения

хромосом и формирование патологических кариотипов.

Нормальные кариотипы человека - 46,XX (женский) и 46,XY (мужской). Нарушения нормального кариотипа у человека возникают на ранних стадиях развития организма: в случае, если такое нарушение возникает при гаметогенезе, в котором продуцируются половые клетки родителей, кариотип зиготы, образовавшейся при их слиянии, также оказывается нарушенным. При дальнейшем делении такой зиготы все клетки эмбриона и развившегося из него организма обладают одинаковым аномальным кариотипом.

Как правило, нарушения кариотипа у человека сопровождаются множественными пороками развития; большинство таких аномалий несовместимо с жизнью и приводят к самопроизвольным абортам на ранних стадиях беременности.

Нарушения кариотипа могут также возникнуть и на ранних стадиях дробления зиготы, развившийся из такой зиготы организм содержит несколько линий клеток (клеточных клонов) с различными кариотипами, такая множественность кариотипов всего организма или отдельных его органов именуется мозаицизмом(химеризм).

Болезни, обусловленные нарушением числа аутосом - синдром Дауна, синдром Патау, синдром Эдвардса.

Болезни, связанные с нарушением числа половых хромосом - синдром Шерешевского - Тёрнера, полисомия по Х-хромосоме, полисомия по Y-хромосоме, синдром Клайнфельтера.

Болезни, причиной которых является полиплоидия вызывают смерть еще до рождения.

Нарушения структуры хромосом:

Транслокации - обменные перестройки между негомологичными хромосомами.

Делеции - потери участка хромосомы. Например, синдром кошачьего крика связан с делецией короткого плеча 5-ой хромосомы. Признаком его служит необычный плач детей, напоминающий мяуканье или крик кошки. Это связано с патологией гортани или голосовых связок. Наиболее типичным, помимо «кошачьего крика», является умственное и физическое недоразвитие, микроцефалия (аномально уменьшенная голова).

Инверсии - повороты участка хромосомы на 180 градусов.

Дупликации - удвоения участка хромосомы.

Изохромосомия - хромосомы с повторяющимся генетическим материалом в обоих плечах.

Возникновение кольцевых хромосом - соединение двух концевых делеций в обоих плечах хромосомы.

Мейоз (от греч. meiosis-уменьшение) - форма ядерного деления, сопровождающаяся уменьшением числа хромосом с диплоидного (2n) до гаплоидного (n). Не вдаваясь в подробности, можно сказать, что при этом в родительской клетке происходит однократное удвоение хромосом (репликация ДНК, как при митозе), за которым следуют два цикла клеточных и ядерных делений (первое деление мейоза и второе деление мейоза ). Таким образом, одна диплоидная клетка дает начало четырем гаплоидным клеткам, как это схематически показано на рис. 22.5.

Мейоз происходит при образовании спермиев и яйцеклеток (гаметогенез) у животных (см. разд. 20.3.1 и 20.3.2) и при образовании спор у большинства растений (у тех, у которых имеет место чередование поколений; см. разд. 20.2.2). У некоторых низших растений чередования поколений нет, и мейоз у них происходит при образовании гамет. Стадии мейоза удобно наблюдать на ядрах сперматоцитов из мужских гонад прямокрылых или на ядрах незрелых пыльцевых мешков крокуса.

Подобно митозу, мейоз - процесс непрерывный, но его тоже можно подразделить на профазу, метафазу, анафазу и телофазу. Эти стадии имеются в первом делении мейоза и еще раз повторяются во втором. Поведение хромосом во время этих стадий представлено на рис. 22.6, где показано деление ядра, содержащего четыре хромосомы (2n = 4), т. е. два пары гомологичных хромосом.

Интерфаза

Продолжительность различна у разных видов. Происходит репликация органелл, и клетка увеличивается в размерах. Репликация ДНК и гистонов в основном заканчивается в премейотической интерфазе, но частично захватывает и начало профазы I. Каждая хромосома представлена теперь парой хроматид, соединенных центромерой. Хромосомный материал окрашивается, но из всех структур четко выявляются только ядрышки (ср. с рис. 22.2, где показан митоз).

Профаза I

Самая продолжительная фаза. Ее часто делят на пять стадий (лептотена, зиготена, пахитена, диплотена и диакннвз ), но здесь она будет рассматриваться как непрерывная последовательность изменений хромосом.

А. Хромосомы укорачиваются и становятся видимыми как обособленные структуры. У некоторых организмов они выглядят как нитки бус: участки интенсивно окрашивающегося материала - хромомеры - чередуются у них с неокрашивающимися участками. Хромомеры - это те места, где хромосомный материал сильно спирализован.

Б. Гомологичные хромосомы , происходящие из ядер материнской и отцовской гамет, приближаются одна к другой и конъюгируют. Эти хромосомы одинаковой длины, их центромеры занимают одинаковое положение, и они обычно содержат одинаковое число генов, расположенных в одной и той же линейной последовательности. Хромомеры гомологичных хромосом лежат бок о бок. Процесс конъюгации называют также синапсисом ; он может начинаться в нескольких точках хромосом, которые затем соединяются по всей длине (как бы застегиваясь на "молнию"). Пары конъюгировавших гомологичных хромосом часто называют бивалентами . Биваленты укорачиваются и утолщаются. При этом происходит как более плотная упаковка на молекулярном уровне, так и внешне заметное закручивание (спирализация). Теперь каждая хромосома с ее центромерой ясно видна.

