Нервный центр для чего нужен. Свойства нервных центров. Торможение в ЦНС. Суммация нервных импульсов

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Нервные центры и их свойства

1. Виды и функции нервных центров

Нервным центром называется совокупность нейронов в различных отделах ЦНС, обеспечивающих регуляцию какой-либо функции организма. Например, бульбарный дыхательный центр.

Для проведения возбуждения через нервные центры характерны следующие особенности:

1. Одностороннее проведение. Оно идет от афферентного, через вставочный, к эфферентному нейрону. Это обусловлено наличием межнейронных синапсов.

2. Центральная задержка проведение возбуждения. Т.е. по НЦ возбуждение идет значительно медленнее, чем по нервному волокну. Это объясняется синаптической задержкой. Так как больше всего синапсов в центральном звене рефлекторной дуги, там скорость проведения наименьшая. Исходя из этого, время рефлекса, это время от начала воздействия раздражителя до появления ответной реакции. Чем длительнее центральная задержка, тем больше время рефлекса. Вместе с тем оно зависит от силы раздражителя. Чем она больше, тем время рефлекса короче и наоборот. Это объясняется явлением суммации возбуждений в синапсах. Кроме того, оно определяется и функциональным состоянием ЦНС. Например, при утомлении НЦ длительность рефлекторной реакции увеличивается.

3. Пространственная и временная суммация. Временная суммация возникает, как и в синапсах вследствие того, что чем больше поступает нервных импульсов, тем больше выделяется нейромедиатора в них, тем выше амплитуда ВПСП. Поэтому рефлекторная реакция может возникать на несколько последовательных подпороговых раздражений. Пространственная суммация наблюдается тогда, когда к нервному центру идут импульсы от нескольких рецепторов нейронов. При действии на них подпороговых стимулов, возникающие постсинаптические потенциалы суммируются и в мембране нейрона генерируется распространяющийся ПД.

4. Трансформация ритма возбуждения - изменение частоты нервных импульсов при прохождении через нервный центр. Частота может понижаться или повышаться. Например, повышающая трансформация (увеличение частоты) обусловлено дисперсией и мультипликацией возбуждения в нейронах. Первое явление возникает в результате разделения нервных импульсов на несколько нейронов, аксоны которых образуют затем синапсы на одном нейроне (рис). Второе, генерацией нескольких нервных импульсов при развитии возбуждающего постсинаптического потенциала на мембране одного нейрона. Понижающая трансформация объясняется суммацией нескольких ВПСП и возникновением одного ПД в нейроне.

5. Посттетаническая потенциация, это усиление рефлекторной реакции в результате длительного возбуждения нейронов центра. Под влиянием многих серий нервных импульсов, проходящих с большой частотой через синапсы. выделяется большое количество нейромедиатора в межнейронных синапсах. Это приводит к прогрессирующему нарастанию амплитуды возбуждающего постсинаптического потенциала и длительному (несколько часов) возбуждению нейронов.

6. Последействие, это запаздывание окончания рефлекторного ответа после прекращения действия раздражителя. Связано с циркуляцией нервных импульсов по замкнутым цепям нейронов.

7. Тонус нервных центров - состояние постоянной повышенной активности. Он обусловлен постоянным поступлением к НЦ нервных импульсов от периферических рецепторов, возбуждающим влиянием на нейроны продуктов метаболизма и других гуморальных факторов. Например проявлением тонуса соответствующих центров является тонус определенной группы мышц.

8. Автоматия или спонтанная активность нервных центров. Периодическая или постоянная генерация нейронами нервных импульсов, которые возникают в них самопроизвольно, т.е. в отсутствии сигналов от других нейронов или рецепторов. Обусловлена - колебаниями процессов метаболизма в нейронах и действием на них гуморальных факторов.

9. Пластичность нервных центров. Это их способность изменять функциональные свойства. При этом центр приобретает возможность выполнять новые функции или восстанавливать старые после повреждения. В основе пластичности Н.Ц. лежит пластичность синапсов и мембран нейронов, которые могут изменять свою молекулярную структуру.

10. Низкая физиологическая лабильность и быстрая утомляемость. Н.Ц. могут проводить импульсы лишь ограниченной частоты. Их утомление объясняется утомлением синапсов и ухудшением метаболизма нейронов.

Нервные центры имеют ряд общих свойств, что во многом определяется структурой и функцией синаптических образований.

1. Односторонность проведения возбуждения. В рефлекторной дуге, включающей нервные центры,

процесс возбуждения распространяется в одном направлении (от входа, афферентных путей к выходу, эфферентным путям).

2. Иррадиация возбуждения. Особенности структурной организации центральных нейронов, огромное число межнейронных соединений в нервных центрах существенно модифицируют (изменяют) направление распространения процесса возбуждения в зависимости от силы раздражителя и функционального состояния центральных нейронов. Значительное увеличение силы раздражителя приводит к расширению области вовлекаемых в процесс возбуждения центральных нейронов - иррадиации возбуждения.

3. Суммация возбуждения. В работе нервных центров значительное место занимают процессы пространственной и временной суммации возбуждения, основным нервным субстратом которой является постсинаптическая мембрана. Процесс пространственной суммации афферентных потоков возбуждения облегчается наличием на мембране нервной клетки сотен и тысяч синаптических контактов. Процессы временной суммации обусловлены суммацией ВПСП на постсинаптической мембране.

4. Наличие синаптической задержки. Время рефлекторной реакции зависит в основном от двух факторов: скорости движения возбуждения по нервным проводникам и времени распространения возбуждения с одной клетки на другую через синапс. При относительно высокой скорости распространения импульса по нервному проводнику основное время рефлекса приходится на синаптическую передачу возбуждения (синаптическая задержка). В нервных клетках высших животных и человека одна синаптическая задержка примерно равна 1 мс. Если учесть, что в реальных рефлекторных дугах имеются десятки последовательных синаптических контактов, становится понятной длительность большинства рефлекторных реакций - десятки миллисекунд.

Высокая утомляемость. Длительное повторное раздражение рецептивного поля рефлекса приводит к ослаблению рефлекторной реакции вплоть до полного исчезновения, что называется утомлением. Этот процесс связан с деятельностью синапсов - в последних наступает истощение запасов медиатора, уменьшаются энергетические ресурсы, происходит адаптация постсинаптического рецептора к медиатору.

6. Тонус. Тонус, или наличие определенной фоновой активности нервного центра, определяется тем, что в покое в отсутствие специальных внешних раздражений определенное количество нервных клеток находится в состоянии постоянного возбуждения, генерирует фоновые импульсные потоки. Даже во сне в высших отделах мозга остается некоторое количество фоновоактивных нервных клеток, формирующих «сторожевые пункты» и определяющих некоторый тонус соответствующего нервного центра.

7. Пластичность. Функциональная возможность нервного центра существенно модифицировать картину осуществляемых рефлекторных реакций. Поэтому пластичность нервных центров тесно связана с изменением эффективности или направленности связей между нейронами.

