Kruhy srdcového obehu. Obehové kruhy sú stručné a jasné. Vlastnosti krvného obehu jednotlivých ľudských orgánov

Obeh- toto je pohyb krvi cez cievny systém, zabezpečujúci výmenu plynov medzi telom a vonkajšie prostredie, metabolizmus medzi orgánmi a tkanivami a humorálna regulácia rôzne funkcie telo.

Obehový systém zahŕňa srdce a - aortu, tepny, arterioly, kapiláry, venuly, žily a. Krv sa pohybuje cez cievy v dôsledku kontrakcie srdcového svalu.

Krvný obeh prebieha v uzavretom systéme pozostávajúcom z malých a veľkých kruhov:

  • Systémový obeh zásobuje všetky orgány a tkanivá krvou a obsahom, ktorý obsahuje. živiny.
  • Pľúcny alebo pľúcny obeh je navrhnutý tak, aby obohatil krv kyslíkom.

Cirkulačné kruhy prvýkrát opísal anglický vedec William Harvey v roku 1628 vo svojej práci „Anatomické štúdie o pohybe srdca a ciev“.

Pľúcny obeh začína z pravej komory, počas kontrakcie ktorej žilová krv vstupuje do pľúcneho kmeňa a prúdi cez pľúca, uvoľňuje oxid uhličitý a je nasýtená kyslíkom. Krv bohatá na kyslík z pľúc putuje cez pľúcne žily do ľavej predsiene, kde malý kruh končí.

Systémový obeh začína z ľavej komory, pri ktorej kontrakcii sa krv obohatená kyslíkom pumpuje do aorty, tepien, arteriol a kapilár všetkých orgánov a tkanív a odtiaľ prúdi cez venuly a žily do pravé átrium, kde končí veľký kruh.

Najväčšie plavidlo veľký kruh Krvný obeh je aorta, ktorá vychádza z ľavej srdcovej komory. Aorta tvorí oblúk, z ktorého sa vetvia tepny, ktoré vedú krv do hlavy ( krčných tepien) a na horné končatiny ( vertebrálnych tepien). Aorta prebieha dole pozdĺž chrbtice, kde sa z nej rozvetvujú vetvy, ktoré odvádzajú krv do brušných orgánov, do svalov trupu a dolných končatín.

Arteriálna krv bohatá na kyslík prechádza celým telom, dodáva živiny a kyslík potrebný pre bunky orgánov a tkanív pre ich činnosť a v kapilárnom systéme sa mení na venóznu krv. Venózna krv nasýtená oxidom uhličitým a produktmi bunkový metabolizmus, sa vracia do srdca a z neho vstupuje do pľúc na výmenu plynov. Najväčšie žily systémového obehu sú horná a dolná dutá žila, ktoré ústia do pravej predsiene.

Ryža. Schéma pľúcneho a systémového obehu

Mali by ste venovať pozornosť tomu, ako sú obehové systémy pečene a obličiek zahrnuté do systémového obehu. Všetka krv z kapilár a žíl žalúdka, čriev, pankreasu a sleziny vstupuje do portálnej žily a prechádza pečeňou. V pečeni sa vrátnicová žila rozvetvuje na malé žily a kapiláry, ktoré sa potom znova spájajú spoločný kmeň pečeňová žila, ktorá ústi do dolnej dutej žily. Všetka krv z brušných orgánov pred vstupom do systémového obehu prúdi cez dve kapilárne siete: kapiláry týchto orgánov a kapiláry pečene. Systém brány pečeň hrá veľkú rolu. Poskytuje neutralizáciu toxické látky, ktoré vznikajú v hrubom čreve pri rozklade nevstrebaných tenké črevo aminokyseliny a sú absorbované sliznicou hrubého čreva do krvi. Pečeň, rovnako ako všetky ostatné orgány, dostáva a arteriálnej krvi cez pečeňovú tepnu, ktorá vychádza z brušnej tepny.

Obličky majú tiež dve kapilárne siete: v každom malpighovskom glomerule je kapilárna sieť, potom sú tieto kapiláry spojené a vytvárajú arteriálnu cievu, ktorá sa opäť rozpadá na kapiláry prepletené stočenými tubulmi.