В. Гомологичные хромосомы, составляющие бивалент, частично разделяются, как будто отталкиваясь друг от друга. Теперь видно, что каждая хромосома состоит из двух хроматид . Хромосомы все еще соединены между собой в нескольких точках. Эти точки называют хиазмами (от греч. chiasma- перекрест). В каждой хиазме происходит обмен участками хроматид в результате разрывов и воссоединений, в которых участвуют две из четырех имеющихся в каждой хиазме нитей. В результате гены из одной хромосомы (например, отцовской - А, В, С) оказываются связанными с генами из другой хромосомы (материнской - а, b, с), что приводит к новым генным комбинациям в образующихся хроматидах. Этот процесс называют кроссинговером . Гомологичные хромосомы после кроссинговера не расходятся, так как сестринские хроматиды (обеих хромосом) остаются прочно связанными вплоть до анафазы.

Г. Хроматиды гомологичных хромосом продолжают отталкиваться друг от друга, и биваленты приобретают определенную конфигурацию в зависимости от числа хиазм. Биваленты с одной хиазмой имеют крестообразную форму, с двумя хиазмами-кольцевидную, а с тремя и более - образуют петли, лежащие перпендикулярно друг другу. К концу профазы все хромосомы полностью уплотнены и интенсивно окрашиваются. В клетке происходят и другие изменения: миграция центриолей (если они имеются) к полюсам, разрушение ядрышек и ядерной мембраны, а затем образование нитей веретена.

Метафаза I

Биваленты выстраиваются в экваториальной плоскости, образуя метафазную пластинку. Их центромеры ведут себя как единые структуры (хотя часто выглядят двойными) и организуют прикрепленные к ним нити веретена, каждая из которых направлена только к одному из полюсов. В результате слабого тянущего усилия этих нитей каждый бивалент располагается в области экватора, причем обе его центромеры оказываются на одинаковом расстоянии от него - одна снизу, а другая сверху.

Анафаза I

Имеющиеся у каждого бивалента две центромеры еще не делятся, но сестринские хроматиды уже не примыкают одна к другой. Нити веретена тянут центромеры, каждая из которых связана с двумя хроматидами, к противоположным полюсам веретена. В результате хромосомы разделяются на два гаплоидных набора, попадающих в дочерние клетки.

Телофаза I

Расхождение гомологичных центромер и связанных с ними хроматид к противоположным полюсам означает завершение первого деления мейоза. Число хромосом в одном наборе стало вдвое меньше, но находящиеся на каждом полюсе хромосомы состоят из двух хроматид. Вследствие кроссинговера при образовании хиазм эти хроматиды генетически неидентичны, и при втором делении мейоза им предстоит разойтись. Веретена и их нити обычно исчезают.

У животных и у некоторых растений хроматиды деспирализуются, вокруг них на каждом полюсе формируется ядерная мембрана и образовавшееся ядро вступает в интерфазу. Затем начинается деление цитоплазмы (у животных) или формирование разделяющей клеточной стенки (у растений), как при митозе. У многих растений не наблюдается ни телофазы, ни образования клеточной стенки, ни интерфазы, и клетка прямо переходит из анафазы I в профазу II.

Интерфаза II

Эта стадия обычно наблюдается только в животных клетках; продолжительность ее варьирует. Фаза S отсутствует, и дальнейшей репликации ДНК не происходит. Процессы, участвующие во втором делении мейоза, по своему механизму сходны с происходящими в митозе. Они включают разделение хроматид в обеих дочерних клетках, получившихся в результате первого деления мейоза. Второе деление мейоза отличается от митоза главным образом двумя особенностями: 1) в метафазе II мейоза сестринские хроматиды часто сильно обособляются друг от друга; 2) число хромосом гаплоидное.

Профаза II

В клетках, у которых выпадает интерфаза II, эта стадия тоже отсутствует. Продолжительность профазы II обратно пропорциональна продолжительности телофазы I. Ядрышки и ядерные мембраны разрушаются, а хроматиды укорачиваются и утолщаются. Центриоли, если они есть, перемещаются к противоположным полюсам клеток; появляются нити веретена. Хроматиды располагаются таким образом, что их длинные оси перпендикулярны оси веретена первого деления мейоза.

Метафаза II

При втором делении центромеры ведут себя как двойные структуры. Они организуют нити веретена, направленные к обоим полюсам, и таким образом выстраиваются по экватору веретена.

Анафаза II

Центромеры делятся, и нити веретена растаскивают их к противоположным полюсам. Центромеры тянут за собой отделившиеся друг от друга хроматиды, которые теперь называются хромосомами.

Телофаза II

Эта стадия очень сходна с телофазой митоза. Хромосомы деспирализуются, растягиваются и после этого плохо различимы. Нити веретена исчезают, а центриоли реплицируются. Вокруг каждого ядра, которое содержит теперь половинное (гаплоидное) число хромосом исходной родительской клетки, вновь образуется ядерная мембрана. В результате последующего деления цитоплазмы (у животных) или образования клеточной стенки (у растений) из одной исходной родительской клетки получается четыре дочерних клетки.