8. Конвергенция. Нервные центры высших отделов мозга являются мощными коллекторами, собирающими разнородную афферентную информацию. Количественное соотношение периферческих рецепторных и промежуточных центральных нейронов (10:1) предполагает значительную конвергенцию разномодальных сенсорных посылок на одни и те же центральные нейроны. На это указывают исследования центральных нейронов: в нервном центре имеется значительное количество поливалентных, полисенсорных нервных клеток, реагирующих на разномодальные стимулы (свет, звук, механические раздражения и т.д.). Конвергенция на клетках нервного центра разных афферентных входов предопределяет важные интегративные, перерабатывающие информацию функции центральных нейронов, т.е. высокий уровень интеграционных функций. Конвергенция нервных сигналов на уровне эфферентного звена рефлекторной дуги определяет физиологический механизм принципа «общего конечного пути» по Ч. Шеррингтону.

9. Интеграция в нервных центрах. Важные интегративные функции клеток нервных центров ассоциируются с интегративными процессами на системном уровне в плане образования функциональных объединений отдельных нервных центров в целях осуществления сложных координированных приспособительных целостных реакций организма (сложные адаптивные поведенческие акты).

10. Свойство доминанты. Доминантным называется временно господствующий в нервных центрах очаг (или доминантный центр) повышенной возбудимости в центральной нервной системе. По А.А. Ухтомскому, доминантный нервный очаг характеризуется такими свойствами, как повышенная возбудимость, стойкость и инертность возбуждения, способность к суммированию возбуждения.

В доминантном очаге устанавливается определенный уровень стационарного возбуждения, способствующий суммированию ранее подпороговых возбуждений и переводу на оптимальный для данныхусловий ритм работы, когда этот очаг становится наиболее чувствительным. Доминирующее значение такого очага (нервного центра) определяет его угнетающее влияние на другие соседние очаги возбуждения. Доминантный очаг возбуждения «притягивает» к себе возбуждение других возбужденных зон (нервных центров). Принцип доминанты определяет формирование главенствующего (активирующего) возбужденного нервного центра в тесном соответствии с ведущими мотивами, потребностями организма в конкретный момент времени.

11. Цефализация нервной системы. Основная тенденция в эволюционном развитии нервной системы проявляется в перемещении, сосредоточении функции регуляции и координации деятельности организма в головных отделах ЦНС. Этот процесс называется цефализацией управляющей функции нервной системы. При всей сложности складывающихся отношений между старыми, древними и эволюционно - новыми нервными образованиями стволовой части мозга общая схема взаимных влияний может быть представлена следующим образом: восходящие влияния (от нижележащих «старых» нервных структур к вышележащим «новым» образованиям) преимущественно носят возбуждающий стимулирующий характер, нисходящие (от вышележащих «новых» нервных образований к нижележащим «старым» нервным структурам) носят угнетающий тормозной характер. Эта схема согласуется с представлением о росте в процессе эволюции роли и значения тормозных процессов в осуществлении сложных интегративных рефлекторных реакций.

2. Локализация нервных центров

Центры нервной системы делят на корковые, подкорковые и спинномозговые центры. В пределах головного мозга различают диэнцефальные, мезенцефальные, бульбарные, гипоталамические и таламические центры. По функциям выделяют сосудодвигательный, дыхательный, центры зрения и слуха, обоняния и т.д.

Выделяют также специфические центры, осуществляющие определенные интегративные функции (центры речи, письма, глотания, чихания, дефекации и др.).

Ряд центров характеризуется сравнительно точной локализацией, например дыхательный центр расположен на дне ромбовидной ямки. Также точно локализуются сосудодвигательный центр, центр слюноотделения, центр блуждающего нерва и ряд других.

Другая категория центров имеет более обширную многоуровневую локализацию. Это относится ко всем центрам психических функций, двигательным центрам, сложным центрам органов чувств (зрение, слух, вестибулярный аппарат). Эти центры имеют локализацию в разных отделах центральной нервной системы, они объединяются благодаря проекционным, ассоциативным и полисинаптическим связям в интегрированную систему для выполнения одной физиологической задачи.

Нервные центры характеризуются рядом физиологических особенностей, например одностороннее проведение возбуждения, трансформация ритма нервных импульсов, застойный доминантный характер возбуждения, трансформация ритма нервных импульсаций, застойный доминантный характер возбуждения. Трансформация ритма нервных импульсаций, застойный доминантный характер возбуждения, реципрокные взаимоотношения, утомляемость, суммация и окклюзия.

3. Свойства нервных центров

Морфологическое и функциональное определение нервного центра. Свойства нервных центров.

Нервный центр - это центральная часть рефлекторной дуги.

Анатомический нервный центр - это совокупность нервных клеток, выполняющих общую для них функцию и лежащих в определенном отделе ЦНС.

В функциональном отношении нервный центр это сложное объединение нескольких анатомических нервных центров, расположенных в разных отделах ЦНС и обусловливающих сложнейшие рефлекторные акты.

А.А. Ухтомский называл такие объединения «созвездиями» нервных центров. Различные анатомические нервные центры объединяются в ФУС для получения определенного полезного результата.

Нервные центры также непосредственно реагируют на БАВ, содержащиеся в протекающей через них крови (гуморальные влияния).

Для выявления функций нервных центров используют ряд методов:

1. метод электродного раздражения;

2. метод экстирпации (удаления, для нарушения исследуемой функции);

3. электрофизиологический метод регистрации электрических явлений в нервном центре и др.

Свойства нервных центров в значительной мере связаны с обилием синапсов и с особенностями проведения импульсов через них. Именно синаптические контакты определяют основные свойства нервных центров:

1 - односторонность проведения возбуждения;

2 - замедление проведения нервных импульсов;

3 - суммацию возбуждений;

4 - усвоению и трансформацию ритма возбуждений;

5 - следовые процессы;

6 - быструю утомляемость.

Одностороннее проведение возбуждения означает распространение импульса только в одном направлении - от чувствительного нейрона к двигательному. Это обусловлено синапсами, где проведение информации с помощью нейротрансмиттеров (медиаторов) идет от пресинаптической мембраны через синаптическую щель к постсинаптической мембране. Обратное проведение невозможно, чем достигается направленность потоков информации в организме.

Замедление проведения импульсов связано с тем, что электрический способ передачи информации в синапсах сменяется химическим (медиаторным) способом, который в тысячу раз медленнее. Время синаптической задержки в мотонейронах соматической НС составляет 0,3 мс. В вегетативной НС такая задержка более длительна, т.е. не менее 10 мс. Множество синапсов на пути нервного импульса обеспечивают суммарную задержку, когда время задержки - центральное время проведения увеличивается до сотен.

Суммация возбуждений была открыта И.М. Сеченовым в 1863 году, в нервном центре различают 2 вида суммации:

1. временная;

2. пространственная.

Временная суммация возникает при последовательном поступлении к постсинаптической мембране нейрона серии импульсов, отдельности не вызывающих возбуждении нейрона. Сумма этих импульсов достигает пороговой величины раздражения и только после этого вызывает появление потенциала действия.

