Строение и химический состав клетки человека. Химическое строение клетки живого организма. Органические вещества клетки

Атлас: анатомия и физиология человека. Полное практическое пособие Елена Юрьевна Зигалова

Химический состав клетки

Химический состав клетки

В состав клетки входит более 100 химических элементов, на долю четырех из них приходится около 98 % массы, это органогены : кислород (65–75 %), углерод (15–18 %), водород (8–10 %) и азот (1,5–3,0 %). Остальные элементы подразделяются на три группы: макроэлементы – их содержание в организме превышает 0,01 %); микроэлементы (0,00001–0,01 %) и ультрамикроэлементы (менее 0,00001). К макроэлементам относятся сера, фосфор, хлор, калий, натрий, магний, кальций. К микроэлементам – железо, цинк, медь, йод, фтор, алюминий, медь, марганец, кобальт и др. К ультрамикроэлементам – селен, ванадий, кремний, никель, литий, серебро и до. Несмотря на очень малое содержание, микроэлементы и ультрамикроэлементы играют очень важную роль. Они влияют, главным образом, на обмен веществ. Без них невозможна нормальная жизнедеятельность каждой клетки и организма как целого.

Рис. 1. Ультрамикроскопическое строение клетки. 1 – цитолемма (плазматическая мембрана); 2 – пиноцитозные пузырьки; 3 – центросома клеточный центр (цитоцентр); 4 – гиалоплазма; 5 – эндоплазматическая сеть: а – мембрана зернистой сети; б – рибосомы; 6 – связь перинуклеарного пространства с полостями эндоплазматической сети; 7 – ядро; 8 – ядерные поры; 9 – незернистая (гладкая) эндоплазматическая сеть; 10 – ядрышко; 11 – внутренний сетчатый аппарат (комплекс Гольджи); 12 – секреторные вакуоли; 13 – митохондрия; 14 – липосомы; 15 – три последовательные стадии фагоцитоза; 16 – связь клеточной оболочки (цитолеммы) с мембранами эндоплазматической сети

Клетка состоит из неорганических и органических веществ. Среди неорганических наибольшее количество воды. Относительное количество воды в клетке составляет от 70 до 80 %. Вода – универсальный растворитель, в ней происходит все биохимические реакции в клетке. При участии воды осуществляется теплорегуляция. Вещества, растворяющиеся в воде (соли, основания, кислоты, белки, углеводы, спирты и др.), называются гидрофильными. Гидрофобные вещества (жиры и жироподобные) не растворяются в воде. Другие неорганические вещества (соли, кислоты, основания, положительные и отрицательные ионы) составляют от 1,0 до 1,5 %.

Среди органических веществ преобладают белки (10–20 %), жиры, или липиды (1–5 %), углеводы (0,2–2,0 %), нуклеиновые кислоты (1–2 %). Содержание низкомолекулярных веществ не превышает 0,5 %.

Молекула белка является полимером, который состоит из большого количества повторяющихся единиц мономеров. Мономеры белка аминокислоты (их 20) соединены между собой пептидными связями, образуя полипептидную цепь (первичную структуру белка). Она закручивается в спираль, образуя, в свою очередь, вторичную структуру белка. Благодаря определенной пространственной ориентации полипептидной цепи возникает третичная структура белка, которая определяет специфичность и биологическую активность молекулы белка. Несколько третичных структур, объединяясь между собой, образуют четвертичную структуру.

Белки выполняют важнейшие функции. Ферменты – биологические катализаторы, увеличивающие скорость химических реакций в клетке в сотни тысяч миллионы раз, являются белками. Белки, входя в состав всех клеточных структур, выполняют пластическую (строительную) функцию. Движения клеток также осуществляют белки. Они обеспечивают транспорт веществ в клетку, из клетки и внутри клетки. Важной является защитная функция белков (антитела). Белки являются одним из источников энергии.

Углеводы подразделяются на моносахариды и полисахариды. Последние построены из моносахаридов, являющихся, подобно аминокислотам, мономерами. Среди моносахаридов в клетке наиболее важны глюкоза, фруктоза (содержит шесть атомов углерода) и пентоза (пять атомов углерода). Пентозы входят в состав нуклеиновых кислот. Моносахариды хорошо растворяются в воде. Полисахариды плохо растворяются в воде (в животных клетках гликоген, в растительных – крахмал и целлюлоза. Углеводы являются источником энергии, сложные углеводы, соединенные с белками (гликопротеиды), жирами (гликолипиды), участвуют в образовании клеточных поверхностей и взаимодействиях клеток.