Профаза первого деления мейоза является чрезвычайно длительным процессом. Ее длительность у разных живых организмов составляет от нескольких дней до нескольких десятков лет. В связи с этим принято условно делить ее на несколько фаз (лептотена, зиготена, пахитена, диплотена, диакинез), во время которых происходят различные события. Важно помнить, что эти фазы четко не разграничены и события одной фазы плавно перетекают в другую.
Во время Профазы1 происходят, среди прочих, события, имеющие огромное биологическое значение. Например, это конъюгация, взаимное соединение гомологичных, удвоенных в результате репликации хромосом, при этом образуются хромосомные комплексы, состоящие из четырех хроматид. Хроматиды соединены вместе с помощью специальной структуры — синаптонемного комплекса. Во время профазы 1 осуществляется и обмен участками между хроматидами гомологичных хромосом (но не между сестринскими хроматидами одного гомолога) — кроссинговер. В процессе профазы 1 происходит синтез примерно 1,5% хромосомной ДНК. Кроме того, хромосомы, в которых в течение этой фазы сохраняются не полностью упакованные, а значит, функциональные участки, продолжают активно синтезировать РНК и регулировать биосинтез белка.

  • Лептотена

  • Аудиофрагмент

  • Лептотена — стадия тонких нитей (хромосом). В начале лептотены происходит компактизация хроматиновых нитей и их превращение в хромосомы. Однако этот процесс не заканчивается. Длина каждой хроматиновой нити в конце этой стадии на 1-2 порядка длиннее, чем у гиперспирализованных хромосом в метафазе1. Это имеет большое биологическое значение, поскольку, не полностью упакованные участки ДНК сохраняют функциональную активность в течение всей профазы1.

    Это позволяет, во-первых, обеспечивать белковым синтезом сложнейшие события во время коньюгации гомологичных хромосом, формирования и разрушения хиазм и кроссинговера. Во-вторых, при овогенезе - создать запас питательных веществ для будущей зиготы.

    Специфическое для каждого вида расположение гиперспирализованных участков - хромомер - на тонких хромосомах, позволяет составлять морфологические карты хромосом, которые используются в цитологическом анализе.

    Уже во время лептотены появляются признаки важнейшего процесса профазы1 - коньюгации гомологичных хромосом, основные события которого происходят во время зиготены.

  • Зиготена

  • Аудиофрагмент

  • Зиготена — стадия конъюгации гомологичных хромосом (синапсис). При этом гомологичные хромосомы (уже двойные после S-периода интерфазы) сближаются и образуют новый хромосомный ансамбль, никогда до этого не встречающийся при клеточном делении, — бивалент. Биваленты — это парные соединения удвоенных гомологичных хромосом, т.е. каждый бивалент состоит из четырех хроматид. Конечная цель формирования бивалентов - это совместное прохождение парой гомологичных хромосом метафазы1 для последующего точного попадания гомологичных хромосом в разные дочерние клетки.

    Главный вопрос до конца до сих пор не понятого процесса коньюгации - как в пространстве ядра хромосомы находят своего специфического гомолога?

    По-видимому, для этого узнавания особое значение имеют участки zДНК, равномерно распределенные по всей длине хромосомы. Расположение этих участков специфично для каждой пары гомологичных хромосом. Репликация zДНК происходит во время зиготены, ингибирование этой репликации (а это всего 0,3% от всей ДНК клетки) останавливает коньюгацию и мейоз. Эти факты свидетельствуют об особой роли zДНК в профазе1.

    Сближение гомологичных хромосом заканчивается формированием синаптонемного комплекса.

  • Синаптонемный комплекс

  • Аудиофрагмент

  • Синаптонемный комплекс встречается практически у всех представителей эукариот, которые обладают половым процессом. Он обнаружен у простейших, водорослей, низших и высших грибов, у высших растений и у животных. Объединение гомологов чаще всего начинается в теломерах и центромерах. В этих местах, а позднее и в других по всей длине соединяющихся хромосом происходит сближение осевых тяжей на расстояние около 100 нм. По своей морфологии синаптонемный комплекс имеет вид трехслойной ленты, состоящей из двух боковых компонентов - тяжей (толщиной 30-60 нм), и центрального осевого элемента (толщиной 10-40 нм); боковые компоненты отстоят друг от друга на 60-120 нм, общая ширина комплекса 160-240 нм. Материал хромосом располагается снаружи от боковых элементов. Каждый боковой элемент связан с петлями двух сестринских хроматид одного гомолога. Большая часть ДНК этих хроматид находится вне синаптонемного комплекса, и лишь менее 5% геномной ДНК входит в его состав, прочно ассоциируясь с белками. В состав этой ДНК входят уникальные и умеренно повторяющиеся последовательности нуклеотидов. Белковый состав синаптонемного комплекса сложен, он состоит более чем из десяти мажорных белков с молекулярными массами от 26 до 190 кДа.

  • Пахитена

  • Аудиофрагмент

  • Пахитена — стадия толстых нитей. Благодаря полной конъюгации гомологов профазные хромосомы как бы увеличились в толщине. Число таких толстых пахитенных хромосом гаплоидно (n), но они состоят из двух объединившихся гомологов, каждый из которых имеет по две сестринские хроматиды. Следовательно, и здесь количество ДНК равно 4с, а число хроматид — 4n.