Ryža. Schéma obehu

Charakteristickým znakom krvného obehu v pečeni a obličkách je spomalenie prietoku krvi, ktoré je podmienené funkciou týchto orgánov.

Tabuľka 1. Rozdiely v prietoku krvi v systémovom a pľúcnom obehu

Prúdenie krvi v tele

Systémový obeh

Pľúcny obeh

V ktorej časti srdca sa kruh začína?

V ľavej komore

V pravej komore

V ktorej časti srdca sa kruh končí?

V pravej predsieni

V ľavej predsieni

Kde dochádza k výmene plynu?

V kapilárach umiestnených v hrudnej a brušných dutín, mozog, horné a dolné končatiny

V kapilárach umiestnených v alveolách pľúc

Aký druh krvi sa pohybuje cez tepny?

Arteriálna

Venózna

Aký druh krvi sa pohybuje v žilách?

Venózna

Arteriálna

Čas potrebný na cirkuláciu krvi

Kruhová funkcia

Zásobovanie orgánov a tkanív kyslíkom a prenos oxidu uhličitého

Nasýtenie krvi kyslíkom a odstránenie oxidu uhličitého z tela

Čas krvného obehu -čas jedného prechodu krvnej častice cez veľké a vedľajšie kruhy cievneho systému. Viac podrobností v ďalšej časti článku.

Vzory pohybu krvi cez cievy

Základné princípy hemodynamiky

Hemodynamika je oblasť fyziológie, ktorá študuje vzorce a mechanizmy pohybu krvi cez cievy ľudského tela. Pri jej štúdiu sa používa terminológia a zohľadňujú sa zákony hydrodynamiky – náuka o pohybe tekutín.

Rýchlosť, ktorou sa krv pohybuje cez cievy, závisí od dvoch faktorov:

  • z rozdielu krvného tlaku na začiatku a na konci cievy;
  • od odporu, s ktorým sa kvapalina stretáva na svojej ceste.

Tlakový rozdiel podporuje pohyb tekutiny: čím je väčší, tým je tento pohyb intenzívnejší. Odpor v cievnom systéme, ktorý znižuje rýchlosť pohybu krvi, závisí od mnohých faktorov:

  • dĺžka nádoby a jej polomer (čím dlhšia dĺžka a menší polomer, tým väčší odpor);
  • viskozita krvi (je 5-krát väčšia ako viskozita vody);
  • trenie krvných častíc o steny krvných ciev a medzi sebou.

Hemodynamické parametre

Rýchlosť prietoku krvi v cievach sa uskutočňuje podľa zákonov hemodynamiky, spoločných so zákonmi hydrodynamiky. Rýchlosť prietoku krvi je charakterizovaná tromi ukazovateľmi: objemová rýchlosť prietoku krvi, lineárna rýchlosť prietoku krvi a čas krvného obehu.

Objemová rýchlosť prietoku krvi - množstvo krvi, ktoré pretečie prierezom všetkých ciev daného kalibru za jednotku času.

Lineárna rýchlosť prietoku krvi - rýchlosť pohybu jednotlivej častice krvi pozdĺž cievy za jednotku času. V strede cievy je lineárna rýchlosť maximálna a v blízkosti steny cievy je minimálna v dôsledku zvýšeného trenia.

Čas krvného obehu -čas, za ktorý krv prechádza systémovým a pľúcnym obehom.Normálne je to 17-25 s. Prechod cez malý kruh trvá asi 1/5 a prechod cez veľký kruh 4/5 tohto času.

Hnacou silou prietoku krvi v cievnom systéme každého obehového systému je rozdiel v krvnom tlaku ( ΔР) v počiatočnej časti arteriálneho riečiska (aorta pre veľký kruh) a v záverečnej časti venózneho riečiska (vena cava a pravá predsieň). Rozdiel v krvnom tlaku ( ΔР) na začiatku plavidla ( P1) a na jeho konci ( P2) je hnacou silou prietoku krvi ktoroukoľvek cievou obehový systém. Sila gradientu krvného tlaku sa používa na prekonanie odporu voči prietoku krvi ( R) v cievnom systéme a v každej jednotlivej cieve. Čím vyšší je gradient krvného tlaku v krvnom obehu alebo v samostatnej cieve, tým väčší je objemový prietok krvi v nich.