К липидам относятся жиры и жироподобные вещества. Молекулы жиров построены из глицерина и жирных кислот. К жироподобным веществам относятся холестерин, некоторые гормоны, лецитин. Липиды, являющиеся основным компонентом клеточных мембран (они описаны ниже), выполняют тем самым строительную функцию. Липиды – важнейшие источники энергии. Так, если при полном окислении 1 г белка или углеводов освобождается 17,6 кДж энергии, то при полном окислении 1 г жира – 38,9 кДж. Липиды осуществляют терморегуляцию, защищают органы (жировые капсулы).

Нуклеиновые кислоты являются полимерными молекулами, образованными мономерами нуклеотидами. Нуклеотид состоит из пуринового или пиримидинового основания, сахара (пентозы) и остатка фосфорной кислоты. Во всех клетках существует два типа нуклеиновых кислот: дезоксирибонулеиновая (ДНК) и рибонуклеиновая (РНК), которые отличаются по составу оснований и сахаров (табл. 1, рис. 2 ).

Рис. 2. Пространственная структура нуклеиновых кислот (по Б. Албертсу и соавт., с изм.). I – РНК; II – ДНК; ленты – сахарофосфатные остовы; A, C, G, T, U – азотистые основания, решетки между ними – водородные связи

Молекула ДНК состоит из двух полинуклеотидных цепей, закрученных одна вокруг другой в виде двойной спирали. Азотистые основания обеих цепей соединены между собой комплементарно водородными связями. Аденин соединяется только с тимином, а цитозин – с гуанином (А – Т, Г – Ц). В ДНК записана генетическая информация, которая определяет специфичность синтезируемых клеткой белков, т. е. последовательность аминокислот в полипептидной цепи. ДНК передает по наследству все свойства клетки. ДНК содержится в ядре и митохондриях.

Молекула РНК образована одной полинуклеотидной цепью. В клетках существует три типа РНК. Информационная, или мессенджер РНК тРНК (от англ. messenger – «посредник»), которая переносит информацию о нуклеотидной последовательности ДНК в рибосомы (см. ниже).

Транспортная РНК (тРНК), которая переносит аминокислоты в рибосомы. Рибосомальная РНК (рРНК), которая участвует в образовании рибосом. РНК содержится в ядре, рибосомах, цитоплазме, митохондриях, хлоропластах.

Таблица 1

Состав нуклеиновых кислот

Клетка

С точки зрения концепции живых систем по А. Ленинджеру.

    Живая клетка – это способная к саморегуляции и самовоспроизведению изотермическая система органических молекул, извлекающая энергию и ресурсы из окружающей среды.

    В клетке протекает большое количество последовательных реакций, скорость которых регулируется самой клеткой.

    Клетка поддерживает себя в стационарном динамическом состоянии, далеком от равновесия с окружающей средой.

    Клетки функционируют по принципу минимального расхода компонентов и процессов.

Т.о. клетка – элементарная живая открытая система, способная к самостоятельному существованию, воспроизведению и развитию. Она является элементарной структурно-функциональной единицей всех живых организмов.

Химический состав клеток.

Из 110 элементов периодической системы Менделеева в организме человека обнаружено 86 постоянно присутствующих. 25 из них необходимы для нормальной жизнедеятельности, причем 18 из них необходимы абсолютно, а 7 - полезны. В соответствии с процентным содержанием в клетке химические элементы делят на три группы:

    Макроэлементы Основные элементы (органогены) – водород, углерод, кислород, азот. Их концентрация: 98 – 99,9 %. Они являются универсальными компонентами органических соединений клетки.

    Микроэлементы – натрий, магний, фосфор, сера, хлор, калий, кальций, железо. Их концентрация 0,1%.

    Ультрамикроэлементы – бор, кремний, ванадий, марганец, кобальт, медь, цинк, молибден, селен, йод, бром, фтор. Они влияют на обмен веществ. Их отсутствие является причиной заболеваний (цинк - сахарный диабет, иод - эндемический зоб, железо - злокачественная анемия и т.д.).

