Клеточный цикл состоит из. Жизненный цикл клетки: фазы, периоды. Жизненный цикл вируса в клетке хозяина. Нарушения клеточного цикла и образование опухолей

Этот урок позволяет самостоятельно изучить тему «Жизненный цикл клетки». На нем мы поговорим, что играет главную роль при клеточном делении, что передает генетическую информацию от одного поколения к другому. Также вы изучите весь жизненный цикл клетки, который еще называют последовательностью событий, протекающих от момента образования клетки до ее деления.

Тема: Размножение и индивидуальное развитие организмов

Урок: Жизненный цикл клетки

Согласно клеточной теории, новые клетки возникают только путем деления предыдущих материнских клеток. , в которых содержатся молекулы ДНК, играют важную роль в процессах клеточного деления, поскольку обеспечивают передачу генетической информации от одного поколения к другому.

Поэтому очень важно, чтобы дочерние клетки получили одинаковое количество генетического материала, и вполне естественно, что перед делением клетки происходит удвоение генетического материала, то есть молекулы ДНК (рис. 1).

Что же такое клеточный цикл? Жизненный цикл клетки - последовательность событий, происходящих от момента образования данной клетки до ее деления на дочерние клетки. Согласно другому определению, клеточный цикл - жизнь клетки от момента ее появления в результате деления материнской клетки и до ее собственного деления или гибели.

В течение клеточного цикла клетка растет и видоизменяется так, чтобы успешно выполнять свои функции в многоклеточном организме. Этот процесс носит название дифференцировки. Затем клетка успешно выполняет свои функции в течение определенного промежутка времени, после чего приступает к делению.

Понятно, что все клетки многоклеточного организма не могут делиться бесконечно, иначе все существа, в том числе и человек, были бы бессмертными.

Рис. 1. Фрагмент молекулы ДНК

Этого не происходит, потому что в ДНК имеются «гены смерти», которые активируются при определенных условиях. Они синтезируют определенные белки-ферменты, разрушающие структуры клетки, её органеллы. В результате, клетка сжимается и погибает.

Такая запрограммированная клеточная смерть носит название апоптоза. Но в период от момента появления клетки и до апоптоза, клетка проходит множество делений.

Клеточный цикл состоит из 3-х главных стадий:

1. Интерфаза - период интенсивного роста и биосинтеза определенных веществ.

2. Митоз, или кариокинез (деление ядра).

3. Цитокинез (деление цитоплазмы).

Давайте более подробно охарактеризуем стадии клеточного цикла. Итак, первая - это интерфаза. Интерфаза - наиболее продолжительная фаза, период интенсивного синтеза и роста. В клетке синтезируется много веществ, необходимых для ее роста и осуществления всех свойственных ей функций. Во время интерфазы происходит репликация ДНК.

Митоз - процесс деления ядра, при котором хроматиды отделяются друг от друга и перераспределяются в виде хромосом между дочерними клетками.

Цитокинез - процесс разделения цитоплазмы между двумя дочерними клетками. Обычно под названием митоз цитологии объединяют стадию 2 и 3, то есть деление клетки (кариокинез), и деление цитоплазмы (цитокинез).

Давайте более подробно охарактеризуем интерфазу (рис. 2). Интерфаза состоит из 3-х периодов: G 1, S и G 2. Первый период, пресинтетический (G 1) - это фаза интенсивного роста клетки.

Рис. 2. Основные стадии жизненного цикла клетки.

Здесь происходит синтез определенных веществ, это наиболее продолжительная фаза, которая следует за делением клеток. В этой фазе происходит накопление веществ и энергии, необходимой для последующего периода, то есть для удвоения ДНК.

Согласно современным представлениям, в периоде G 1 синтезируются вещества, которые ингибируют либо стимулируют следующий период клеточного цикла, а именно синтетический период.

Синтетический период (S), обычно длится от 6 до 10 часов, в отличие от пресинтетического периода, который может длиться до нескольких суток и включает удвоение ДНК, а также синтез белков, например белков гистонов, которые могут формировать хромосомы. К концу синтетического периода, каждая хромосома состоит из двух хроматид, соединенных друг с другом центромером. В этот же период центриоли удваиваются.

Постсинтетический период (G 2), наступает сразу же после удвоения хромосом. Он длится от 2-х до 5-ти часов.

В этот же период накапливается энергия, необходимая для дальнейшего процесса деления клетки, то есть непосредственно для митоза.

В этот период происходит деление митохондрий и хлоропластов, а также синтезируются белки, которые впоследствии будут образовывать микротрубочки. Микротрубочки, как вы знаете, образуют нить веретена деления, и теперь клетка готова к митозу.

Прежде чем перейти к описанию способов деления клетки, рассмотрим процесс удвоения ДНК, который приводит к образованию двух хроматид. Этот процесс происходит в синтетическом периоде. Удвоение молекулы ДНК называют репликацией или редупликацией (рис. 3).

Рис. 3. Процесс репликации (редупликации) ДНК (синтетический период интерфазы). Фермент хеликаза (зеленый) расплетает двойную спираль ДНК, а ДНК-полимеразы (голубой и оранжевый) достраивают комплементарные нуклеотиды.