Пространственная суммация наблюдается при одновременном поступлении к нейрону нескольких слабых импульсов, которые в сумме достигают пороговой величины и вызывают появление потенциала действия.

Механизмы долговременной памяти основаны на изменении структуры белков. В процессе запоминания согласно биохимической теории памяти (Х. Хиден 1969) происходят структурные соединения в молекулах РНК, на основе которых строятся измененные белки с отпечатками прежних раздражителей. Эти белки длительно содержатся в нейронах, а также в глиальных клетках.

Усвоение и трансформация ритма возбуждений в нервных центрах были изучены А.А. Ухтомским и его учениками Голиковым, Жуковым и др. нейроны способны настраиваться на ритм раздражений как на более высокий, так и на более низкий. В результате такой способности нервные клетки сонастраиваются, работают сообща в едином ритме. Это имеет большое значение для взаимодействия между различными нервными центрами и создании ФУС для достижения определенного полезного результата. С другой стороны, нейроны способны трансформировать ритм поступающих к ним импульсов в собственный ритм.

Нервные центры очень чувствительны к дефициту кислорода и глюкозы. Клетки коры мозга погибают уже через 5-6 минут, клети ствола мозга выдерживают 15-20 минут, а клетки спинного мозга восстанавливают свои функции даже через 30 минут после полного прекращения кровоснабжения.

Одностороннее проведение возбуждения - возбуждение передается с афферентного на эфферентный нейрон. Причина: клапанное свойство синапса.

Задержка проведения возбуждения: скорость проведения возбуждения в нервном центре на много ниже таковой по остальным компонентам рефлекторной дуги. Чем сложнее нервный центр, тем дольше проходит по нему нервный импульс. Причина: синаптическая задержка. Время проведения возбуждения через нервный центр - центральное время рефлекса.

Суммация возбуждения - при действии одиночного подпорогового раздражителя ответной реакции нет. При действии нескольких подпороговых раздражителей ответная реакция есть. Рецептивное поле рефлекса - зона расположения рецепторов, возбуждение которых вызывает определенный рефлекторный акт.

Центральное облегчение - объясняется особенностями строения нервного центра. Каждое афферентное волокно входя в нервный центр иннервирует определенное количество нервных клеток. Эти нейроны - нейронный пул. В каждом нервном центре много пулов. В каждом нейронном пуле - 2 зоны: центральная (здесь афферентное волокно над каждым нейроном образует достаточное для возбуждения количество синапсов), периферическая или краевая кайма (здесь количество синапсов недостаточно для возбуждения). При раздражении возбуждаются нейроны центральной зоны. Центральное облегчение: при одновременном раздражении 2-х афферентных нейронов ответная реакция может быть больше арифметической суммы раздражения каждого из них, т. к. импульсы от них отходят к одним и тем же нейронам периферической зоны.

Окклюзия - при одновременном раздражении 2-х афферентных нейронов ответная реакция может быть меньше арифметической суммы раздражения каждого из них. Механизм: импульсы сходятся к одним и тем же нейронам центральной зоны. Возникновение окклюзии или центрального облегчения зависит от силы и частоты раздражения. При действии оптимального раздражителя, (максимального раздражителя (по силе и частоте) вызывающего максимальную ответную реакцию) - появляется центральное облегчение. При действии пессимального раздражителя (с силой и частотой вызывающих снижение ответной реакции) - возникает явление окклюзии.

Посттетаническая потенция - усиление ответной реакции, наблюдается после серии нервных импульсов. Механизм: потенциация возбуждения в синапсах;

Рефлекторное последействие - продолжение ответной реакции после прекращения действия раздражителя:

1. кратковременное последействие - в течение нескольких долей секунды. Причина - следовая деполяризация нейронов;

2. длительное последействие - в течение нескольких секунд. Причина: после прекращения действия раздражителя возбуждение продолжает циркулировать внутри нервного центра по замкнутым нейронным цепям.

Трансформация возбуждения - несоответствие ответной реакции частоте наносимых раздражений. На афферентном нейроне происходит трансформация в сторону уменьшения из-за низкой лабильности синапса. На аксонах эфферентного нейрона, частота импульса больше частоты наносимых раздражений. Причина: внутри нервного центра образуются замкнутые нейронные цепи, в них циркулирует возбуждение и на выход из нервного центра импульсы подаются с большей частотой.

Высокая утомляемость нервных центров - связана с высокой утомляемостью синапсов.

Тонус нервного центра - умеренное возбуждение нейронов, которое регистрируется даже в состоянии относительного физиологического покоя. Причины: рефлекторное происхождение тонуса, гуморальное происхождение тонуса (действие метаболитов), влияние вышележащих отделов центральной нервной системы.

Высокий уровень обменных процессов и, как следствие, высокая потребность в кислороде. Чем больше развиты нейроны, тем больше необходимо им кислорода. Нейроны спинного мозга проживут без кислорода 25-30 мин, нейроны ствола головного мозга - 15-20 мин, нейроны коры головного мозга - 5-6 мин.

Следовые процессы или последействие означает, что после окончания действия раздражителя активное состояние нервного центра продолжается еще некоторое время. Длительность следовых процессов различна. В спинном мозге - несколько секунд или минут. В подкорковых центрах мозга - десятки минут, часы и даже дни. В коре больших полушарий - до нескольких десятков лет.

Следовые процессы имеют важное значение в понимании механизмов памяти. Непродолжительное последействие до 1 часа связано с циркуляцией импульсов в нервных цепях (Р. Лоренте де Но, 1934) и обеспечивает кратковременную память. Механизмы долговременной памяти основаны на изменении структуры белков. В процессе запоминания, согласно биохимической теории памяти (Х. Хиден, 1969) происходят структурные изменения в молекулах РНК, на основе которых строятся измененные белки с отпечатками прежних раздражителей. Эти белки длительно содержатся в нейронах, а также в глиальных клетках головного мозга.

Утомление нервных центров возникает достаточно быстро при длительно повторных раздражениях. Быстрая утомляемость нервных центров объясняется постепенным истощением в синапсах запасов медиаторов, снижением чувствительности к ним постсинаптической мембраны, ее белков-рецепторов, снижением энергоресурсов клеток. В результате рефлекторные реакции начинают ослабевать, а затем полностью прекращаются.

Разные нервные центры имеют различную скорость утомления. Менее утомляемы центры ВНС, координирующие работу внутренних органов. Значительно более утомляемы центры СНС, управляющие произвольной скелетной мускулатурой.

Тонус нервных центров определяется тем, что в состоянии покоя часть его нервных клеток находятся в возбуждении. Импульсы обратной афферентации от рецепторов исполнительных органов постоянно идут к нервным центрам, поддерживая в них тонус. В ответ на информацию с периферии центры посылают редкие импульсы к органам, поддерживая в них соответствующий тонус. Даже во время сна мышцы не расслабляются полностью и контролируются соответствующими центрами.