Современной медицине известны факты отрицательного взаимодействия витаминов и минералов:

    Цинк снижает усвоение меди и конкурирует за усвоение с железом и кальцием; (а дефицит цинка вызывает ослабление иммунной системы, ряд патологических состояний со стороны желез внутренней секреции).

    Кальций и железо снижают усвоение марганца;

    Витамин Е плохо совмещается с железом, а витамин С – с витаминами группы В.

Положительное взаимовлияние:

    Витамин Е и селен, а также кальций и витамин К действуют синергично;

    Для усвоения кальция необходим витамин Д;

    Медь способствует усвоению и повышает эффективность использования железа в организме.

Неорганические компоненты клетки.

Вода – важнейшая составная часть клетки, универсальная дисперсионная среда живой материи. Активные клетки наземных организмов состоят на 60 – 95% из воды. В покоящихся клетках и тканях (семена, споры) воды 10 - 20%. Вода в клетке находится в двух формах – свободной и связанной с клеточными коллоидами. Свободная вода является растворителем и дисперсионной средой коллоидной системы протоплазмы. Ее 95%. Связанная вода (4 – 5 %) всей воды клетки образует непрочные водородные и гидроксильные связи с белками.

Свойства воды:

    Вода – естественный растворитель для минеральных ионов и других веществ.

    Вода – дисперсионная фаза коллоидной системы протоплазмы.

    Вода является средой для реакций метаболизма клетки, т.к. физиологические процессы происходят в исключительно водной среде. Обеспечивает реакции гидролиза, гидратации, набухания.

    Участвует во многих ферментативных реакциях клетки и образуется в процессе обмена веществ.

    Вода – источник ионов водорода при фотосинтезе у растений.

Биологическое значение воды:

    Большинство биохимических реакций идет только в водном растворе, многие вещества поступают и выводятся из клеток в растворенном виде. Это характеризует транспортную функцию воды.

    Вода обеспечивает реакции гидролиза – расщепление белков, жиров, углеводов под действием воды.

    Благодаря большой теплоте испарения происходит охлаждение организма. Например, потоотделение у человека или транспирация у растений.

    Большая теплоемкость и теплопроводность воды способствует равномерному распределению тепла в клетке.

    Благодаря силам адгезии (вода – почва) и когезии (вода – вода) вода обладает свойством капиллярности.

    Несжимаемость воды определяет напряженное состояние клеточных стенок (тургор), гидростатический скелет у круглых червей.

Из курса ботаники и зоологии вы знаете, что тела растений и живот ных построены из клеток. Организм человека тоже состоит из клеток. Благодаря клеточному строению организма возможны его рост, раз множение, восстановление органов и тканей и другие формы деятель ности.

Форма и размеры клеток зависят от выполняемой органом функции. Основным прибором для изучения строения клетки является микро скоп. Световой микроскоп позволяет рассматривать клетку при увеличении примерно до трех тысяч раз; электронный микроскоп, в котором вместо света используется поток электронов, - в сотни тысяч раз. Изучением строения и функций клеток занимается цитология (от греч. «цитос» - клетка).

Строение клетки.

Каждая клетка состоит из цитоплазмы и ядра, а снаружи она покрыта мембраной, разграничивающей одну клетку от соседних. Пространство между мембранами соседних клеток заполнено жидким межклеточным веществом. Главная функция мем браны состоит в том, что через нее движутся различные вещества из клетки в клетку и таким осуществляется обмен веществ меж ду образом клетками и межклеточным ве ществом.

Цитоплазма - вязкое полужид кое вещество. Цитоплазма содержит ряд мельчайших структур клетки - органоидов, которые выполняют раз личные функции. Рассмотрим самые важные из органоидов: митохонд рии, сеть канальцев, рибосомы, кле точный центр, ядро.

Митохондрии - короткие утол щенные тельца с внутренними пере городками. В них образуется вещество, богатое энергией, необходимой для процессов, происходящих в клетке АТФ. Замечено, что чем активнее работает клетка, тем больше в ней митохондрий.