Во время репликации часть молекулы материнской ДНК расплетается на две нити с помощью специального фермента - хеликазы. Причем это достигается разрывом водородных связей между комплементарными азотистыми основаниями (А-Т и Г-Ц). Далее к каждому нуклеотиду разошедшихся нитей ДНК фермент ДНК полимеразы подстраивает комплементарный ему нуклеотид.

Так образуются две двухцепочечные молекулы ДНК, в состав каждой из которой входит одна цепочка материнской молекулы и одна новая дочерняя цепочка. Эти две молекулы ДНК абсолютно идентичны.

Расплести для репликации всю большую молекулу ДНК одновременно невозможно. Поэтому репликация начинается в отдельных участках молекулы ДНК, образуются короткие фрагменты, которые затем сшиваются в длинную нить при помощи определенных ферментов.

Продолжительность клеточного цикла зависит от типа клетки и от внешних факторов, таких как температура, наличие кислорода, наличие питательных веществ. Например, бактериальные клетки в благоприятных условиях делятся каждые 20 минут, клетки эпителия кишечника каждые 8-10 часов, а клетки кончиков корней лука делятся каждые 20 часов. А некоторые клетки нервной системы не делятся никогда.

Возникновение клеточной теории

В XVII веке английский врач Роберт Гук (рис. 4), используя самодельный световой микроскоп, увидел, что пробка и другие растительные ткани состоят из маленьких ячеек, разделенных перегородками. Он их назвал клетками.

Рис. 4. Роберт Гук

В 1738 году немецкий ботаник Маттиас Шлейден (рис. 5) пришел к выводу, что растительные ткани состоят из клеток. Ровно через год зоолог Теодор Шванн (рис. 5) пришел к такому же выводу, но только относительно тканей животных.

Рис. 5. Маттиас Шлейден (слева) Теодор Шванн (справа)

Он заключил, что животные ткани, так же как и растительные, состоят из клеток и что клетки являются основой жизни. На основании клеточных данных ученые сформулировали клеточную теорию.

Рис. 6. Рудольф Вирхов

Через 20 лет Рудольф Вирхов (рис. 6) расширил клеточную теорию и пришел к заключению, что клетки могут появляться из других клеток. Он писал: «Где существует клетка, там должна быть и предшествующая клетка, точно так, как животные происходят только от животного, а растения - только от растения… Над всеми живыми формами, будь то организмы животных или растений, или их составные части, господствует вечный закон непрерывного развития».

Строение хромосом

Как вы знаете, хромосомы играют ключевую роль в клеточном делении, поскольку передают генетическую информацию от одного поколения к другому. Хромосомы состоят из молекулы ДНК, связанной с белками гистонами. Также в состав рибосом входит небольшое количество РНК.

В делящихся клетках хромосомы представлены в виде длинных тонких нитей, равномерно распределенных по всему объему ядра.

Отдельные хромосомы не различимы, но их хромосомный материал окрашивается основными красителями и называется хроматином. Перед делением клетки хромосомы (рис. 7) утолщаются и укорачиваются, что позволяет их хорошо видеть в световой микроскоп.

Рис. 7. Хромосомы в профазе 1 мейоза

В диспергированном, то есть растянутом состоянии, хромосомы участвуют во всех процессах биосинтеза или регулируют процессы биосинтеза, а во время клеточного деления эта их функция приостанавливается.

При всех формах клеточного деления ДНК каждой хромосомы реплицируется, так что образуются две идентичные, двойные полинуклеотидные цепи ДНК.

Рис. 8. Строение хромосомы

Эти цепи окружаются белковой оболочкой и в начале клеточного деления имеют вид идентичных нитей, лежащих бок о бок. Каждая нить носит название хроматиды и соединена со второй нитью неокрашивающимся участком, который носит название центромеры (рис. 8).

Домашнее задание

1. Что такое клеточный цикл? Из каких стадий он состоит?

2. Что происходит с клеткой во время интерфазы? Из каких этапов состоит интерфаза?

3. Что такое репликация? Каково её биологическое значение? Когда она происходит? Какие вещества в ней участвуют?

4. Как зародилась клеточная теория? Назовите имена ученых, которые участвовали в её становлении.

5. Что такое хромосома? Какова роль хромосом в клеточном делении?

1. Техническая и гуманитарная литература ().

2. Единая коллекция Цифровых Образовательных Ресурсов ().

3. Единая коллекция Цифровых Образовательных Ресурсов ().

4. Единая коллекция Цифровых Образовательных Ресурсов ().

Список литературы

1. Каменский А. А., Криксунов Е. А., Пасечник В. В. Общая биология 10-11 класс Дрофа, 2005.

2. Биология. 10 класс. Общая биология. Базовый уровень / П. В. Ижевский, О. А. Корнилова, Т. Е. Лощилина и др. - 2-е изд., переработанное. - Вентана-Граф, 2010. - 224 стр.

3. Беляев Д. К. Биология 10-11 класс. Общая биология. Базовый уровень. - 11-е изд., стереотип. - М.: Просвещение, 2012. - 304 с.