Влияние химических веществ на работу нервных центров определяется химическим составом крови и тканевой жидкости. Нервные центры очень чувствительны к дефициту кислорода и глюкозы. Клетки коры мозга погибают уже через 5-6 минут, клети ствола мозга выдерживают 15-20 минут, а клетки спинного мозга восстанавливают свои функции даже через 30 минут после полного прекращения кровоснабжения.

Существуют химические вещества избирательного действия. Стрихнин возбуждает нервные центры, блокируя работу тормозных синапсов. Хлороформ и эфир сначала возбуждают, а затем подавляют работу нервных центров. Апоморфин возбуждает рвотный центр, цититон и лобелин - дыхательный центр, а морфин угнетает его работу. Коразол возбуждает клетки двигательной зоны коры, вызывая эпилептические судороги.

Функциональные возможности и свойства нервных центров зависят от состояния внутренних механизмов и влияния внешних факторов, действующих на организм. По современным представлениям для полноценной деятельности центральной нервной системы важным компонентом нервных центров является наличие структурно-функциональных элементов обратной связи, или обратной афферентации. Последнее позволяет нервным центрам осуществлять высокоадекватную координацию определенных функций. Нарушение нервных центров сопровождается выпадением соответствующих функций.

Концепция организации и самоорганизации в строении и функций нервной системы получила наибольшее развитие в представлениях о модульной (ансамблевой) конструкции нервной системы как принципиальной основы построения функциональных систем мозга. Хотя простейшей структурной и функциональной единицей нервной системы является нервная клетка, многочисленные данные современной нейрофизиологии подтверждают тот факт, что сложные функциональные «узоры» в центральных нервных образованиях определяются эффектами скоординированной активности в отдельных популяциях (ансамблях) нервных клеток.

нервный память центр возбуждение

Список литературы

1. Анатомия человека. Под ред. М.Р. Сапина. М.: Медицина, 2003, т. 2. - 326 с.

2. Атлас анатомии человека. Под ред. Р.Д. Синельникова. М.: Медицина, 2002. т. 3. 762 с.

3. Неврология (учебное пособие). Мартинов Ю.С., М., 1998. - 432 с.

4. Семенов Э.В. Физиология и анатомия человека. М., 2003. - 643 с.

6. Тайны анатомии. Керол Доннер, М.: Мир, 2004.-537 с.

7. Функциональная анатомия ЦНС. Дорофеев А.А. и др., Пермь, 2004. - 532 с.

Размещено на Allbest.ru

...

Подобные документы

    Органы чувств, или анализаторы - сложные нервные приборы, специализированные на восприятие, проведение и анализ нервного возбуждения; назначение и виды рецепторов, нервные проводники, промежуточные центры; связь аффекторных и эффекторных нейроцитов.

    книга , добавлен 09.01.2012

    Гистологические особенности строения мякотных нервных волокон. Понятие и физиологические свойства синапсов. Двустороннее проведение возбуждения по нервному волокну. Сущность и стадии парабиоза. Химические изменения в нервных волокнах при возбуждении.

    реферат , добавлен 23.06.2010

    Особенности организации борозды и извилины медиальной и нижней поверхности правого полушария большого мозга. Общий план строения большого мозга. Деятельность анализаторов. Нервные центры извилин. Большая лимбическая доля Брока. Гиппокамп и их связи.

    реферат , добавлен 10.05.2014

    Лекарственные вещества, влияющие на чувствительные окончания афферентных нервов и нейрохимическую передачу возбуждения в синапсах вегетативной и соматической нервной системы. Грамотное применение лекарственных веществ, характер и механизм их действия.

    учебное пособие , добавлен 20.12.2011

    Функционирование условно рефлекторного механизма на двух основных нервных процессах: возбуждения и торможения. Иррадиация, концентрация и индукция корковых процессов. Взаимодействие процессов возбуждения и торможения в центральной нервной системе.

    реферат , добавлен 15.11.2010

    Определение предмета неврологии. Клинические проявления основных симптомов и синдромов. Понятие о цереброспинальной жидкости. Строение головного и спинного мозга. Сухожильные рефлексы, нормальные и патологические. Понятие нейрона и рефлекторной дуги.

    презентация , добавлен 10.01.2013

    Роль центральной нервной системы в интегративной, приспособительной деятельности организма. Нейрон как структурная и функциональная единица ЦНС. Рефлекторный принцип регуляции функций. Нервные центры и их свойства. Изучение видов центрального торможения.

    презентация , добавлен 30.04.2014

    Рефлекс головного мозга. Характеристика инстинкта и динамического стереотипа. Понятие рефлекторной деятельности. Павловское учение: законы иррадиации и концентрации, возбуждения и торможения и их взаимной индукции. Условный и безусловный рефлекс.

    курсовая работа , добавлен 11.10.2010

    Основные свойства нейрона. Роль ионных каналов мембраны в его возбуждении (генерация нейрона потенциала действия). Синапс, передача возбуждения от нейрона к нейрону. Электроэнцефалограмма - исследование биоэлектрических процессов мозга. Понятие "ритма".

    курсовая работа , добавлен 20.02.2010

    Особая значимость патогенетической терапии в клинике нервных болезней. Типовые патологические процессы в нервной системе. Нарушение нервной трофики. Генераторы патологически усиленного возбуждения. Механизм повреждения нейронов при ишемии мозга.

ЗНАЧЕНИЕ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ. ПОНЯТИЕ О НЕРВНЫХ ЦЕНТРАХ И ИХ СВОЙСТВА

Нервные центры обладают рядом свойств, обусловленных особенностями механизма передачи возбуждения в синапсах .

Односторонность распространения возбуждения. В отличие от нервного волокна, в котором возбуждение распространяется в обе стороны от места раздражения, в нервном центре оно распространяется только в одном направлении — от центростремительного нейрона к центробежному. Это свойство обусловлено строением синапса: медиатор, осуществляющий передачу возбуждения, выделяется только в пресинаптическом окончании.

Замедление передачи возбуждения. В нервных центрах возбуждение замедляется. Это происходит потому, что в нервном центре может быть несколько нейронов и, следовательно, столько же сигналов. В каждом синапсе происходит синаптическая задержка возбуждения. В этой связи общая длительность задержки передачи возбуждения в нервном центре с одного синапса на другой зависит от количества вставочных нейронов: чем большее количество нейронов образует рефлекторную дугу, тем сильнее замедляется передача возбуждения в нервном центре этого рефлекса.

Суммация. Явление суммации в нервном центре впервые описал И. М. Сеченов (1863 г.). Это явление проявляется в накоплении (сложении) эффектов подпороговых раздражений. Одно подпороговое раздражение не вызывает ответной рефлекторной реакции: пресинап- тическое нервное окончание выделяет недостаточное количество медиатора. Несколько подпороговых раздражений в сумме дают нужный эффект: выделяется достаточное количество медиатора и возникает ответная рефлекторная реакция.