Сеть канальцев пронизывает всю цитоплазму. По этим канальцам происходит передвижение веществ и ус танавливается связь между органои дами.

Рибосомы - плотные тельца, со держащие белок и рибонуклеиновую кислоту. Они являются местом обра зования белков.

Клеточный центр образован тельцами, которые участвуют в деле нии клетки. Они расположены возле ядра.

Ядро - это тельце, которое явля ется обязательной составной частью клетки. Во время клеточного деле ния строение ядра меняется. Когда деление клетки заканчивается, ядро возвращается к прежнему состоя нию. В ядре есть особое вещество - хроматин , из которого перед делением клетки образуются нитевидные тельца - хромосомы . Для клеток ха рактерно постоянное количество хро мосом определенной формы. В клетках тела человека содержится по 46 хромосом, а в половых клетках по 23.

Химический состав клетки. Клет ки организма человека состоят из разнообразных химических соедине ний неорганической и органической природы. К неорганическим вещест вам клетки относятся вода и соли. Вода составляет до 80% массы клет ки. Она растворяет вещества, учас твующие в химических реакциях: переносит питательные вещества, выводит из клетки отработанные и вредные соединения. Минеральные соли - хлорид натрия, хлорид ка лия и др. - играют важную роль в распределении воды между клетками и межклеточным веществом. Отдельные химические элементы, такие, как кислород, водород, азот, сера, железо, магний, цинк, иод, фосфор, участвуют в создании жизненно важных органических соединений. Органические соединения образуют до 20-30% массы каждой клетки. Среди органических соединений наибольшее значение имеют углево ды, жиры, белки и нуклеиновые кислоты.

Углеводы состоят из углерода, водорода и кислорода. К углеводам от носятся глюкоза, животный крах мал - гликоген. Многие углеводы хорошо растворимы в воде и являют ся основными источниками энергии для осуществления всех жизненных процессов. При распаде 1 г углеводов освобождается 17,6 кДж энергии.

Жиры образованы теми же хими ческими элементами, что и углево ды. Жиры нерастворимы в воде. Они входят в состав клеточных мембран. Жиры также служат запасным ис точником энергии в организме. При полном расщеплении 1 г жира осво бождается 38,9 кДж энергии.

Белки являются основными ве ществами клетки. Белки - самые сложные из встречающихся в приро де органических веществ, хотя и со стоят из относительно небольшого числа химических элементов - уг лерода, водорода, кислорода, азота, серы. Очень часто в состав белка вхо дит фосфор. Молекула белка имеет большие размеры и представляет со бой цепь, состоящую из десятков и сотен более простых соединений - 20 видов аминокислот.

Белки служат главным строи тельным материалом. Они участву ют в формировании мембран клет ки, ядра, цитоплазмы, органоидов. Многие белки выполняют роль уско рителей течения химических реак ций - ферментов. Биохимические процессы могут происходить в клет ке только в присутствии особых ферментов, которые ускоряют хими ческие превращения веществ в сот ни миллионов раз.

Белки имеют разнообразное стро ение. Только в одной клетке насчи тывается до 1000 разных белков.

При распаде белков в организме освобождается примерно такое же количество энергии, как и при расщеплении углеводов – 17,6 кДж на 1 г.

Нуклеиновые кислоты образуют ся в клеточном ядре. С этим связано их название (от лат. «нуклеус» - ядро). Они состоят из углерода, кислорода, водорода и азота и фосфора. Нуклеи новые кислоты бывают двух типов - дезоксирибонуклеиновые (ДНК) и рибонуклеиновые (РНК). ДНК находят ся в основном в хромосомах клеток. ДНК определяет состав белков клетки и передачу наследственных при знаков и свойств от родителей к по томству. Функции РНК связаны с образованием характерных для этой клетки белков.

Клетка: химический состав, строение, функции органоидов.

2.3 Химический состав клетки. Макро- и микроэлементы. Взаимосвязь строения и функций неорганических и органических веществ (белков, нуклеиновых кислот, углеводов, липидов, АТФ), входящих в состав клетки. Роль химических веществ в клетке и организме человека.

Химические элементы, входящие в состав организмов.

Говоря о химическом составе клетки, следует помнить, что речь может идти либо о химических элементах, либо о химических веществах. Начнем с химических элементов.