4. Биология 11 класс. Общая биология. Профильный уровень / В. Б. Захаров, С. Г. Мамонтов, Н. И. Сонин и др. - 5-е изд., стереотип. - Дрофа, 2010. - 388 с.

5. Агафонова И. Б., Захарова Е. Т., Сивоглазов В. И. Биология 10-11 класс. Общая биология. Базовый уровень. - 6-е изд., доп. - Дрофа, 2010. - 384 с.

Клеточный цикл

Клеточный цикл состоит из митоза (М-фаза) и интерфазы. В интерфазе последовательно различают фазы G 1 , S и G 2 .

СТАДИИ КЛЕТОЧНОГО ЦИКЛА

Интерфаза

G 1 следует за телофазой митоза. В эту фазу клетка синтезирует РНК и белки. Продолжительность фазы – от нескольких часов до нескольких дней.

G 2 клетки могут выйти из цикла и находится в фазе G 0 . В фазе G 0 клетки начинают дифференцироваться.

S . В фазу S в клетке продолжается синтез белка, происходит репликация ДНК, разделяются центриоли. В большинстве клеток фаза S длится 8-12 часов.

G 2 . В фазу G 2 продолжается синтез РНК и белка (например, синтез тубулина для микротрубочек митотического веретена). Дочерние центриоли достигают размеров дефинитивных органелл. Эта фаза длится 2-4 часа.

МИТОЗ

В ходе митоза делятся ядро (кариокинез) и цитоплазма (цитокинез). Фазы митоза: профаза, прометафаза, метафаза, анафаза, телофаза.

Профаза . Каждая хромосома состоит из двух сестринских хроматид, соединенных центромерой, исчезает ядрышко. Центриоли организуют митотическое веретено. Пара центриолей входит в состав митотического центра, от которого радиально отходят микротрубочки. Сначала митотические центры располагаются вблизи ядерной мембраны, а затем расходятся, и образуется биполярное митотическое веретено. В этом процессе участвуют полюсные микротрубочки, взаимодействующие между собой по мере удлинения.

Центриоль входит в состав центросомы (центросома содержит две центриоли и перицентриольный матрикс) и имеет форму цилиндра диаметром 15- нм и длиной 500 нм; стенка цилиндра состоит из 9 триплетов микротрубочек. В центросоме центриоли расположены под прямым углом друг к другу. В ходе фазы S клеточного цикла центриоли дуплицируются. В митозе пары центриолей, каждая из которых состоит из первоначальной и вновь образованной, расходятся к полюсам клетки и участвуют в образовании митотического веретена.

Прометафаза . Ядерная оболочка распадается на мелкие фрагменты. В области центромер появляются кинетохоры, функционирующие как центры организации кинетохорных микротрубочек. Отхождение кинетохор от каждой хромосомы в обе стороны и их взаимодействие с полюсными микротрубочками митотического веретена – причина перемещения хромосом.

Метафаза . Хромосомы располагаются в области экватора веретена. Образуется метафазная пластинка, в которой каждая хромосома удерживается парой кинетохоров и связанными с ними кинетохорными микротрубочками, направленными к противоположным полюсам митотического веретена.

Анафаза – расхождение дочерних хромосом к полюсам митотического веретена со скоростью 1 мкм/мин.

Телофаза . Хроматиды подходят к полюсам, кинетохорные микротрубочки исчезают, а полюсные продолжают удлиняться. Образуется ядерная оболочка, появляется ядрышко.

Цитокинез – разделение цитоплазмы на две обособляющиеся части. Процесс начинается в поздней анафазе или в телофазе. Плазмолемма втягивается между двумя дочерними ядрами в плоскости, перпендикулярной длинной оси веретена. Борозда деления углубляется, и между дочерними клетками остается мостик – остаточное тельце. Дальнейшее разрушение этой структуры приводит к полному разделению дочерних клеток.

Регуляторы клеточного деления

Пролиферация клеток, происходящая путем митоза, жестко регулируется множеством молекулярных сигналов. Скоординированная деятельность этих многочисленных регуляторов клеточного цикла обеспечивает как переход клеток от фазы к фазе клеточного цикла, так и точное выполнение событий каждой фазы. Главная причина появления пролиферативно неконтролируемых клеток – мутации генов, кодирующих структуру регуляторов клеточного цикла. Регуляторы клеточного цикла и митоза подразделяют на внутриклеточные и межклеточные. Внутриклеточные молекулярные сигналы многочисленны, среди них в первую очередь следует назвать собственно регуляторы клеточного цикла (циклины, циклин-зависимые протеинкиназы, их активаторы и ингибиторы) и онкосупрессоры.

МЕЙОЗ

В ходе мейоза образуются гаплоидные гаметы.

Первое деление мейоза

Первое деление мейоза (профаза I, метафаза I, анафаза I и телофаза I) – редукционное.

Профаза I последовательно проходит несколько стадий (лептотена, зиготена, пахитена, диплотена, диакинез).

Лептотена – хроматин конденсируется, каждая хромосома состоит из двух хроматид, соединенных центромерой.