Najdôležitejším ukazovateľom pohybu krvi cez cievy je objemová rýchlosť prietoku krvi, alebo objemový prietok krvi(Q), ktorým sa rozumie objem krvi, ktorý pretečie celkovým prierezom cievneho riečiska alebo prierezom jednotlivej cievy za jednotku času. Rýchlosť prietoku krvi sa vyjadruje v litroch za minútu (l/min) alebo v mililitroch za minútu (ml/min). Na posúdenie objemového prietoku krvi aortou alebo celkového prierezu akejkoľvek inej úrovne ciev systémového obehu sa používa koncept objemový systémový prietok krvi. Keďže za jednotku času (minútu) celý objem krvi vytlačený ľavou komorou za tento čas pretečie aortou a ďalšími cievami systémového obehu, pojem systémový objemový prietok krvi je synonymom pojmu (IOC). IOC dospelého človeka v pokoji je 4-5 l/min.

Rozlišuje sa aj objemový prietok krvi v orgáne. V tomto prípade máme na mysli celkový prietok krvi pretekajúci za jednotku času všetkými aferentnými alebo eferentnými tepnami. žilových ciev organ.

Teda objemový prietok krvi Q = (P1 - P2) / R.

Tento vzorec vyjadruje podstatu základného zákona hemodynamiky, ktorý hovorí, že množstvo krvi, ktoré pretečie celkovým prierezom cievneho systému alebo jednotlivou cievou za jednotku času je priamo úmerné rozdielu krvného tlaku na začiatku resp. konca cievneho systému (alebo cievy) a nepriamo úmerné odporu prúdiacej krvi.

Celkový (systémový) minútový prietok krvi v systémovom kruhu sa vypočíta s prihliadnutím na priemerný hydrodynamický krvný tlak na začiatku aorty P1 a pri ústí dutej žily P2. Keďže v tejto časti žíl je krvný tlak blízko 0 , potom do výrazu na výpočet Q alebo je nahradená hodnota MOC R rovná sa priemernému hydrodynamickému arteriálnemu krvnému tlaku na začiatku aorty: Q(IOC) = P/ R.

Jedným z dôsledkov základného zákona hemodynamiky je hnacia sila prietok krvi v cievnom systéme - v dôsledku krvného tlaku vytvoreného prácou srdca. Potvrdenie rozhodujúci význam hodnota krvného tlaku pre prietok krvi je pulzujúca povaha prietoku krvi v celom objeme srdcový cyklus. Počas srdcovej systoly, keď krvný tlak dosiahne maximálnu úroveň, sa prietok krvi zvyšuje a počas diastoly, keď je krvný tlak minimálny, prietok krvi klesá.

Ako sa krv pohybuje cez cievy z aorty do žíl, krvný tlak klesá a rýchlosť jeho poklesu je úmerná odporu prietoku krvi v cievach. Tlak v arteriolách a kapilárach klesá obzvlášť rýchlo, pretože majú veľký odpor voči prietoku krvi, majú malý polomer, veľkú celkovú dĺžku a početné vetvy, čo vytvára ďalšiu prekážku prietoku krvi.

Odpor voči prietoku krvi vytvorený v celom cievnom riečisku systémového obehu sa nazýva celkový periférny odpor(OPS). Preto je vo vzorci na výpočet objemového prietoku krvi symbol R môžete ho nahradiť analógovým - OPS:

Q = P/OPS.

Z tohto výrazu vyplýva množstvo dôležitých dôsledkov, ktoré sú potrebné na pochopenie procesov krvného obehu v tele a posúdenie výsledkov meraní. krvný tlak a jeho odchýlky. Faktory ovplyvňujúce odpor nádoby voči prúdeniu tekutiny popisuje Poiseuilleho zákon, podľa ktorého

Kde R- odpor; L— dĺžka plavidla; η - viskozita krvi; Π - číslo 3,14; r— polomer plavidla.

Z uvedeného výrazu vyplýva, že keďže čísla 8 A Π sú trvalé L sa u dospelého človeka mení málo, potom je hodnota periférneho odporu voči prietoku krvi určená meniacimi sa hodnotami polomeru krvných ciev r a viskozitu krvi η ).