В состав живых тел входят те же химические элементы, что образуют и неживые тела. Это говорит о единстве живой и неживой материи. Однако в живых телах содержание тех или иных элементов заметно отличается.

Назовем основные элементы и их значение.

    Углерод (С), водород (H ), кислород (O ) и азот (N ) составляют 98% массы живого организма. Первые три элемента входят в состав всех органических веществ организма. Азот (здесь и далее имеются в виду элементы) входит в состав белков и нуклеиновых кислот.

    Сера (S ) входит в состав некоторых аминокислот, а значит и в состав белков.

    Йод (I ) необходим для нормальной работы щитовидной железы, т.к. входит в состав её гормонов.

    Фосфор (P ) является важным элементом молекул АТФ и нуклеиновых кислот. А также, в виде фосфатов, входит в состав костной ткани.

    Железо входит в состав гемоглобина крови и участвует в транспорте газов.

    Магний (Mg ) – центральный атом в молекуле хлорофилла.

    Кальций (Ca ) в составе нерастворимых соединений участвует в образовании опорных (костная ткань) и защитных (раковины моллюсков) структур.

    Калий (K ) и натрий (Na ) в виде ионов имеют большое значение для поддержания постоянства состава внутренней среды, а также участвуют в формировании нервного импульса в нервных клетках.

Химические вещества клетки.

Углеводы .

Основная функция углеводов – энергетическая. Кроме того, они входят в состав поверхностного слоя оболочки (гликокаликса ) животной клетки и в состав клеточной стенки бактерий, грибов и растений, выполняя строительную (структурную) функцию.

По строению углеводы делятся на моносахариды, дисахариды и полисахариды. Среди моносахаридов наиболее важны глюкоза (основной источник энергии), рибоза (входит в состав РНК), дезоксирибоза (входит в состав ДНК). Основными полисахаридами являются целлюлоза и крахмал у растений, гликоген и хитин у животных и грибов. Все полисахариды являются полимерами регулярного строения, т.е. состоят только из одного вида мономеров. Например, мономером крахмала, гликогена и целлюлозы является глюкоза.

Липиды.

Липиды тоже выполняют энергетическую функцию, и при этом дают вдвое больше энергии на 1 г вещества, чем углеводы. Но особенно важна их строительная функция, т.к. именно двойной слой липидов (а если быть совсем точным, то фосфолипидов) является основой биологических мембран. Кроме того, подкожная жировая клетчатка (у тех, у кого она есть) выполняет функцию механической защиты и терморегуляции.

Белки.

Белки – биополимеры нерегулярного строения, мономерами которых являются аминокислоты . В состав белков входит 20 видов аминокислот, при этом количество аминокислот и последовательность их соединения в разных белковых молекулах отличается. В результате белки имеют очень разнообразное строение и, как следствие, разнообразные свойства и функции.

Уровни организации белковой молекулы (структура белка).

Ниже представлен классический рисунок, изображающий различные уровни организации молекулы гемоглобина. Первичная, вторичная, третичная и четвертичная структуры обозначены цифрами 1-4 соответственно.

Функции белков.

    Строительная функция белков одна из самых важных, поскольку они входят в состав всех клеточных структур (мембран, органоидов и цитоплазмы). Фактически белки – основной строительный материал для организма. Рост и развитие организма без достаточного количества белка не могут происходить нормально. Именно поэтому растущий организм должен обязательно получать с пищей белки.

    Ферментативная функция белков не менее важна. Большинство химических реакций, происходящих в клетке, были бы не возможны без участия биологических катализаторов – ферментов. Почти все ферменты (энзимы) по своей природе являются белками. Каждый фермент ускоряет только одну реакцию (или реакцию одного типа). В этом выражается специфичность ферментов. Кроме того, ферменты действуют в довольно узком диапазоне температур. Повышение температуры приводит к их денатурации и потере каталитической активности. Примером типичного фермента является каталаза, расщепляющая пероксид водорода, образовавшийся в ходе обмена, на воду и кислород (2 H 2 O 2 → 2 H 2 O + O 2 ). Действие каталазы можно наблюдать при обработке перекисью кровоточащей раны. Выделяющийся газ - кислород. Можно также обработать перекисью нарезанные клубни картофеля. Произойдет то же самое.