Зиготена – гомологичные парные хромосомы сближаются и вступают в физический контакт (синапсис ) в виде синаптонемального комплекса, обеспечивающего конъюгацию хромосом. На этой стадии две лежащие рядом пары хромосом образуют бивалент.

Пахитена – хромосомы утолщаются вследствие спирализации. Отдельные участки конъюгировавших хромосом перекрещиваются друг с другом и образуют хиазмы. Здесь происходит кроссинговер - обмен участками между отцовскими и материнскими гомологичными хромосомами.

Диплотена – разделение конъюгировавших хромосом в каждой паре в результате продольного расщепления синаптонемального комплекса. Хромосомы расщепляются по всей длине комплекса, за исключением хиазм. В составе бивалента четко различимы 4 хроматиды. Такой бивалент называют тетрадой. В хроматидах появляются участки раскручивания, где синтезируется РНК.

Диакинез. Продолжаются процессы укорочения хромосом и расщепления хромосомных пар. Хиазмы перемещаются к концам хромосом (терминализация). Разрушается ядерная мембрана, исчезает ядрышко. Появляется митотическое веретено.

Метафаза I . В метафазе I тетрады образуют метафазную пластинку. В целом отцовские и материнские хромосомы распределяются случайным образом по ту или другую сторону экватора митотического веретена. Подобный характер распределения хромосом лежит в основе второго закона Менделя, что (наряду с кроссинговером) обеспечивает генетические различия между индивидуумами.

Анафаза I отличается от анафазы митоза тем, что при митозе к полюсам расходятся сестринские хроматиды. В эту фазу мейоза к полюсам отходят целостные хромосомы.

Телофаза I не отличается от телофазы митоза. Формируются ядра, имеющие 23 конъюгированные (удвоенные) хромосомы, происходит цитокинез, образуются дочерние клетки.

Второе деление мейоза.

Второе деление мейоза – эквационное – протекает так же, как митоз (профаза II, метафаза II, анафаза II и телофаза), но значительно быстрее. Дочерние клетки получают гаплоидный набор хромосом (22 аутосомы и одну половую хромосому).

Рост тела человека обусловлен увеличением размера и количества клеток, при этом последнее обеспечивается процессом деления, или митозом. Пролиферация клеток происходит под воздействием внеклеточных факторов роста, а сами клетки проходят через повторяющуюся последовательность событий, известную как клеточный цикл.

Различают четыре основные фазы : G1 (пресинтетическая), S (синтетическая), G2 (постсинтетическая) и М (митотическая). Затем следует разделение цитоплазмы и плазматической мембраны, в результате чего возникают две одинаковые дочерние клетки. Фазы Gl, S и G2 входят в состав интерфазы. Репликация хромосом происходит во время синтетической фазы, или S-фазы.
Большинство клеток не подвержено активному делению, их митотическая активность подавляется во время фазы GO, входящей в состав фазы G1.

Продолжительность М-фазы составляет 30-60 мин, в то время как весь клеточный цикл проходит примерно за 20 ч. В зависимости от возраста нормальные (не опухолевые) клетки человека претерпевают до 80 митотических циклов.

Процессы клеточного цикла контролируются последовательно повторяющимися активацией и инактивацией ключевых ферментов, называемых цик дин зависимыми протеинкиназами (ЦЗК), а также их кофакторов - циклинов. При этом под воздействием фосфокиназ и фосфатаз происходят фосфорилирование и дефосфорилирование особых циклин-ЦЗК-комплексов, ответственных за начало тех или иных фаз цикла.

Кроме того, на соответствующих стадиях подобные ЦЗК-белки вызывают уплотнение хромосом, разрыв ядерной оболочки и реорганизацию микротрубочек цитоскелета в целях формирования веретена деления (митотического веретена).

G1-фаза клеточного цикла

G1-фаза - промежуточная стадия между М- и S-фазами, во время которой происходит увеличение количества цитоплазмы. Кроме того, в конце фазы G1 расположена первая контрольная точка, на которой происходят репарация ДНК и проверка условий окружающей среды (достаточно ли они благоприятны для перехода к S-фазе).

В случае если ядерная ДНК повреждена, усиливается активность белка р53, который стимулирует транскрипцию р21. Последний связывается со специфическим циклин-ЦЗК-комплексом, ответственным за перевод клетки в S-фазу, и тормозит её деление на стадии Gl-фазы. Это позволяет репарационным ферментам исправить повреждённые фрагменты ДНК.

При возникновении патологий белка р53 репликация дефективной ДНК продолжается, что позволяет делящимся клеткам накапливать мутации и способствует развитию опухолевых процессов. Именно поэтому белок р53 часто называют «стражем генома».

G0-фаза клеточного цикла

Пролиферация клеток у млекопитающих возможна только при участии секретируемых другими клетками внеклеточных факторов роста , которые оказывают своё воздействие через каскадную сигнальную трансдукцию протоонкогенов. Если во время фазы G1 клетка не получает соответствующих сигналов, то она выходит из клеточного цикла и переходит в состояние G0, в котором может находиться несколько лет.