Už bolo spomenuté, že polomer ciev svalového typu sa môže rýchlo meniť a má významný vplyv na veľkosť odporu prietoku krvi (odtiaľ ich názov - odporové cievy) a množstvo prietoku krvi cez orgány a tkanivá. Keďže odpor závisí od hodnoty polomeru do 4. mocniny, aj malé výkyvy polomeru ciev výrazne ovplyvňujú hodnoty odporu proti prietoku krvi a prietoku krvi. Ak sa teda napríklad polomer cievy zmenší z 2 na 1 mm, potom sa jej odpor zvýši 16-krát a pri konštantnom tlakovom gradiente sa prietok krvi v tejto cieve zníži aj 16-krát. Reverzné zmeny odporu budú pozorované, keď sa polomer nádoby zvýši 2-krát. Pri konštantnom priemernom hemodynamickom tlaku sa prietok krvi v jednom orgáne môže zvýšiť a v inom - znížiť v závislosti od kontrakcie alebo relaxácie hladký sval prinášanie arteriálnych ciev a žily tohto orgánu.

Viskozita krvi závisí od obsahu počtu červených krviniek (hematokrit), bielkovín, lipoproteínov v krvnej plazme, ako aj od agregovaného stavu krvi. IN normálnych podmienkach viskozita krvi sa nemení tak rýchlo ako lúmen krvných ciev. Po strate krvi, s erytropéniou, hypoproteinémiou, viskozita krvi klesá. S výraznou erytrocytózou, leukémiou, zvýšená agregácia erytrocyty a hyperkoagulácia, viskozita krvi sa môže výrazne zvýšiť, čo má za následok zvýšenie odporu proti prietoku krvi, zvýšenie zaťaženia myokardu a môže byť sprevádzané zhoršeným prietokom krvi v cievach mikrovaskulatúry.

V ustálenom obehovom režime sa objem krvi vytlačenej ľavou komorou a pretekajúcej prierezom aorty rovná objemu krvi pretekajúcej cez celkový prierez ciev akéhokoľvek iného úseku aorty. systémový obeh. Tento objem krvi sa vracia do pravej predsiene a vstupuje do pravej komory. Z nej je krv vypudená do pľúcneho obehu a následne sa vracia do pľúcneho obehu cez pľúcne žily. ľavé srdce. Keďže IOC ľavej a pravej komory sú rovnaké a systémový a pľúcny obeh sú zapojené do série, objemová rýchlosť prietoku krvi v cievnom systéme zostáva rovnaká.

Avšak pri zmenách podmienok prietoku krvi, napríklad pri prechode z horizontálneho na vertikálna poloha keď gravitácia spôsobí dočasné nahromadenie krvi v žilách dolnej časti trupu a nôh, na krátky čas IOC ľavej a pravej komory sa môže líšiť. Čoskoro intrakardiálne a extrakardiálne mechanizmy regulujúce prácu srdca vyrovnávajú objem prietoku krvi cez pľúcny a systémový obeh.

O prudký poklesžilový návrat krvi do srdca, čo spôsobuje zníženie objemu úderov, sa môže znížiť arteriálny tlak krvi. Ak je výrazne znížená, môže sa znížiť prietok krvi do mozgu. To vysvetľuje pocit závratu, ktorý sa môže vyskytnúť, keď sa človek náhle presunie z horizontálnej do vertikálnej polohy.

Objem a lineárna rýchlosť prietoku krvi v cievach

Celkový objem krvi v cievnom systéme je dôležitým homeostatickým ukazovateľom. priemerná hodnota u žien je to 6-7%, u mužov 7-8% telesnej hmotnosti a pohybuje sa v rozmedzí 4-6 litrov; 80-85% krvi z tohto objemu je v cievach systémového obehu, asi 10% je v cievach pľúcneho obehu a asi 7% je v dutinách srdca.

Najviac krvi je obsiahnutých v žilách (asi 75 %) – to svedčí o ich úlohe pri ukladaní krvi v systémovom aj pľúcnom obehu.

Pohyb krvi v cievach je charakterizovaný nielen objemom, ale aj lineárna rýchlosť prietoku krvi. Rozumie sa ako vzdialenosť, ktorú prejde častica krvi za jednotku času.