Различают временную и пространственную суммацию возбуждения в нервном центре. Временная суммация происходит под действием серии подпороговых раздражений, следующих друг за другом достаточно часто. Механизм временной суммации состоит в том, что каждое подпороговое раздражение повышает возбудимость нервного центра до тех пор, пока очередное из них не вызовет ответной рефлекторной реакции. Например, чихательный рефлекс возникает при длительном воздействии раздражителя на рецепторы слизистой оболочки полости носа.


Пространственная суммация возбуждения происходит при одновременном раздражении различных чувствительных нервов, передающих возбуждение в один и тот же нервный центр. Примером пространственной суммации возбуждения является рефлекторное сокращение полусухожильной мышцы при одновременном подпороговом раздражении мало- и большеберцового нервов. Подпороговое раздражение только одного из них сокращения не вызывает.

Пространственная суммация происходит вследствие схождения многих афферентных путей к одному нейрону (вставочному или эфферентному). Это явление называется конвергенцией.

Трансформация ритма возбуждения. Нервные центры способны трансформировать частоту и ритм поступающих импульсов. На одиночное раздражение, поступившее в нервный центр, последний может ответить серией импульсов. Если импульс поступает в нервный центр с частотой, превышающей лабильность этого центра, то последний ответит с частотой, соответствующей его возможностям, т. е. более редкими импульсами.

Последействие. Ответная рефлекторная реакция продолжается некоторое время и после прекращения действия раздражителя. Это явление называется рефлекторным последействием. Длительность рефлекторного последействия может во много раз превышать длительность действия самого раздражителя. Существует прямая зависимость: чем сильнее и дольше раздражение действует на рецептор, тем продолжительнее последействие. Причинами возникновения последействия являются следовая деполяризация и циркуляция нервных импульсов — наличие кольцевой связи между нейронами данного центра.

Утомляемость нервного центра. Нервное волокно практически неутомляемо. Утомление возникает в нервном центре центральной нервной системы, что обусловлено его низкой лабильностью. Такое утомление проявляется в постепенном уменьшении, а затем и прекращении рефлекторного ответа в случае продолжительного действия раздражителя. Утомление возникает в результате нарушения передачи возбуждений в синапсах.

Ритмическая активность нервных центров. Различают нейроны “молчащие", не возбуждающиеся без раздражения, и такие, в которых возбуждение возникает без воздействия раздражителя. Эти нейроны и создают фоновую активность нервной системы. Особенно высокая ритмичность активности у вставочных нейронов. Ритмически активный нейрон отвечает даже на подпороговое раздражение, а “молчащий" — только на надпороговое. Ритмически активный нейрон реагирует и на стимулирующие, и на тормозящие воздействия, а “молчащий" — только на стимулирующие.

Механизм фоновой активности предусматривает наличие кольцевой связи между нейронами, что обеспечивает передачу нервных импульсов с нейрона на нейрон. Фоновая активность нейронов повышает чувствительность центральной нервной системы к раздражениям, расширяет ее функциональные возможности, обеспечивает гибкость и пластичность. Изменение возбудимости центральной нервной системы. Центральная нервная система чрезвычайно чувствительна к различным воздействиям. При этом изменяется ее возбудимость. Она снижается при недостатке кислорода, при недостаточном кровообращении, в шоковом состоянии.

Процесс торможения в центральной нервной системе и его значение

И. М. Сеченову принадлежит исключительная заслуга перед мировой наукой: он обнаружил в головном мозге центры, угнетающие спинномозговые рефлексы, и показал значение этих центров в рефлекторной координации двигательных актов.

Классический опыт И. М. Сеченова состоял в следующем. У лягушки перерезали головной мозг на уровне зрительных бугров. Переднюю часть мозга удаляли. После этого определяли время сгибательного рефлекса при раздражении лапки серной кислотой. Затем на зрительные бугры клали кристаллы поваренной соли и снова определяли продолжительность действия сгибательного рефлекса. Продолжительность рефлекса значительно увеличивалась, и через некоторое время реакция полностью исчезала.

После удаления раздражителя (кристалла соли) и промывания раздражаемого участка мозга физиологическим раствором реакция вновь возникала и продолжительность рефлекса восстанавливалась. Из этого опыта следует вывод: торможение — это активный процесс, возникающий, как и возбуждение, при раздражении любых участков центральной нервной системы. Значение открытия И. М. Сеченова состоит в том, что он установил одновременное существование в центральной нервной системе процессов возбуждения и торможения.

Торможение — это особый нервный процесс, внешне проявляющийся в уменьшении или полном исчезновении ответной реакции. Он представляет собой особую форму стойкого, неколеблющегося возбуждения, которое возникает вследствие сильного или длительного воздействия какого-либо раздражителя.

Различают торможение первичное и вторичное. Первичное торможение возникает с участием тормозных нейронов. Примером тормозных нейронов являются так называемые клетки Реншоу. Вторичное торможение возникает без участия тормозных нейронов. Оно является следствием сильного возбуждения нервной клетки. Возбуждение особенно легко сменяется торможением в участках нервной системы, обладающих низкой лабильностью.

Координирующая роль центральной нервной системы

Жизнь организма — согласованная работа всех его частей и приспособление к условиям среды — возможна благодаря центральной нервной системе. Она координирует все функции организма. Это обусловлено особенностями ее строения и функциональными свойствами. Существуют определенные закономерности координации нервных процессов.

Принцип общего конечного пути. Его открыл выдающийся английский физиолог Чарлз Скотт Шеррингтон. Суть этого принципа заключается в том, что к одному мотонейрону поступают импульсы от многих рецепторов, расположенных в различных частях тела. Этот процесс называется конвергенцией. Он обусловлен неодинаковым количеством афферентных и эфферентных нервных путей: первых примерно в пять раз больше, чем вторых. Из всех поступающих по различным путям в нейрон импульсов только некоторые, наиболее значимые в данный момент для организма, вызывают ответную реакцию. Конвергенция является одним из основных механизмов координации рефлек-торной деятельности.

Иррадиация возбуждения. Возбуждение, возникшее в одном из нервных центров под влиянием сильного и длительного раздражения, способно распространяться по центральной нервной системе, возбуждая новые участки. Распространение возбуждения называется иррадиацией (от лат. irradiare — сиять). Иррадиация возбуждения обусловлена наличием многочисленных связей между отдельными нейронами центральной нервной системы. Различают иррадиацию возбуждения избирательную и генерализованную.

При избирательной иррадиации нервные импульсы проходят по строго определенным путям, вовлекая в реакцию лишь необходимые органы или мышцы. При генерализован-ной иррадиации возбуждения в деятельность вовлекаются другие мышцы, которые нарушают движение, делают его скованным. Явление иррадиации возбуждения лежит в основе образования условного рефлекса. Примером генерализованной иррадиации возбуждения является нарушение координации движений у спортсмена во время ответственных соревнований (состояние “стартовой лихорадки").