    Транспортная функция белков заключается в переносе различных веществ. Одни белки осуществляют транспорт в масштабах целого организма. Например, гемоглобин крови переносит кислород и углекислый газ по всему телу. Другие белки, встроенные в мембраны клеток, обеспечивают транспорт различных веществ в клетку и из неё. Типичный пример калий-натриевый насос – сложный белковый комплекс, выкачивающий из клетки натрий и закачивающий в неё калий.

    Двигательную функцию белков не надо путать с транспортной. В данном случае речь идет о движении организма или отдельных его частей относительно друг друга. В качестве примера можно привести белки, входящие в состав мышечной ткани: актин и миозин. Взаимодействие этих белков и обеспечивает сокращение мышечного волокна.

    Защитная функция выполняется многими специфическими белками. Антитела, вырабатываемые лимфоцитами в кровь, защищают организм от болезнетворных микроорганизмов. Особые клеточные белки интерфероны обеспечивают противовирусную защиту. Протромбин плазмы участвуют в свертывании крови, предохраняя организм от потерь крови.

    Регуляторную функцию выполняют белки, являющиеся гормонами. Типичный белковый гормон инсулин регулирует содержание глюкозы в крови. Ещё один белковый гормон – гормон роста.

Денатурация и ренатурация белков.

Важнейшей особенностью большинства белков является неустойчивость их структуры при нефизиологических условиях. При повышении температуры, изменении pH среды, воздействии растворителей и т.п. связи, поддерживающие пространственную структуру белка, разрушаются. Происходит денатурация , т.е. нарушение природной структуры белка. В первую очередь разрушаются четвертичная и третичная структуры. Если действие неблагоприятного фактора не прекращается или усиливается, то разрушаются вторичная и даже первичная структура. Разрушение первичной структуры – разрыв связей между аминокислотами – означает конец существованию молекулы белка. Если же первичная структура сохраняется, то при благоприятных условиях белок может восстановить свою пространственную структуру, т.е. произойдет ренатурация .

Например, при жарке яиц под влияние высокой температуры с яичным белком происходят следующие изменения: был жидким и прозрачным, стал твердым и непрозрачным. Однако, после остывания белок не становится опять прозрачным и жидким. В данном случае ренатурация не происходит, т.к. при жарке разрушилась первичная структура белка.

Нуклеиновые кислоты.

Нуклеиновые кислоты , так же как и белки, являются полимерами нерегулярного строения. Мономерами нуклеиновых кислот являются нуклеотиды . Схематичное строение нуклеотида представлено на рисунке 2. Как видим, каждый нуклеотид состоит из трех компонентов: азотистого основания (многоугольник), углевода (пятиугольник) и остатка фосфорной кислоты (кружок).

Сравнительная характеристика ДНК и РНК

Хранение и передача наследственной информации.

Регуляция процессов жизнедеятельности клетки.

Биосинтез белка (т.е. по сути процесс реализации генетической информации).

Виды РНК и их роль в биосинтезе белка.

    Информационная РНК (иРНК) – переносит информацию о первичной структуре белка от ДНК к рибосомам.

    Транспортная РНК (тРНК) – доставляет аминокислоты к рибосомам.

    Рибосомальная РНК (рРНК) – входит в состав рибосом, т.е. также участвует в синтезе белка.

Строение молекулы ДНК.

Современная модель строения ДНК предложена Д.Уотсоном и Ф.Криком. Молекула ДНК представляет собой две цепочки нуклеотидов, спирально закрученные друг вокруг друга. Азотистые основания направлены внутрь молекулы так, что напротив аденина одной цепочки всегда расположен тимин другой цепочки, а напротив гуанина расположен цитозин. Аденин – тимин и гуанин – цитозин комплементарны, а принцип их расположения в молекуле ДНК называется принципом комплементарности. Между аденином и тимином образуются две водородные связи, а между цитозином и гуанином – три. Таким образом, две цепочки нуклеотидов в молекуле ДНК соединяются множеством непрочных водородных связей.