Existuje vzťah medzi objemovou a lineárnou rýchlosťou prietoku krvi, ktorý je opísaný nasledujúcim výrazom:

V = Q/Pr 2

Kde V- lineárna rýchlosť prietoku krvi, mm/s, cm/s; Q- objemová rýchlosť prietoku krvi; P- číslo rovné 3,14; r— polomer plavidla. Rozsah Pr 2 odráža plochu prierezu plavidla.

Ryža. 1. Zmeny krvného tlaku, lineárna rýchlosť prietok krvi a plocha prierezu v rôznych častiach cievneho systému

Ryža. 2. Hydrodynamická charakteristika cievneho riečiska

Z vyjadrenia závislosti lineárnej rýchlosti od objemu v cievach obehového systému je zrejmé, že lineárna rýchlosť prietoku krvi (obr. 1) je úmerná objemovému prietoku krvi cievou (cievami) resp. nepriamo úmerné ploche prierezu tejto nádoby (nádob). Napríklad v aorte, ktorá má najmenšiu plochu prierezu v systémovom obehu (3-4 cm2), lineárna rýchlosť pohybu krvi najväčší a v pokoji je o 20-30 cm/s. O fyzická aktivita môže sa zvýšiť 4-5 krát.

Smerom ku kapiláram sa zvyšuje celkový priečny lúmen ciev a následne sa znižuje lineárna rýchlosť prietoku krvi v tepnách a arteriolách. V kapilárnych cievach, ktorých celková plocha prierezu je väčšia ako v ktorejkoľvek inej časti ciev veľkého kruhu (500-600-krát väčšia ako prierez aorty), lineárna rýchlosť prietoku krvi minimálna (menej ako 1 mm/s). Vytvára sa pomalý prietok krvi v kapilárach najlepšie podmienky pre únik metabolické procesy medzi krvou a tkanivami. V žilách sa lineárna rýchlosť prietoku krvi zvyšuje v dôsledku poklesu ich celkovej plochy prierezu, keď sa približujú k srdcu. Pri ústí dutej žily je to 10-20 cm/s, pri záťaži sa zvyšuje na 50 cm/s.

Lineárna rýchlosť pohybu plazmy závisí nielen od typu ciev, ale aj od ich umiestnenia v prietoku krvi. Existuje laminárny typ prietoku krvi, pri ktorom môže byť prietok krvi rozdelený do vrstiev. V tomto prípade je lineárna rýchlosť pohybu vrstiev krvi (hlavne plazmy) blízko alebo priľahlých k stene cievy najnižšia a vrstvy v strede toku sú najvyššie. Medzi vaskulárnym endotelom a parietálnymi krvnými vrstvami vznikajú trecie sily, ktoré vytvárajú šmykové napätie na vaskulárnom endoteli. Tieto napätia zohrávajú úlohu pri produkcii vazoaktívnych faktorov endotelu, ktoré regulujú lúmen krvných ciev a rýchlosť prietoku krvi.

Červené krvinky v cievach (s výnimkou kapilár) sa nachádzajú prevažne v centrálnej časti krvného toku a pohybujú sa v ňom relatívne vysoká rýchlosť. Leukocyty sú naopak umiestnené prevažne v parietálnych vrstvách krvného toku a vykonávajú valivé pohyby pri nízkej rýchlosti. To im umožňuje viazať sa na adhézne receptory v miestach mechanického alebo zápalového poškodenia endotelu, priľnúť k stene cievy a migrovať do tkanív, aby vykonávali ochranné funkcie.

Pri výraznom zvýšení lineárnej rýchlosti pohybu krvi v zúženej časti ciev, v miestach, kde jej vetvy odchádzajú z cievy, môže byť laminárny charakter pohybu krvi nahradený turbulentným. V tomto prípade môže byť narušený vrstvený pohyb jeho častíc v prúde krvi, medzi stenou cievy a krvou môžu vznikať väčšie trecie sily a šmykové napätia ako pri laminárnom pohybe. Rozvíjajú sa vírivé prietoky krvi, čím sa zvyšuje pravdepodobnosť poškodenia endotelu a ukladanie cholesterolu a iných látok do intimy cievnej steny. To môže viesť k mechanickému narušeniu štruktúry cievnej steny a iniciácii rozvoja nástenných trombov.