Концентрация возбуждения. Иррадиация возбуждения сменяется его концентрацией в очаге первоначального возникновения. Иррадиация происходит относительно быстро, а концентрация протекает замедленно. Индукция. Процессы возбуждения и торможения в центральной нервной системе находятся в определенных отношениях, которые осуществляются по законам индукции (от лат. inductio — наведение, возбуждение). Возбуждение, возникшее в одном центре, “наводит" торможение на другой, и наоборот.

Различают несколько видов индукции.

Одновременная индукция характеризуется тем, что одновременно в одном центре возникает возбуждение, а в сопряженном центре — торможение (или наоборот). Примером может служить подтягивание на перекладине: в центре мышц-сгибателей возникает возбуждение, а в центре мышц-разгибателей — торможение. Последовательная положительная индукция проявляется в смене торможения возбуждением, а последовательная отрицательная — в смене возбуждения торможением. Принцип обратной связи. Воздействие работающего органа на состояние управляющего им нервного центра называется обратной связью.

Различают положительные и отрицательные обратные связи. Если импульсы, возникающие в результате какой-либо рефлекторной реакции, поступая в управляющий ею нервный центр, усиливают ее, — это положительная обратная связь; если же они угнетают эту реакцию, — это отрицательная обратная связь. Благодаря наличию обратной связи между нервным центром и управляемым им рабочим органом обеспечивается строгая согласованность их совместной деятельности и достигается наибольший эффект.

Принцип доминанты. Этот принцип сформулировал выдающийся физиолог А. А. Ухтомский в 1904 г. Его внимание привлек необычный факт: раздражение, обычно вызывающее определенную реакцию, в некоторых случаях вызывало совершенно неожиданную реакцию. Исследуя эти случаи, ученый установил, что причиной является взаимодействие двух возбужденных нервных центров. Возбуждаясь за счет волн, адресованных другому центру, один из центров осуществляет специфическую ответную реакцию, которая может не соответствовать характеру раздражения. Такой временно господствующий очаг возбуждения, определяющий характер ответных реакций на все внешние и внутренние раздражения, А. А. Ухтомский назвал доминантой. “Внешним выражением доминанты, — писал он, — является определенная работа или рабочая поза организма, подкрепляемая в данный момент разнообразными раздражениями и исключающая для данного момента другие работы и позы".

Доминанта — яркий пример взаимодействия возбудительного и тормозного процессов в центральной нервной системе. Наличие доминантного очага возбуждения резко изменяет обычные координационные отношения между этими процессами. Поступающие волны возбуждения, даже адресованные другим центрам, усиливают только его и вызывают характерную для него реакцию. В остальных нервных центрах в этот момент наступает торможение. Например, если в момент, предшествующий акту дефекации, раздражать у животного двигательные нервы, то вместо обычной ответной реакции — сгибания передней конечности — ускорится и усилится акт дефекации.

Доминантный очаг возбуждения характеризуется пятью признаками, определяющими характер его деятельности:

1) повышенной возбудимостью;

2) стойкостью возбуждения;

3) повышенной способностью к суммированию возбуждения;

4) инерцией, т. е. способностью длительно сохранять возбуждение после окончания действия раздражителя;

5) способностью вызывать сопряженные торможения.

Значение принципа доминанты А. А. Ухтомского заключается в установлении зависимости деятельности нервных центров и их взаимоотношений от исходного состояния. Будучи господствующим очагом возбуждения, нервный центр осуществляет специфическую ответную реакцию, угнетая другие центры. При этом он привлекает к себе все волны возбуждения, поступающие в центральную нервную систему и адресованные другим нервным центрам. Принцип доминанты играет большую роль в координирующей деятельности центральной нервной системы, в образовании условных рефлексов и двигательных навыков.

Пластичность нервной системы

Нервные центры характеризуются пластичностью: в определенных условиях они перестраиваются и приобретают новые, не свойственные им ранее функции. Это доказывают специальные опыты. У животного перерезали подъязычный и диафрагмальный нервы, после чего дыхательные движения диафрагмы прекращались. Затем к центральному концу подъязычного нерва пришивали периферический конец диафрагмального. После заживления дыхательные движения диафрагмы восстанавливались. Из этого следует, что центр подъязычного нерва начинал управлять дыхательными движениями диафрагмы, т. е. приобретал новое функциональное значение.

Пластичность нервных центров позволяет перестраивать в широком диапазоне координационные отношения в центральной нервной системе. Это способствует наиболее совершенному приспособлению организма к изменяющимся условиям внешней и внутренней сред.

Нервный центр - центральный компонент рефлекторной дуги, где происходит переработка информации, вырабатывается программа действия, формируется эталон результата.

Анатомическое понятие "нервный центр" - это совокупность нейронов, располагающихся в строго определенных отделах центральной нервной системы и осуществляющих один рефлекс. Например: центр коленного рефлекса - в передних рогах 2-4 поясничных сегментов спинного мозга; центр глотания - на уровне продолговатого мозга: 5, 7, 9 пары черепно-мозговых нервов.

Физиологическое понятие "нервный центр" - это совокупность нейронов, расположенных на различных уровнях центральной нервной системы и регулирующих сложный рефлекторный процесс. Например: центр глотания входит в состав пищевого центра.

Свойства нервных центров

Свойства нервных центров.

Одностороннее проведение возбуждения - возбуждение передается с афферентного на эфферентный нейрон. Причина: клапанное свойство синапса.

Задержка проведения возбуждения: скорость проведения возбуждения в нервном центре на много ниже таковой по остальным компонентам рефлекторной дуги. Чем сложнее нервный центр, тем дольше проходит по нему нервный импульс. Причина: синаптическая задержка. Время проведения возбуждения через нервный центр - центральное время рефлекса.

Суммация возбуждения - при действии одиночного подпорогового раздражителя ответной реакции нет. При действии нескольких подпороговых раздражителей ответная реакция есть. Рецептивное поле рефлекса - зона расположения рецепторов, возбуждение которых вызывает определенный рефлекторный акт.

Имеется 2 вида суммации: временная и пространственная.

Временная - возникает ответная реакция при действии нескольких следующих друг за другом раздражителей. Механизм: суммируются возбуждающие постсинаптические потенциалы рецептивного поля одного рефлекса. Происходит суммация во времени потенциалов одних и тех же групп синапсов.

Пространственная суммация - возникновение ответной реакции при одновременном действии нескольких подпороговых раздражителей. Механизм: суммация возбуждающего постсинаптического потенциала от разных рецептивных полей. Суммируются потенциалы разных групп синапсов.

Центральное облегчение - объясняется особенностями строения нервного центра. Каждое афферентное волокно входя в нервный центр иннервирует определенное количество нервных клеток. Эти нейроны - нейронный пул. В каждом нервном центре много пулов. В каждом нейронном пуле - 2 зоны: центральная (здесь афферентное волокно над каждым нейроном образует достаточное для возбуждения количество синапсов), периферическая или краевая кайма (здесь количество синапсов недостаточно для возбуждения). При раздражении возбуждаются нейроны центральной зоны. Центральное облегчение: при одновременном раздражении 2-х афферентных нейронов ответная реакция может быть больше арифметической суммы раздражения каждого из них, т. к. импульсы от них отходят к одним и тем же нейронам периферической зоны.