Блок G0 происходит при помощи белков - супрессоров митоза, один из которых - ретинобластомный белок (Rb-белок), кодируемый нормальными аллелями гена ретинобластомы. Данный белок прикрепляется кособым регуляторным протеинам, блокируя стимуляцию транскрипции генов, необходимых для пролиферации клеток.

Внеклеточные факторы роста разрушают блок путём активации Gl-специфических циклин-ЦЗК-комплексов , которые фосфорилируют Rb-белок и изменяют его конформацию, в результате чего разрывается связь с регуляторными белками. При этом последние активируют транскрипцию кодируемых ими генов, которые запускают процесс пролиферации.

S фаза клеточного цикла

Стандартное количество двойных спиралей ДНК в каждой клетке, соответствующее диплоидному набору одноцепочечных хромосом, принято обозначать как 2С. Набор 2С сохраняется на протяжении фазы G1 и удваивается (4С) во время S-фазы, когда синтезируется новая хромосомная ДНК.

Начиная с конца S-фазы и до М-фазы (включая фазу G2) каждая видимая хромосома содержит две плотно связанные друг с другом молекулы ДНК, называемые сестринскими хроматидами. Таким образом, в клетках человека начиная с конца S-фазы и до середины М-фазы присутствуют 23 пары хромосом (46 видимых единиц), но 4С (92) двойные спирали ядерной ДНК.

В процессе митоза происходит распределение одинаковых наборов хромосом по двум дочерним клеткам таким образом, чтобы в каждой из них содержалось по 23 пары 2С-молекул ДНК. Следует отметить, что фазы G1 и G0 - единственные фазы клеточного цикла, во время которых в клетках 46 хромосомам соответствует 2С-набор молекул ДНК.

G2-фаза клеточного цикла

Вторая контрольная точка , на которой проверяется размер клетки, находится в конце фазы G2, расположенной между S-фазой и митозом. Кроме того, на данной стадии, прежде чем перейти к митозу, происходит проверка полноты репликации и целостности ДНК. Митоз (М-фаза)

1. Профаза . Хромосомы, каждая из которых состоит из двух одинаковых хроматид, начинают уплотняться и становятся видимыми внутри ядра. На противоположных полюсах клетки вокруг двух центросом из волокон тубулина начинает образовываться веретеноподобный аппарат.

2. Прометафаза . Происходит разделение мембраны ядра. Вокруг центромер хромосом формируются кинетохоры. Волокна тубулина проникают внутрь ядра и концентрируются вблизи кинетохор, соединяя их с волокнами, исходящими из центросом.

3. Метафаза . Натяжение волокон заставляет хромосомы выстраиваться посередине в линию между полюсами веретена, формируя тем самым метафазную пластинку.

4. Анафаза . ДНК центромер, разделённая между сестринскими хроматидами, дуплицируется, хроматиды разделяются и расходятся ближе к полюсам.

5. Телофаза . Разделённые сестринские хроматиды (которые с этого момента считают хромосомами) достигают полюсов. Вокруг каждой из групп возникает ядерная мембрана. Уплотнённый хроматин рассеивается и происходит формирование ядрышек.

6. Цитокинез . Клеточная мембрана сокращается и посередине между полюсами образуется борозда дробления, которая со временем разделяет две дочерние клетки.

Цикл центросомы

Во время фазы G1 происходит разделение пары центриолей, сцепленных с каждой центросомой. На протяжении S- и G2-фаз справа от старых центриолей формируется новая дочерняя центриоль. В начале М-фазы центросома разделяется, две дочерние центросомы расходятся к полюсам клетки.

Период жизни клетки от момента её рождения в результате деления материнской клетки до следующего деления или смерти называется жизненным (клеточным) циклом клетки.

Клеточный цикл способных к размножению клеток включает две стадии: - ИНТЕРФАЗУ (стадия между делениями, интеркинез); - ПЕРИОД ДЕЛЕНИЯ (митоз). В интерфазе происходит подготовка клетки к делению – синтез различных веществ, но главным является удвоение ДНК. По продолжительности она составляет большую часть жизненного цикла. Интерфаза состоит из 3–х периодов: 1) Предсинтетический – G1 (джи один) – наступает сразу после окончания деления. Клетка растет, накапливает различные вещества (богатые энергией), нуклеотиды, аминокислоты, ферменты. Готовится к синтезу ДНК. Хромосома содержит 1 молекулу ДНК (1 хроматида). 2) Синтетический – S происходит удвоение материала – репликация молекул ДНК. Усиленно синтезируется белки и РНК. Происходит удвоение числа центриолей.

3) Постсинтетический G2 – предмитотический, продолжается синтез РНК. Хромосомы содержат 2 свои копии – хроматиды, каждая из которых несет по 1-ой молекуле ДНК (двунитевидная). Клетка готова к делению хромосома сперализуется.

Амитоз – прямое деление

Митоз – непрямое деление

Мейоз – редукционное деление

АМИТОЗ – встречается редко, особенно у стареющих клеток или при патологических состояниях (репарация тканей), ядро остаётся в интефазном состоянии, хромосомы не сперализуются. Ядро делится путем перетяжки. Цитоплазма может и не делится, тогда образуются двуядерные клетки.