Следствием комплементарности пар А-Т и Г-Ц является то, что количество адениловых (А) нуклеотидов в ДНК всегда равно количеству тимидиловых (Т). И точно также число гуаниловых (Г) и цитидиловых (Ц) нуклеотидов также будет одинаково. Например, если в ДНК 10% нуклеотидов с аденином, то нуклеотидов с тимином будет тоже 10%, а с гуанином и цитозином по 40% каждого.

Элементы содержания, проверяемые на ЕГЭ:

2.4 Строение клетки. Взаимосвязь строения и функций частей и органоидов клетки – основа ее целостности.

Строение эукариотической клетки

1) Ограничивает содержимое клетки, выполняет защитную функцию.

2) Осуществляет избирательный транспорт.

3) Обеспечивает связь клеток в многоклеточном организме.

Ядро

Имеет двойную мембрану. Внутри находится хроматин (ДНК с белками), а также одно или несколько ядрышек (место сборки субъединиц рибосом). Связь с цитоплазмой осуществляется через ядерные поры.

1) Хранение и передача наследственной информации.

2) Контроль и управление процессами жизнедеятельности клетки.

Цитоплазма

Внутренняя среда клетки, включающая жидкую часть, органоиды и включения. Осуществляет взаимосвязь всех клеточных структур

Митохондрии

Имеют двойную мембрану. Внутренняя мембрана образует складки – кристы , на которых расположены ферментные комплексы, синтезирующие АТФ. Имеют собственные рибосомы и кольцевую ДНК

Синтез АТФ

Эндоплазматическая сеть (ЭПС)

Сеть канальцев и полостей, пронизывающих всю клетку. На мембране шероховатой ЭПС расположены рибосомы. На мембране гладкой ЭПС их нет.

Осуществляет транспорт веществ, связывая различные органиоды. Шероховатая ЭПС также участвует в синтезе белков, а гладкая – в синтезе углеводов и липидов.

Аппарат Гольджи

Система плоских емкостей (цистерн).

1) Накопление, сортировка, упаковка и подготовка к экспорту из клетки синтезированных белков.

2) Образование лизосом.

Лизосомы

Пузырьки, заполненные разнообразными ферментами.

Внутриклеточное переваривание.

Рибосомы

Состоят из двух субъединиц, образованных белками и рРНК.

Синтез белка.

Клеточный центр

У животных и низших растений включает две центриоли , образованные девятью триплетами микротрубочек.

Участвует в делении клетки и формировании цитоскелета.

Органоиды движения (реснички, жгутики).

Представляют собой цилиндр, стенка которого состоит из девяти пар микротрубочек. Ещё две расположены по центру.

Движение.

Пластиды (имеются только у растений)

Хромопласты (желтые - красные) придают окраску цветам и плодам, что привлекает опылителей и распространителей плодов и семян. Лейкопласты (бесцветные) накапливают крахмал. Хлоропласты (зеленые) осуществляют фотосинтез.

Хлоропласты

Имеют двойную мембрану. Внутренняя мембрана образует складки в виде стопок монет – граны . Отдельная «монетка» - тилакоид . Имеют кольцевую ДНК и рибосомы.

Транспорт через плазматическую мембрану.

Пассивный транспорт происходит без затрат энергии (т.е. без затрат АТФ). Основной вид - диффузия. Путем диффузии в клетку попадает кислород, выделяется углекислый газ.

Активный транспорт идет с затратами энергии. Основные способы:

    Транспорт с помощью клеточных насосов. Особые белковые комплексы, встроенные в мембрану, переносят в клетку одни ионы и выкачивают другие. Например, калий-натриевый насос выкачивает из клетки Na + , а закачивает K + . На его работу расходуется АТФ.

    Фагоцитоз – поглощение клеткой твердых частиц. Мембрана клетки образует выпячивания, которые постепенно смыкаются, и поглощаемая частица оказывается в цитоплазме.

    Пиноцитоз – поглощение клеткой капелек жидкости. Происходит аналогично фагоцитозу.

Клетка - элементарная живая система, основная структурная и функциональная единица организма, способная к самообновлению, саморегуляции и самовоспроизведению.

Жизненные свойства клетки человека

К основным жизненным свойствам клетки относят: обмен веществ, биосинтез, размножение, раздражимость, выделение, питание, дыхание, рост и распад органических соединений.