    Между гомологичными хроматидами (хроматидами разных хромосом) начинают образовываться временные связи, которые многократно перекрещивают бивалент в разных точках - образуются хиазмы.

    На этой стадии происходит второе, чрезвычайно важное событие, характерное для мейоза, — кроссинговер, взаимный обмен идентичными участками по длине гомологических хромосом. Генетическим следствием кроссинговера является рекомбинация сцепленных генов. Здесь возникают отличные от исходных хромосомы, содержащие отдельные участки, пришедшие от их гомологов. Морфологически этот процесс в пахитене уловить нельзя.

    В пахитене также происходит синтез небольшого количества ДНК (всего около 1% от всей ДНК клетки), отличающейся тем, что она содержит повторяющиеся последовательности нуклеотидов. Но этот синтез репаративен, в результате его не образуются дополнительные или недостающие количества ДНК, а происходит восстановление утраченных.

    Весь процесс объединения и обмена между ДНК несестринских хроматид гомологов можно представить следующим образом. По длине хромосомы разбросаны участки повторяющихся последовательностей ДНК, которые при разрывах с помощью специальных ферментов легко могут образовать гибридные молекулы. Сшивание и восстановление целостности молекул с помощью специальных репаративных ферментов приводят к включению предшественников в ДНК на стадии пахитены. По всей вероятности, в этом процессе принимает участие так называемый рекомбинационный узелок — большой белковый ансамбль величиной около 90 нм. Он располагается в синаптонемном комплексе между гомологичными хромосомами, его расположение совпадает с местами хиазм.

    О живых организмах известно, что они дышат, питаются, размножаются и погибают, в этом состоит их биологическая функция. Но за счет чего это все происходит? За счет кирпичиков - клеток, которые тоже дышат, питаются, погибают и размножаются. Но как это происходит?

    О строении клеток

    Дом состоит из кирпичей, блоков или бревен. Так и организм можно разделить на элементарные единицы - клетки. Все разнообразие живых существ состоит именно из них, отличие лежит лишь в их количестве и видах. Из них состоят мышцы, костная ткань, кожа, все внутренние органы - настолько сильно они различаются в своем назначении. Но вне зависимости от того, какие функции выполняет та или иная клетка, все они устроены примерно одинаково. Прежде всего, у любого "кирпичика" есть оболочка и цитоплазма с расположенными в ней органоидами. Некоторые клетки не имеют ядра, их называют прокариотическими, однако все более или менее развитые организмы состоят из эукариотических, имеющих ядро, в котором хранится генетическая информация.

    Органоиды, расположенные в цитоплазме, разнообразны и интересны, они выполняют важные функции. В клетках животного происхождения выделяют эндоплазматическую сеть, рибосомы, митохондрии, комплекс Гольджи, центриоли, лизосомы и двигательные элементы. С помощью них и происходят все процессы, которые обеспечивают функционирование организма.

    Жизнедеятельность клеток

    Как уже было сказано, все живое питается, дышит, размножается и умирает. Это утверждение справедливо как для цельных организмов, то есть людей, животных, растений и т. д., так и для клеток. Это удивительно, но каждый "кирпичик" обладает своей собственной жизнью. За счет своих органоидов он получает и перерабатывает питательные вещества, кислород, выводит все лишнее наружу. Сама цитоплазма и эндоплазматическая сеть выполняют транспортную функцию, митохондрии отвечают в том числе за дыхание, а также обеспечение энергией. Комплекс Гольджи занимается накоплением и выводом продуктов жизнедеятельности клетки. Остальные органоиды также участвуют в сложных процессах. И на определенном этапе своего начинает делиться, то есть происходит процесс размножения. Его стоит рассмотреть более подробно.

    Процесс деления клеток

    Размножение - одна из стадий развития живого организма. То же относится и к клеткам. На определенном этапе жизненного цикла они входят в состояние, когда становятся готовы к размножению. просто делятся надвое, удлиняясь, а потом образовывая перегородку. Этот процесс прост и практически полностью изучен на примере палочковидных бактерий.

    С все обстоит несколько сложнее. Они размножаются тремя разными способами, которые называются амитоз, митоз и мейоз. Каждый из этих путей имеет свои особенности, он присущ определенному виду клеток. Амитоз

    считается самым простым, его также называют прямым бинарным делением. При нем происходит удвоение молекулы ДНК. Однако веретено деления не образуется, так что этот способ является наиболее энергетически экономичным. Амитоз наблюдается у одноклеточных организмов, в то время как ткани многоклеточных размножаются с помощью других механизмов. Однако он иногда наблюдается и там, где снижена митотическая активность, например, в зрелых тканях.

    Иногда прямое деление выделяют как разновидность митоза, однако некоторые ученые считают это отдельным механизмом. Протекание этого процесса даже в старых клетках происходит довольно редко. Далее будут рассмотрены мейоз и его фазы, процесс митоза, а также сходства и различия этих способов. По сравнению с простым делением они более сложны и совершенны. Особенно это касается редукционного деления, так что характеристика фаз мейоза будет наиболее подробной.