МИТОЗ – универсальный способ деления. В жизненном цикле он составляет лишь малую часть. Цикл эпитемальных клеток кишечника кошки составляет 20 – 22 ч., митоз – 1 час. Митоз состоит из 4-х фаз.

1)ПРОФАЗА – происходит укорочение и утолщение хромосом (спирализация) они хорошо видны. Хромосомы состоят из 2-х хроматид (удвоение в периоде интерфазы). Ядрышко и ядерная оболочка распадаются, цитоплазма и кариоплазма смешиваются. Разделившиеся клеточные центры расходятся по длинной оси клетки к полюсам. Образуется веретено деления (состоящее из упругих белковых нитей).

2)МЕТОФАЗА – хромосомы располагаются в одной плоскости по экватору, образуя метафазную пластинку. Веретено деления состоит из 2-х типов нитей: одни соединяют клеточные центры, вторые – (число их = числу хромосом 46) прикреплены, одним концом к центросоме (клеточному центру), другой к центромере хромосомы. Центромера тоже начинает делиться на 2. Хромосомы (в конце) расщепляются в области центромеры.



3)АНАФАЗА – самая короткая фаза митоза. Нити веретена деления начинают укорачиваться и хроматиды каждой хромосомы удаляются друг от друга по направлению к полюсам. Каждая хромосома состоит только из 1 хроматиды.

4)ТЕЛОФАЗА – хромосомы концентрируются у соответствующих клеточных центров, деспирализуются. Формируются ядрышки, ядерная оболочка, образуется мембрана, отделяющая сестринские клетки друг от друга. Сестринские клетки расходятся.

Биологическое значение митоза состоит в том, что в результате его каждая дочерняя клетка получает точно такой же набор хромосом, а следовательно, и точно такую же генетическую информацию, какими обладала материнская клетка.

7. МЕЙОЗ – ДЕЛЕНИЕ, СОЗРЕВАНИЕ ПОЛОВЫХ КЛЕТОК

Сущность полового размножения заключается в слиянии 2-х ядер половых клеток (гамет) сперматозоидов (муж) и яйцеклетки (жен). В процессе развития половые клетки претерпевают митотическое деление, а в период созревания – мейотическое. Поэтому зрелые половые клетки содержат гаплоидный набор хромосом (п): П +П=2П (зигота). Если бы гаметы имели 2п (диплоидн.) то, потомки имели бы тетраплоидное (2п+2п)=4п число хромосом и т.д. Число хромосом у родителей и потомков остаётся постоянным. Уменьшение числа хромосом вдвое происходит путем мейоза, (гаметогенез). Он состоит из 2-х идущих друг за другом делений:

Редукционного

Эквационного (уравнительного)

без интерфазы между ними.

ПРОФАЗА 1 ОТЛИЧАЕТСЯ ОТ ПРОФАЗЫ МИТОЗА.

1.Лептонема (тонкие нити) в ядре диплоидный набор (2п) длинных тонких хромосом 46 шт.

2.Зигонема – гомологические хромосомы (парные) – 23 пары у человека коньюгируют (молния) «подгонка» гена к гену соединяются по всей длине 2п – 23 шт.

3.Пахинема (толстые нити) гомолог. хромосомы тесно связаны (бивалентны). Каждая хромосома состоит из 2-х хроматид, т.е. бивалент – из 4-х хроматид.

4.Диплонема (двойные нити) коньюгирование хромосомы отталкиваются друг от друга. Происходит перекручивание, а иногда обмен обломившимися частями хромосом – перекрест (кроссинговер) – это резко увеличивает наследственную изменчивость, новые комбинации генов.

5.Диакинез (движение вдаль) – заканчивается профаза хромосомы сперализуются, ядерная оболочка, распадается и наступает вторая фаза – метафаза первого деления.

Метафаза 1 – по экватору клетки лежат биваленты (тетрады), веретено деления сформировано (23 пары).

Анафаза 1 – к каждому полюсу расходятся не по 1-ой хроматиде, а по 2 хромосомы. Связь между гомологичными хромосомами ослабляются. Парные хромосомы отходят друг от друга к разным полюсам. Образуется гаплоидный набор.

Телофаза 1 – у полюсов веретена собирается одинарный, гаплоидный набор хромосом, в которых каждый вид хромосом представлен не парой, а 1-ой хромосомой состоящей из 2-х хроматид цитоплазма не всегда делится.

Мейоз 1- деление приводит к образованию клеток, несущих гаплоидный набор хромосом, но хромосомы состоят из 2-х хроматид, т.е. имеют удвоенное количество ДНК. Поэтому клетки уже готовы ко 2-му делению.

Мейоз 2 деление (эквивалентное). Все стадии: профаза 2, метафаза 2, анафаза 2 и телофаза 2. Проходит как митоз, но делятся гаплоидные клетки.

В результате деления материнские двунитчатые хромосомы, расщепляясь, образуют однонитчатые дочерние хромосомы. В каждой клетке (4) будет гаплоидный набор хромосом.