Химический состав клетки

Основные химические элементы клетки: Кислород (О), Сера (S), Фосфор (Р), Углерод (С), Калий (К), Хлор (Сl), Водород (Н), Железо (Fe), Натрий (Na), Азот (N), Кальций (Са), Магний (Mg)

Органические вещества клетки

Название веществ

Из каких эле-ментов (веществ) состоят

Функции веществ

Углеводы

Углерод, водо-род, кислород.

Основные источники энергии для осуществления всех жиз-ненных процессов.

Углерод, водо-род, кислород.

Входят в состав всех клеточных мембран, служат запасным ис-точником энергии в организме.

Углерод, водород, ки-слород, азот, сера, фосфор.

1. Главный строительный материал клетки;

2. ускоряют течение химических реакций в организме;

3. запасной источник энергии для организма.

Нуклеиновые кислоты

Углерод, водо-род, кисло-род, азот, фосфор.

ДНК - определяет состав бел-ков клетки и передачу наслед-ственных признаков и свойств следующим поколениям;

РНК - образование характерных для данной клетки белков.

АТФ (аденозинтрифосфат)

Рибоза, аденин, фосфорная кислота

Обеспечивает запас энергии, участвует в построении нуклеиновых кислот

Размножение клетки (деление клетки) человека

Размножение клеток в человеческом организме происходит путем непрямого деления. В результате дочерний организм получает такой-же набор хромосом, как материнский. Хромосомы - носители наследственных свойств организма, передающихся от родителей потомству.

Этап размножения (фазы деления)

Характеристика

Подготовительная

Перед делением число хромосом удваивается. Запасается энергия и вещества, необходимые для деления.

Начало деления. Центриоли клеточного центра расходятся к полюсам клетки. Хромосомы утолщаются и укорачиваются. Ядерная оболочка растворяется. Из клеточного центра образуется веретено деления.

Удвоенные хромосомы размещаются в плоскости экватора клетки. К каждой, хромосоме, прикрепляются плотные нити, которые тянутся от центриолей.

Нити сокращаются, и хромосомы расходятся к полюсам клетки.

Четвертая

Конец деления. Делится все содержимое клетки и цитоплазма. Хромосомы удлиняются и становятся неразличимыми. Формируется ядерная оболочка, на теле клетки возникает перетяжка, которая постепенно углубляется, разделяя клетку надвое. Образуются две дочерние клетки.

Строение клетки человека человека

У животной клетки, в отличие от растительной, имеется клеточный центр, яо отсутствуют: плотная клеточная стенка, поры в клеточной стенке, пластиды(хлоропласты, хромопласты, лейкопласты) и вакуоли с клеточным соком.

Клеточные структуры

Особенности строения

Основные функции

Плазматическая мембрана

Билипидныи (жировой) слой, окруженный бел новым 1 слоями

Обмен веществ между клетками и межклеточным веществом

Цитоплазма

Вязкое полужидкое вещество, в котором располагаютсу органоиды клетки

Внутренняя среда клетки. Взаимосвязь всех частей клетки и транспорт питательных веществ

Ядро с ядрышком

Тельце, ограниченное ядерной оболочкой, с хроматином (тип и ДНК). Ядрышко находится внутри ядра, принимает участие в синтезе белков.

Контролирующий центр клетки. Передача информации дочерним клеткам с помощью хромосом при делении

Клеточный центр

Участок более густой цитоплазмы с центриолями (и цилиндричсекие тельца)

Участвует в делении клеток

Эндоплазматическая сеть

Сеть канальцев

Синтез и транспорт питательных веществ

Рибосомы

Плотные тельца, содержащие белок и РНК

В них синтезируется белок

Лизосомы

Округлые тельца, внутри которых находятся ферменты

Расщепляют белки, жиры, углеводы

Митохондрии

Утолщённые тельца с внутренними складками (кристами)

В них находятся,ферменты, при помощи которых пи-тательные вещества расщепляются, а энергия запаса-ется в виде особого вещества - АТФ.

Аппарат Гольджи

С топка плоских мембранных мешочков

Образование лизосом

_______________

Источник информации:

Биология в таблицах и схемах./ Издание 2е, - СПб.: 2004.

Резанова Е.А. Биология человека. В таблицах и схемах./ М.: 2008.




Понравилась статья? Поделитесь ей
Наверх