    Важную роль в делении клетки имеют центриоли - специальные органоиды, как правило, располагающиеся рядом с комплексом Гольджи. Каждая такая структура состоит из 27 микротрубочек, сгруппированных по три. Вся конструкция имеет цилиндрическую форму. Центриоли непосредственно участвуют в формировании веретена деления клетки в процессе непрямого деления, о котором речь пойдет дальше.

    Митоз

    Продолжительность существования клеток различается. Некоторые живут пару дней, а какие-то можно отнести к долгожителям, поскольку их полная смена происходит очень редко. И практически все эти клетки размножаются с помощью митоза. У большинства из них между периодами деления проходит в среднем 10-24 часа. Сам митоз занимает небольшой период времени - у животных примерно 0,5-1

    час, а у растений около 2-3. Этот механизм обеспечивает рост клеточной популяции и воспроизводство идентичных по своему генетическому наполнению единиц. Так соблюдается преемственность поколений на элементарном уровне. При этом число хромосом остается неизменным. Именно этот механизм является наиболее распространенным вариантом репродукции эукариотических клеток.

    Значение этого вида деления велико - этот процесс помогает расти и регенерировать тканям, за счет чего происходит развитие всего организма. Кроме того, именно митоз лежит в основе бесполого размножения. И еще одна функция - перемещение клеток и замена уже отживших. Поэтому считать, что из-за того, что стадии мейоза сложнее, то и его роль гораздо выше, неправильно. Оба эти процесса выполняют разные функции и по-своему важны и незаменимы.

    Митоз состоит из нескольких фаз, различающихся по своим морфологическим особенностям. Состояние, в котором клетка находится, будучи готовой к непрямому делению, называют интерфазой, а непосредственно процесс разделяется еще на 5 стадий, которые необходимо рассмотреть подробнее.

    Фазы митоза

    Находясь в интерфазе, клетка готовится к делению: происходит синтез ДНК и белков. Эта стадия подразделяется на еще несколько, в ходе которых происходит рост всей структуры и удвоение хромосом. В этом состоянии клетка пребывает до 90% всего жизненного цикла.

    Остальные 10% занимает непосредственно деление, разделяющееся на 5 стадий. При митозе клеток растений также выделяется препрофаза, которая отсутствует во всех других случаях. Происходит образование новых структур, ядро перемещается к центру. Формируется препрофазная лента, размечающая предполагаемое место будущего деления.

    Во все же остальных клетках процесс митоза проходит следующим образом:

    Таблица 1

    Наименование стадии Характеристика
    Профаза Ядро увеличивается в размерах, хромосомы в нем спирализуются, становятся видимыми в микроскоп. В цитоплазме образуется веретено деления. Зачастую происходит распад ядрышка, однако это происходит не всегда. Содержание генетического материала в клетке остается неизменным.
    Прометафаза Происходит распад ядерной мембраны. Хромосомы начинают активное, но беспорядочное движение. В конечном счете, все они приходят в плоскость метафазной пластинки. Этот этап длится до 20 минут.
    Метафаза Хромосомы выстраиваются вдоль экваториальной плоскости веретена деления примерно на равном расстоянии от обоих полюсов. Численность микротрубочек, удерживающих всю конструкцию в стабильном состоянии, достигает максимума. Сестринские хроматиды отталкиваются друг от друга, сохраняя соединение лишь в центромере.
    Анафаза Наиболее короткая стадия. Хроматиды разделяются и отталкиваются друг от друга в направлении ближайших полюсов. Этот процесс иногда выделяют отдельно и называют анафазой А. В дальнейшем происходит расхождение самих полюсов деления. В клетках некоторых простейших веретено деления при этом увеличивается в длину до 15 раз. И этот подэтап носит название анафаза В. Длительность и последовательность процессов на данной стадии вариабельна.
    Телофаза После окончания расхождения к противоположным полюсам хроматиды останавливаются. Происходит деконденсация хромосом, то есть их увеличение в размерах. Начинается реконструкция ядерных оболочек будущих дочерних клеток. Микротрубочки веретена деления исчезают. Формируются ядра, возобновляется синтез РНК.

    После завершения деления генетической информации происходит цитокинез или цитотомия. Под этим термином подразумевается образование тел дочерних клеток из тела материнской. При этом органоиды, как правило, делятся пополам, хотя возможны исключения, образуется перегородка. Цитокинез не выделяют в отдельную фазу, как правило, рассматривая его в рамках телофазы.

    Итак, в самых интересных процессах задействованы хромосомы, которые несут генетическую информацию. Что же это такое и почему они так важны?

    О хромосомах

    Еще не имея ни малейшего понятия о генетике, люди знали, что многие качества потомства зависят от родителей. С развитием биологии стало очевидно, что информация о том или ином организме хранится в каждой клетке, и часть ее передается будущим поколениям.

    В конце 19 века были открыты хромосомы - структуры, состоящие из длинной

    молекулы ДНК. Это стало возможно с совершенствованием микроскопов, и даже сейчас рассмотреть их можно лишь в период деления. Чаще всего открытие приписывают немецкому ученому В. Флемингу, который не только упорядочил все то, что было изучено до него, но и внес свой вклад: он одним из первых исследовал клеточную структуру, мейоз и его фазы, а также ввел термин "митоз". Само понятие "хромосома" было предложено чуть позже другим ученым - немецким гистологом Г. Вальдейером.