Т.О. в результате 2-х метотических делений происходит:

Увеличивается наследственная изменчивость благодаря различным комбинациям хромосом в дочерних наборах

Число возможных комбинаций пар хромосом = 2 в степени n (число хромосом в гаплоидном наборе 23 – человек).

Основные назначения мейоза заключается, в создание клеток с гаплоидным набором хромосом – осуществляется благодаря образованию в начале 1 мейотического деления пар гомологичных хромосом и последующему расхождению гомологов в разные дочерние клетки. Образование мужских половых клеток – это сперматогенез, женских - овогенез.

Клеточный цикл

Клеточный цикл - это период существования клетки от момента её образования путем деления материнской клетки до собственного деления или смерти.Содержание [показать]

Длительность клеточного цикла эукариот

Длительность клеточного цикла у разных клеток варьируется. Быстро размножающиеся клетки взрослых организмов, такие как кроветворные или базальные клетки эпидермиса и тонкой кишки, могут входить в клеточный цикл каждые 12-36 ч. Короткие клеточные циклы (около 30 мин) наблюдаются при быстром дроблении яиц иглокожих, земноводных и других животных. В экспериментальных условиях короткий клеточный цикл (около 20 ч) имеют многие линии клеточных культур. У большинства активно делящихся клеток длительность периода между митозами составляет примерно 10-24 ч.

Фазы клеточного цикла эукариот

Клеточный цикл эукариот состоит из двух периодов:

Период клеточного роста, называемый «интерфаза», во время которого идет синтез ДНК и белков и осуществляется подготовка к делению клетки.

Периода клеточного деления, называемый «фаза М» (от слова mitosis - митоз).

Интерфаза состоит из нескольких периодов:

G1-фазы (от англ. gap - промежуток), или фазы начального роста, во время которой идет синтез мРНК, белков, других клеточных компонентов;

S-фазы (от англ. synthesis - синтетическая), во время которой идет репликация ДНК клеточного ядра, также происходит удвоение центриолей (если они, конечно, есть).

G2-фазы, во время которой идет подготовка к митозу.

У дифференцировавшихся клеток, которые более не делятся, в клеточном цикле может отсутствовать G1 фаза. Такие клетки находятся в фазе покоя G0.

Период клеточного деления (фаза М) включает две стадии:

митоз (деление клеточного ядра);

цитокинез (деление цитоплазмы).

В свою очередь, митоз делится на пять стадий, in vivo эти шесть стадий образуют динамическую последовательность.

Описание клеточного деления базируется на данных световой микроскопии в сочетании с микрокиносъемкой и на результатах световой и электронной микроскопии фиксированных и окрашенных клеток.

Регуляция клеточного цикла

Закономерная последовательность смены периодов клеточного цикла осуществляется при взаимодействии таких белков, как циклин-зависимые киназы и циклины. Клетки, находящиеся в G0 фазе, могут вступать в клеточный цикл при действии на них факторов роста. Разные факторы роста, такие как тромбоцитарный, эпидермальный, фактор роста нервов, связываясь со своими рецепторами, запускают внутриклеточный сигнальный каскад, приводящий в итоге к транскрипции генов циклинов и циклин-зависимых киназ. Циклин-зависимые киназы становятся активными лишь при взаимодействии с соответствующими циклинами. Содержание различных циклинов в клетке меняется на протяжении всего клеточного цикла. Циклин является регуляторной компонентой комплекса циклин-циклин-зависимая киназа. Киназа же является каталитическим компонентом этого комплекса. Киназы не активны без циклинов. На разных стадиях клеточного цикла синтезируются разные циклины. Так, содержание циклина B в ооцитах лягушки достигает максимума к моменту митоза, когда запускается весь каскад реакций фосфорилирования, катализируемых комплексом циклин-В/циклин-зависимая киназа. К окончанию митоза циклин быстро разрушается протеиназами.

Контрольные точки клеточного цикла

Для определения завершения каждой фазы клеточного цикла необходимо наличие в нем контрольных точек. Если клетка «проходит» контрольную точку, то она продолжается «двигаться» по клеточному циклу. Если же какие-либо обстоятельства, например повреждение ДНК, мешают клетке пройти через контрольную точку, которую можно сравнить со своего рода контрольным пунктом, то клетка останавливается и другой фазы клеточного цикла не наступает по крайней мере до тех пор, пока не будут устранены препятствия, не позволявшие клетке пройти через контрольный пункт. Существует как минимум четыре контрольных точки клеточного цикла: точка в G1, где проверяется интактность ДНК, перед вхождением в S-фазу, сверочная точка в S-фазе, в которой проверяется правильность репликации ДНК, сверочная точка в G2, в которой проверяются повреждения, пропущенные при прохождении предыдущих сверочных точек, либо полученные на последующих стадиях клеточного цикла. В G2 фазе детектируется полнота репликации ДНК и клетки, в которых ДНК недореплицирована, не входят в митоз. В контрольной точке сборки веретена деления проверяется, все ли кинетохоры прикреплены к микротрубочкам.