Окклюзия - при одновременном раздражении 2-х афферентных нейронов ответная реакция может быть меньше арифметической суммы раздражения каждого из них. Механизм: импульсы сходятся к одним и тем же нейронам центральной зоны. Возникновение окклюзии или центрального облегчения зависит от силы и частоты раздражения. При действии оптимального раздражителя, (максимального раздражителя (по силе и частоте) вызывающего максимальную ответную реакцию) - появляется центральное облегчение. При действии пессимального раздражителя (с силой и частотой вызывающих снижение ответной реакции) - возникает явление окклюзии.

Посттетаническая потенция - усиление ответной реакции, наблюдается после серии нервных импульсов. Механизм: потенциация возбуждения в синапсах;

Рефлекторное последействие - продолжение ответной реакции после прекращения действия раздражителя:

  1. кратковременное последействие - в течение нескольких долей секунды. Причина - следовая деполяризация нейронов;
  2. длительное последействие - в течение нескольких секунд. Причина: после прекращения действия раздражителя возбуждение продолжает циркулировать внутри нервного центра по замкнутым нейронным цепям.

Трансформация возбуждения - несоответствие ответной реакции частоте наносимых раздражений. На афферентном нейроне происходит трансформация в сторону уменьшения из-за низкой лабильности синапса. На аксонах эфферентного нейрона, частота импульса больше частоты наносимых раздражений. Причина: внутри нервного центра образуются замкнутые нейронные цепи, в них циркулирует возбуждение и на выход из нервного центра импульсы подаются с большей частотой.

Высокая утомляемость нервных центров - связана с высокой утомляемостью синапсов.

Тонус нервного центра - умеренное возбуждение нейронов, которое регистрируется даже в состоянии относительного физиологического покоя. Причины: рефлекторное происхождение тонуса, гуморальное происхождение тонуса (действие метаболитов), влияние вышележащих отделов центральной нервной системы.

Высокий уровень обменных процессов и, как следствие, высокая потребность в кислороде. Чем больше развиты нейроны, тем больше необходимо им кислорода. Нейроны спинного мозга проживут без кислорода 25-30 мин, нейроны ствола головного мозга - 15-20 мин, нейроны коры головного мозга - 5-6 мин.


Свойства нервных центров

Нервным центром называется совокупность нейронов в различных отделах ЦНС, обеспечивающих регуляцию какой-либо функции организма. Например, бульбарный дыхательный центр.

Для проведения возбуждения через нервные центры характерны следующие особенности:

1. Одностороннее проведение. Оно идет от афферентного, через вставочный, к эфферентному нейрону. Это обусловлено наличием межнейронных синапсов.

2. Центральная задержка проведение возбуждения, т.е. по ЦНС возбуждение идет значительно медленнее, чем по нервному волокну. Это объясняется синаптической задержкой. Так как больше всего синапсов в центральном звене рефлекторной дуги, там скорость проведения наименьшая. Исходя из этого время рефлекса – это время от начала воздействия раздражителя до появления ответной реакции. Чем длительнее центральная задержка, тем больше время рефлекса. Вместе с тем оно зависит от силы раздражителя. Чем оно больше, тем время рефлекса короче и наоборот. Это объясняется явлением суммации возбуждений в синапсах. Кроме того, оно определяется и функциональным состоянием ЦНС. Например, при утомлении нервного центра длительность рефлекторной реакции увеличивается.

3. Пространственная и временная суммация. Временная суммация возникает как в синапсах вследствие того, что чем больше поступает нервных импульсов, тем больше выделяется нейромедиатора в них, тем выше амплитуда возбуждающего постсинаптического потенциала. Поэтому рефлекторная реакция может возникать на несколько последовательных подпороговых раздражений. Пространственная суммация наблюдается тогда, когда к нервному центру идут импульсы от нескольких рецепторных нейронов. При действии на них подпороговых стимулов, возникающие постсинаптические потенциалы суммируются, и в мембране нейрона генерируется распространяющийся потенциал действия.

4. Трансформация ритма возбуждения – изменение частоты нервных импульсов при прохождении через нервный центр. Частота может снижаться или повышаться. Например, повышающая трансформация – увеличение частоты обусловлено дисперсией и мультипликацией возбуждения в нейронах. Первое явление возникает в результате разделения нервных импульсов на несколько нейронов, аксоны которых образуют затем синапсы на одном нейроне. Второе – генерацией нескольких нервных импульсов при развитии возбуждающего постсинаптического потенциала на мембране одного нейрона. Понижающая трансформация объясняется суммацией нескольких возбуждающих постсинаптических потенциалов и возникновением одного потенциала действия в нейроне.

5. Посттетаническая потенциация – это усиление рефлекторной реакции в результате двигательного возбуждения нейронов центра. Под влиянием многих серий нервных импульсов, проходящих с большой частотой через синапсы, выделяется большое количество нейромедиаторов в межнейронных синапсах. Это приводит к прогрессирующему нарастанию амплитуды возбуждающего постсинаптического потенциала и длительному (несколько часов) возбуждению нейронов.

6. Последействие – это запаздывание окончания рефлекторного ответа после прекращения действия раздражителя. Связано с циркуляцией нервных импульсов по замкнутым цепям нейронов.

7. Тонус нервных центров – состояние постоянной повышенной активности. Он обусловлен постоянным поступлением к нервному центру нервных импульсов от периферических рецепторов, возбуждающим влиянием на нейроны продуктов метаболизма и других гуморальных факторов. Например, проявлением тонуса соответствующих центров является тонус определенной группы мышц.

8. Автоматия (спонтанная активность) нервных центров. Периодическая или постоянная генерация нейронами нервных импульсов, которые возникают в них самопроизвольно, т.е. в отсутствии сигналов от других нейронов или рецепторов. Обусловлена колебаниями процессов метаболизма в нейронах и действием на них гуморальных факторов.

9. Пластичность нервных центров. Это их способность изменять функциональные свойства. При этом центр приобретает возможность выполнять новые функции или восстанавливать старые после повреждения. В основе пластичности нервного центра лежит пластичность синапсов и мембран нейронов, которые могут изменять свою молекулярную структуру.

10. Низкая физиологическая лабильность и быстрая утомляемость. Нервные центры могут проводить импульсы лишь ограниченной частоты. Их утомление объясняется утомлением синапсов и ухудшением метаболизма нейронов, истощение состава медиаторов, длительность их синтеза.

Торможение в ЦНС

Явление центрального торможения обнаружено И. М. Сеченовым в 1862 году. Он удалял у лягушки полушария мозга и определял время спинномозгового рефлекса на раздражение лапки серной кислотой. Затем на таламус (зрительные бугры) накладывал кристаллик поваренной соли и обнаружил, что время рефлекса значительно увеличивалось. Это свидетельствовало о торможении рефлекса. Сеченов сделал вывод, что вышележащие нервные центры при своем возбуждении тормозят нижележащие. Торможение в ЦНС препятствует развитию возбуждения или ослабляет протекающее возбуждение. Примером торможения может быть прекращение рефлекторной реакции, на фоне действия другого более сильного раздражителя.