    Структура хромосом в момент, когда они четко видны, довольно проста - они представляют собой две хроматиды, соединенные посередине центромерой. Она является специфической последовательностью нуклеотидов и играет важную роль в процессе размножения клеток. В конечном итоге хромосома внешне в профазе и метафазе, когда ее можно лучше всего разглядеть, напоминается букву Х.

    В 1900 году были открыты описывающие принципы передачи наследственных признаков. Тогда стало окончательно ясно, что хромосомы - это именно то, с помощью чего передается генетическая информация. В дальнейшем учеными был проведен ряд экспериментов, доказывающих это. И тогда предметом изучения стало и то влияние, котрое на них оказывает деление клетки.

    Мейоз

    В отличие от митоза этот механизм в итоге приводит к образованию двух клеток с набором хромосом в 2 раза меньше исходного. Таким образом процесс мейоза служит переходом от диплоидной фазы к гаплоидной, причем в первую очередь

    речь идет о делении ядра, а уже во вторую - всей клетки. Восстановление же полного набора хромосом происходит в результате дальнейшего слияния гамет. В связи с уменьшением количества хромосом этот метод еще определяют как редукционное деление клетки.

    Мейоз и его фазы изучали такие известные ученые, как В. Флеминг, Э. Страсбургрер, В. И. Беляев и другие. Исследование этого процесса в клетках как растений, так и животных, продолжается до сих пор - настолько он сложен. Изначально этот процесс считался вариантом митоза, однако практически сразу после открытия он все-таки был выделен как отдельный механизм. Характеристика мейоза и его теоретическое значение были впервые в достаточной степени описаны Августом Вайсманом еще в 1887 году. С тех пор изучение процесса редукционного деления сильно продвинулось, но сделанные выводы пока не были опровергнуты.

    Мейоз не следует путать с гаметогенезом, хотя оба эти процесса тесно связаны. В образовании половых клеток участвуют оба механизма, однако между ними есть ряд серьезных отличий. Мейоз происходит в две стадии деления, каждая из которых состоит из 4 основных фаз, между ними есть короткий перерыв. Длительность всего процесса зависит от количества ДНК в ядре и структуры хромосомной организации. В целом он гораздо более продолжителен в сравнении с митозом.

    Кстати, одна из основных причин значительного видового разнообразия - именно мейоз. Набор хромосом в результате редукционного деления разбивается надвое, так что появляются новые комбинации генов, в первую очередь потенциально повышающие приспособляемость и адаптивность организмов, в итоге получающих те или иные наборы признаков и качеств.

    Фазы мейоза

    Как уже было упомянуто, редукционное клеточное деление условно делят на две стадии. Каждая из этих стадий разделена еще на 4. И первая фаза мейоза - профаза I в свою очередь подразделяется еще на 5 отдельных этапов. Поскольку изучение этого процесса продолжается, в дальнейшем могут быть выделены и другие. Сейчас же различают следующие фазы мейоза:

    Таблица 2

    Наименование стадии Характеристика
    Первое деление (редукционное)

    Профаза I

    лептотена По-другому этот этап называют стадией тонких нитей. Хромосомы выглядят в микроскопе как спутанный клубок. Иногда выделяют пролептотену, когда отдельные ниточки еще сложно разглядеть.
    зиготена Стадия сливающихся нитей. Гомологичные, то есть сходные между собой по морфологии и в генетическом отношении, пары хромосом сливаются. В процессе слияния, то есть конъюгации, образуются биваленты, или тетрады. Так называют довольно устойчивые комплексы из пар хромосом.
    пахитена Стадия толстых нитей. На этом этапе хромосомы спирализуются и завершается репликация ДНК, образуются хиазмы - точки контакта отдельных частей хромосом - хроматид. Происходит процесс кроссинговера. Хромосомы перекрещиваются и обмениваются некоторыми участками генетической информации.
    диплотена Также называется стадией двойных нитей. Гомологичные хромосомы в бивалентах отталкиваются друг от друга и остаются связанными только в хиазмах.
    диакинез На этой стадии биваленты расходятся на периферии ядра.
    Метафаза I Оболочка ядра разрушается, формируется веретено деления. Биваленты перемещаются к центру клетки и выстраиваются вдоль экваториальной плоскости.
    Анафаза I Биваленты распадаются, после чего каждая хромосома из пары перемещается к ближайшему полюсу клетки. Разделения на хроматиды не происходит.
    Телофаза I Завершается процесс расхождения хромосом. Происходит формирование отдельных ядер дочерних клеток, каждое - с гаплоидным набором. Хромосомы деспирализуются, образуется ядерная оболочка. Иногда наблюдается цитокинез, то есть деление самого тела клетки.
    Второе деление (эквационное)
    Профаза II Происходит конденсация хромосом, клеточный центр делится. Разрушается ядерная оболочка. Образуется веретено деления, перпендикулярное первому.
    Метафаза II В каждой из дочерних клеток хромосомы выстраиваются вдоль экватора. Каждая из них состоит из двух хроматид.
    Анафаза II Каждая хромосома делится на хроматиды. Эти части расходятся к противоположным полюсам.
    Телофаза II Полученные однохроматидные хромосомы деспирализуются. Образуется ядерная оболочка.