Нарушения клеточного цикла и образование опухолей

Увеличение синтеза белка p53 ведет к индукции синтеза белка p21 - ингибитора клеточного цикла

Нарушение нормальной регуляции клеточного цикла является причиной появления большинства твердых опухолей. В клеточном цикле, как уже говорилось, прохождение контрольных пунктов его возможно только в случае нормального завершения предыдущих этапов и отсутствия поломок. Для опухолевых клеток характерны изменения компонентов сверочных точек клеточного цикла. При инактивации сверочных точек клеточного цикла наблюдается дисфункция некоторых опухолевых супрессоров и протоонкогенов, в частности p53, pRb, Myc и Ras. Белок p53 является одним из факторов транскрипции, который инициирует синтез белка p21, являющегося ингибитором комплекса CDK-циклин, что приводит к остановке клеточного цикла в G1 и G2 периоде. Таким образом клетка, у которой повреждена ДНК, не вступает в S-фазу. При мутациях, приводящих к потере генов белка p53, или при их изменениях, блокады клеточного цикла не происходит, клетки вступают в митоз, что приводит к появлению мутантных клеток, большая часть из которых нежизнеспособна, другая - дает начало злокачественным клеткам.

Циклины - семейство белков, являющихся активаторами циклин-зависимых протеинкиназ (CDK) (CDK - cyclin-dependent kinases) - ключевых ферментов, участвующих в регуляции клеточного цикла эукариот. Циклины получили свое название в связи с тем, что их внутриклеточная концентрация периодически изменяется по мере прохождения клеток через клеточный цикл, достигая максимума на его определенных стадиях.

Каталитическая субъединица циклин-зависимой протеинкиназы частично активируется в результате взаимодействия с молекулой циклина, которая образует регуляторную субъединицу фермента. Образование этого гетеродимера становится возможным после достижения циклином критической концентрации. В ответ на уменьшение концентрации циклина происходит инактивация фермента. Для полной активации циклин-зависимой протеинкиназы должно произойти специфическое фосфорилирование и дефосфорилирование определенных аминокислотных остатков в полипептидных цепях этого комплекса. Одним из ферментов, осуществляющих подобные реакции, является киназа CAK (CAK - CDK activating kinase).

Циклин-зависимая киназа

Циклин-зависимые киназы (англ. cyclin-dependent kinases, CDK) - группа белков, регулируемых циклином и циклиноподобными молекулами. Большинство CDK участвуют в смене фаз клеточного цикла; также они регулируют транскрипцию и процессинг мРНК. CDK являются серин\треониновыми киназами, фосфорилируя соответствующие остатки белков. Известно несколько CDK, каждая из которых активируется одним или более циклинами и иными подобными молекулами после достижения их критической концентрации, притом по большей части CDK гомологичны, отличаясь в первую очередь конфигурацией сайта связывания циклинов. В ответ на уменьшение внутриклеточной концентрации конкретного циклина происходит обратимая инактивация соответствующей CDK. Если CDK активируются группой циклинов, каждый из них как бы передавая протеинкиназы друг другу, поддерживает CDK в активированном состоянии длительное время. Такие волны активации CDK возникают на протяжении G1- и S- фаз клеточного цикла.

Список CDK и их регуляторов

CDK1; циклин A, циклин B

CDK2; циклин A, циклин E

CDK4; циклин D1, циклин D2, циклин D3

CDK5; CDK5R1, CDK5R2

CDK6; циклин D1, циклин D2, циклин D3

CDK7; циклин H

CDK8; циклин C

CDK9; циклин T1, циклин T2a, циклин T2b, циклин K

CDK11 (CDC2L2) ; циклин L

Амитоз (или прямое деление клетки), происходит в соматических клетках эукариот реже, чем митоз. Впервые он описан немецким биологом Р. Ремаком в 1841г., термин предложен гистологом. В. Флеммингом позднее – в 1882г. В большинстве случаев амитоз наблюдается в клетках со сниженной митотической активностью: это стареющие или патологически измененные клетки, часто обреченные на гибель (клетки зародышевых оболочек млекопитающих, опухолевые клетки и др.). При амитозе морфологически сохраняется интерфазное состояние ядра, хорошо видны ядрышко и ядерная оболочка. Репликация ДНК отсутствует. Спирализация хроматина не происходит, хромосомы не выявляются. Клетка сохраняет свойственную ей функциональную активность, которая почти полностью исчезает при митозе. При амитозе делится только ядро, причем без образования веретена деления, поэтому наследственный материал распределяется случайным образом. Отсутствие цитокинеза приводит к образованию двуядерных клеток, которые в дальнейшем не способны вступать в нормальный митотический цикл. При повторных амитозах могут образовываться многоядерные клетки.

Это понятие ещё фигурировало в некоторых учебниках до 1980-х гг. В настоящее время считается, что все явления, относимые к амитозу - результат неверной интерпретации недостаточно качественно приготовленных микроскопических препаратов, или интерпретации как деления клетки явлений, сопровождающих разрушение клеток или иные патологические процессы. В то же время некоторые варианты деления ядер эукариот нельзя назвать митозом или мейозом. Таково, например, деление макронуклеусов многих инфузорий, где без образования веретена происходит сегрегация коротких фрагментов хромосом.



Понравилась статья? Поделитесь ей
Наверх