Первоначально была предложена унитарно-химическая теория торможения. Она основывалась на принципе Дейла: один нейрон – один медиатор. Согласно ей торможение обеспечивается теми же нейронами и синапсами, что и возбуждение. В последующем была доказана правильность бинарно-химической теории. В соответствии с последней. Торможение обеспечивается специальными тормозными нейронами, которые являются вставочными. Это клетки Реншоу спинного мозга и нейроны Пуркинье промежуточного. Торможение в ЦНС необходимо для интеграции нейронов в единый нервный центр.

В ЦНС выделяют следующие механизмы торможения:

1. Постсинаптическое. Оно возникает в постсинаптической мембране сомы и дендритов нейронов, т.е. после передающего синапса. На этих участках образуют аксо-дендритные или аксосоматические синапсы специализированные тормозные нейроны. Эти синапсы являются глицинергическими. В результате воздействия глицина на глициновые хеморецепторы постсинаптической мембраны открываются ее калиевые и хлорные каналы. Ионы калия и хлора входят в нейрон, развивается тормозной постсинаптический потенциал. Роль ионов хлора в развитии тормозного постсинаптического потенциала небольшая. В результате возникающей гиперполяризации возбудимость нейрона падает. Проведение нервных импульсов через него прекращается. Алкалоид стрихнин может связываться с глициновыми рецепторами постсинаптической мембраны и выключать тормозные синапсы. Это используется для демонстрации роли торможения. После введения стрихнина у животного развиваются судороги всех мышц.

2. Пресинаптическое торможение. В этом случае тормозной нейрон образует синапс на аксоне нейрона, подходящим к передающему синапсу, т.е. такой синапс является аксо-аксональным. Медиатором этих синапсов служит ГАМК. Под действием ГАМК активируются хлорные каналы постсинаптической мембраны. Но в этом случае ионы хлора начинают выходить из аксона. Это приводит к небольшой локальной, но длительной деполяризации его мембраны. Значительная часть натриевых каналов мембраны инактивируется, что блокирует проведение нервных импульсов по аксону, а, следовательно, выделение нейромедиатора в передающем синапсе. Чем ближе тормозной синапс расположен к аксонному холмику, тем сильнее его тормозной эффект. Пресинаптическое торможение наиболее эффективно при обработке информации, так как проведение возбуждения блокируется не во всем нейроне, а только на его одном входе. Другие синапсы, находящиеся на нейроне продолжают функционировать.

3. Пессимальное торможение. Обнаружено Н. Е. Введенским. Возникает при очень высокой частоте нервных импульсов. Развивается стойкая длительная деполяризация всей мембраны нейрона и инактивация ее натриевых каналов. Нейрон становится невозбужденным.

В нейроне одновременно могут возникать и тормозные, и возбуждающие постсинаптические потенциалы. За счет этого и происходит выделение нужных сигналов.



От рецепторов нервные импульсы по афферентным путям поступают в нервные центры. Следует различать анатомическое и физиологическое понимание нервного центра.

Анатомическое определение нервного центра. Нервный центр это совокупность нейронов, расположенных в определенном отделе центральной нервной системы. За счет работы такого нервного центра осуществляется несложная рефлекторная деятельность, например коленный рефлекс. Нервный центр этого рефлекса располагается в поясничном отделе спинного мозга.

Физиологическое определение нервного центра. Нервный центр это сложное функциональное объединение нескольких анатомических нервных центров, расположенных на разных уровнях центральной нервной системы и обусловливающих за счет своей активности сложнейшие рефлекторные акты. Например, в осуществлении пищевых реакций участвуют многие органы (железы, мышцы, кровеносные и лимфатические сосуды и т. л.). Деятельность этих органов регулируется нервными импульсами, поступающими из нервных центров, располагающихся в различных отделах центральной нервной системы. При пищевых реакциях различные анатомические нервные центры функционально объединяются для получения определенного полезного результата.

Физиологические свойства нервных центров . Нервные центры обладают рядом характерных функциональных свойств, зависящих от наличия синапсов и большого количества нейронов, входящих в их состав. Основными свойствами нервных центров являются:

* Одностороннее проведение возбуждения. В центральной нервной системе возбуждение распространяется только в одном направлении от рецепторного нейрона к эффекторному. Это обусловлено наличием в нервных центрах синапсов, в которых передача возбуждения возможна только в одном направлении от нервного окончания, выделяющего медиатор, к постсинаптической мембране.

* Задержка проведения возбуждения в нервных центрах также связана с наличием большого количества синапсов. На выделение медиатора, его диффузию через синаптическую щель, возбуждение постсинаптической мембраны требуется больше времени, чем на распространение возбуждения по нервному волокну.

* Суммация возбуждений в нервных центрах возникает или при нанесении слабых, но повторяющихся (ритмичных) раздражений, или при одновременном действии нескольких подпороговых раздражений. Механизм этого явления связан с накоплением медиатора на постсинаптической мембране и повышением возбудимости клеток нервного центра. Примером суммации возбуждения может служить рефлекс чихания. Этот рефлекс возникает только при длительном раздражении рецепторов слизистой оболочки носа.

* Трансформация ритма возбуждений . Центральная нервная система на любой ритм раздражения, даже медленный, отвечает залпом импульсов. Частота возбуждений, поступающих из нервных центров на периферию к рабочему органу, колеблется от 50 до 200 в 1 с. Этой особенностью центральной нервной системы объясняется то, что все сокращения скелетных мышц в организме являются тетаническими.

* Рефлекторное последействие . Рефлекторные акты заканчиваются не одновременно с прекращением вызвавшего их раздражения, а через некоторый, иногда сравнительно длительный период. Это явление получило название рефлекторного последействия. Установлены два механизма, обусловливающие последействие. Первый связан с тем, что возбуждение в нервных клетках исчезает не сразу после прекращения раздражения. В течение некоторого времени (сотые доли секунды) нервные клетки продолжают давать ритмические разряды импульсов. Этот механизм может обусловить лишь сравнительно кратковременное последействие. Второй механизм является результатом циркуляции нервных импульсов по замкнутым нейронным цепям нервного центра и обеспечивает более длительное последействие.

Возбуждение одного из нейронов передается на другой, а по ответвлениям его аксона вновь возвращается к первой нервной клетке и т. д. Циркуляция нервных импульсов в нервном центре будет продолжаться до тех пор, пока не наступит утомление одного из синапсов или же активность нейронов не будет приостановлена приходом тормозных импульсов.

* Утомление нервных центров . Нервные центры в отличие от нервных волокон легко утомляемы. При продолжительном раздражении афферентных нервных волокон утомление нервного центра проявляется постепенным снижением, а затем и полным прекращением рефлекторного ответа.



Понравилась статья? Поделитесь ей
Наверх