    Итак, очевидно, что фазы деления мейоза гораздо сложнее, чем процесс митоза. Но, как уже было упомянуто, это не умаляет биологической роли непрямого деления, поскольку они выполняют разные функции.

    Кстати, мейоз и его фазы наблюдаются и у некоторых простейших. Однако, как правило, он включает в себя лишь одно деление. Предполагается, что такая одноступенчатая форма позднее развилась в современную, двухступенчатую.

    Отличия и сходства митоза и мейоза

    На первый взгляд кажется, что различия двух этих процессов очевидны, ведь это совершенно разные механизмы. Однако при более глубоком анализе оказывается, что различия митоза и мейоза не так уж глобальны, в конце концов они приводят к образованию новых клеток.

    Прежде всего стоит поговорить о том, что есть общего у этих механизмов. По сути совпадения всего два: в одинаковой последовательности фаз, а также в том, что

    перед обоими видами деления происходит репликация ДНК. Хотя, что касается мейоза, до начала профазы I этот процесс не завершается полностью, заканчиваясь на одной из первых подстадий. А последовательность фаз хоть и аналогична, но, по сути, происходящие в них события совпадают не полностью. Так что сходства митоза и мейоза не так уж и многочисленны.

    Различий же гораздо больше. Прежде всего, митоз происходит в в то время как мейоз тесно связан с образованием половых клеток и спорогенезом. В самих фазах процессы не полностью совпадают. Например, кроссинговер в митозе происходит во время интерфазы, и то не всегда. Во втором же случае на этот процесс приходится анафаза мейоза. в непрямом делении обычно не осуществляется, а значит, он не играет никакой роли в эволюционном развитии организма и поддержании внутривидового разнообразия. Количество получившихся в результате митоза клеток - две, и они в генетическом смысле идентичны материнской и обладают диплоидным набором хромосом. Во время редукционного деления все иначе. Результат мейоза - 4 отличающихся от материнской. Кроме того, оба механизма значительно различаются по длительности, и это связано не только с различием в количестве ступеней деления, но и длительностью каждого из этапов. Например, первая профаза мейоза длится намного дольше, ведь в это время происходит конъюгация хромосом и кроссинговер. Именно поэтому ее дополнительно делят на несколько стадий.

    В общем и целом сходства митоза и мейоза достаточно незначительны по сравнению с их отличиями друг от друга. Перепутать эти процессы практически невозможно. Поэтому сейчас даже несколько удивляет то, что редукционное деление раньше считалось разновидностью митоза.

    Последствия мейоза

    Как уже было упомянуто, после окончания процесса редукционного деления, вместо материнской клетки с диплоидным набором хромосом образуются четыре гаплоидных. И если говорить про различия митоза и мейоза - это самое значительное. Восстановление необходимого количества, если речь идет о половых клетках, происходит после оплодотворения. Таким образом, с каждым новым поколением не происходит удвоения количества хромосом.

    Кроме того, во время мейоза происходит рекомбинация генов. В процессе размножения это приводит к поддержанию внутривидового разнообразия. Так что тот факт, что даже родные братья и сестры порой сильно отличаются друг от друга - именно результат мейоза.

    Кстати, стерильность некоторых гибридов в животном мире - тоже проблема редукционного деления. Дело в том, что хромосомы родителей, принадлежащих к разным видам, не могут вступить в конъюгацию, а значит, процесс образования полноценных жизнеспособных половых клеток невозможен. Таким образом, именно мейоз лежит в основе эволюционного развития животных, растений и других организмов.

    Мейоз – это способ деления клеток эукариот, при котором образуются гаплоидные клетки. Этим мейоз отличается от митоза, при котором образуются диплоидные клетки.

    Кроме того, мейоз протекает в два следующих друг за другом деления, которые называют соответственно первым (мейоз I) и вторым (мейоз II). Уже после первого деления клетки содержат одинарный, т. е. гаплоидный, набор хромосом. Поэтому первое деление часто называют редукционным . Хотя иногда термин «редукционное деление» применяют по отношению ко всему мейозу.

    Второе деление называется эквационным и по механизму протекания сходно с митозом. В мейозе II к полюсам клетки расходятся сестринские хроматиды.

    Мейозу, как и митозу, в интерфазе предшествует синтез ДНК – репликация, после которой каждая хромосома состоит уже из двух хроматид, которые называют сестринскими. Между первым и вторым делениями синтеза ДНК не происходит.

    Если в результате митоза образуются две клетки, то в результате мейоза – 4. Однако если организм производит яйцеклетки, то остается только одна клетка, сконцентрировавшая в себе питательные вещества.

    Количество ДНК перед первым делением принято обозначать как 2n 4c. Здесь n обозначает хромосомы, c – хроматиды. Это значит, что каждая хромосома имеет гомологичную себе пару (2n), в то же время каждая хромосома состоит из двух хроматид. С учетом наличия гомологичной хромосомы получается четыре хроматиды (4c).

    После первого и перед вторым делением количество ДНК в каждой из двух дочерних клетках сокращается до 1n 2c. То есть гомологичные хромосомы расходятся в разные клетки, но продолжают состоять из двух хроматид.

    После второго деления образуются четыре клетки с набором 1n 1c, т. е. в каждой присутствует только одна хромосома из пары гомологичных и состоит она только из одной хроматиды.

    Ниже приводится подробное описание первого и второго мейотического деления. Обозначение фаз такое же как при митозе: профаза, метафаза, анафаза, телофаза. Однако протекающие в эти фазы процессы, особенно в профазе I, несколько отличаются.

    Мейоз I

    Профаза I

    Обычно это самая длинная и сложная фаза мейоза. Протекает намного дольше, чем при митозе. Связано это с тем, что в это время гомологичные хромосомы сближаются и обмениваются участками ДНК (происходят конъюгация и кроссинговер).


    Конъюгация - процесс сцепления гомологичных хромосом. Кроссинговер - обмен идентичными участками между гомологичными хромосомами. Несестринские хроматиды гомологичных хромосом могут обменяться равнозначными участками. В местах, где происходит такой обмен формируется так называемая хиазма .

    Спаренные гомологичные хромосомы называются бивалентами , или тетрадами . Связь сохраняется до анафазы I и обеспечивается центромерами между сестринскими хроматидами и хиазмами между несестринскими.

    В профазе происходит спирализация хромосом, так что к концу фазы хромосомы приобретают характерную для них форму и размеры.

    На более поздних этапах профазы I ядерная оболочка распадается на везикулы, ядрышки исчезают. Начинает формироваться мейотическое веретено деления. Образуются три вида микротрубочек веретена. Одни прикрепляются к кинетохорам, другие - к трубочкам, нарастающим с противоположного полюса (конструкция выполняет функцию распорок). Третьи формируют звезчатую структуру и прикрепляются к мембранному скелету, выполняя функцию опоры.

    Центросомы с центриолями расходятся к полюсам. Микротрубочки внедряются в область бывшего ядра, прикрепляются к кинетохорам, находящимся в области центромер хромосом. При этом кинетохоры сестринских хроматид сливаются и действуют единым целым, что позволяет хроматидам одной хромосомы не разъединяться и в дальнейшем вместе отойти к одному из полюсов клетки.

    Метафаза I

    Окончательно формируется веретено деления. Пары гомологичных хромосом располагаются в плоскости экватора. Они выстраиваются друг против друга по экватору клетки так, что экваториальная плоскость оказывается между парами гомологичных хромосом.

    Анафаза I

    Гомологичные хромосомы разъединяются и расходятся к разным полюсам клетки. Из-за произошедшего в профазу кроссинговера их хроматиды уже не идентичны друг другу.

    Телофаза I

    Восстанавливаются ядра. Хромосомы деспирализуются в тонкий хроматин. Клетка делится надвое. У животных впячиванием мембраны. У растений образуется клеточная стенка.

    Мейоз II

    Интерфаза между двумя мейотическими делениями называется интеркинезом , он очень короткий. В отличие от интерфазы удвоения ДНК не происходит. По-сути она и так удвоена, просто в каждой из двух клеток содержится по одной из гомологичных хромосом. Мейоз II протекает одновременно в двух клетках, образовавшихся после мейоза I. На схеме ниже изображено деление только одной клетки из двух.


    Профаза II

    Короткая. Снова исчезают ядра и ядрышки, а хроматиды спирализуются. Начинает формироваться веретено деления.

    Метафаза II

    К каждой хромосоме, состоящей из двух хроматид, прикрепляется по две нити веретена деления. Одна нить с одного полюса, другая – с другого. Центромеры состоят из двух отдельных кинетохор. Метафазная пластинка образуется в плоскости перпендикулярной экватору метафазы I. То есть если родительская клетка в мейозе I делилась вдоль, то теперь две клетки будут делиться поперек.

    Анафаза II

    Белок, связывающий сестринские хроматиды, разделяется, и они расходятся к разным полюсам. Теперь сестринские хроматиды называются сестринскими хромосомами.

    Телофаза II

    Подобна телофазе I. Происходит деспирализация хромосом, исчезновение веретена деления, образование ядер и ядрышек, цитокинез.

    Значение мейоза

    В многоклеточном организме мейозом делятся только половые клетки. Поэтому главное значение мейоза – это обеспечение механизм а полового размножения, при котором сохраняется постоянство числа хромосом у вида .

    Другое значение мейоза – это протекающая в профазе I перекомбинация генетической информации, т. е. комбинативная изменчивость. Новые комбинации аллелей создаются в двух случаях. 1. Когда происходит кроссинговер, т. е. несестринские хроматиды гомологичных хромосом обмениваются участками. 2. При независимом расхождении хромосом к полюсам в обоих мейотических делениях. Другими словами, каждая хромосома может оказаться в одной клетке в любой комбинации с другими негомологичными ей хромосомами.

    Уже после мейоза I клетки содержат разную генетическую информацию. После второго деления все четыре клетки отличаются между собой. Это важное отличие мейоза от митоза, при котором образуются генетически идентичные клетки.

    Кроссинговер и случайное расхождение хромосом и хроматид в анафазах I и II создают новые комбинации генов и являются одной из причин наследственной изменчивости организмов , благодаря которой возможна эволюция живых организмов.



    Понравилась статья? Поделитесь ей
    Наверх