Čas úplného prekrvenia, t.j. návrat krvnej častice do ľavej komory po jej ejekcii a prechode cez systémový a pľúcny obeh je 20-25 sekúnd za kosenie, alebo po približne 27 systolách srdcových komôr. Približne štvrtinu tohto času strávi pohyb krvi cez cievy pľúcneho obehu a tri štvrtiny cez cievy systémového obehu.

Kardiovaskulárny systém je dôležitou súčasťou každého živého organizmu. Krv transportuje kyslík, rôzne živiny a hormóny do tkanív a prenáša produkty látkovej výmeny týchto látok do vylučovacích orgánov na ich odstránenie a neutralizáciu. Je obohatený o kyslík v pľúcach a živiny v orgánoch tráviaceho systému. V pečeni a obličkách sa metabolické produkty vylučujú a neutralizujú. Tieto procesy sa uskutočňujú neustálym krvným obehom, ku ktorému dochádza prostredníctvom systémového a pľúcneho obehu.

Všeobecné informácie

V rôznych storočiach boli pokusy objaviť obehový systém, ale skutočne pochopil podstatu obehového systému, objavil jeho kruhy a opísal schému ich štruktúry. anglický lekár William Harvey. Ako prvý experimentom dokázal, že v tele zvieraťa sa v dôsledku tlaku vytváraného kontrakciami srdca neustále pohybuje rovnaké množstvo krvi v začarovanom kruhu. Harvey vydal knihu v roku 1628. V ňom načrtol svoju doktrínu o krvnom obehu, čím vytvoril predpoklady pre ďalšie hĺbkové štúdium anatómie kardiovaskulárneho systému.

U novorodencov krv cirkuluje v oboch kruhoch, ale kým bol plod ešte v maternici, jeho krvný obeh mal svoje vlastné charakteristiky a nazýval sa placentárny. Je to spôsobené tým, že počas vývoja plodu v maternici, dýchacích a zažívacie ústrojenstvo plod nie je plne funkčný a dostáva všetko potrebné látky od matky.

Štruktúra krvného obehu

Hlavnou zložkou krvného obehu je srdce. Veľké a malé kruhy krvného obehu sú tvorené cievami, ktoré z neho vychádzajú a predstavujú uzavreté kruhy. Pozostávajú z nádob rôznych štruktúr a priemer.


Podľa funkcie krvných ciev sa zvyčajne delia do nasledujúcich skupín:

  1. 1. Perikardiálna. Začínajú a končia oba kruhy krvného obehu. Patria sem pľúcny kmeň, aorta, dutá žila a pľúcne žily.
  2. 2. Kufor. Rozvádzajú krv po celom tele. Ide o veľké a stredne veľké extraorgánové tepny a žily.
  3. 3. Organ. S ich pomocou je zabezpečená výmena látok medzi krvou a tkanivami tela. Táto skupina zahŕňa intraorgánové žily a tepny, ako aj mikrocirkulačnú jednotku (arterioly, venuly, kapiláry).

Malý kruh

Pôsobí na okysličenie krvi, ktoré sa vyskytuje v pľúcach. Preto sa tento kruh nazýva aj pľúcny. Začína v pravej komore, do ktorej prechádza všetka venózna krv vstupujúca do pravej predsiene.

Začiatkom je pľúcny kmeň, ktorý sa pri priblížení k pľúcam rozvetvuje na pravú a ľavú pľúcnu tepnu. Vedú venóznu krv do pľúcnych alveol, ktoré sa po vylúčení oxidu uhličitého a spätného príjmu kyslíka stanú arteriálnymi. Okysličená krv prúdi cez pľúcne žily (dve na každej strane) do ľavej predsiene, kde končí pľúcny kruh. Krv potom prúdi do ľavej komory, kde vzniká systémový obeh.


Veľký kruh

Vzniká v ľavej komore najväčšou cievou ľudského tela – aortou. Prenáša arteriálnu krv obsahujúcu látky a kyslík potrebné pre život. Aorta sa rozvetvuje na tepny, ktoré idú do všetkých tkanív a orgánov, z ktorých sa následne stanú arterioly a potom kapiláry. Cez jeho stenu dochádza k výmene látok a plynov medzi tkanivami a cievami.

Po prijatí metabolických produktov a oxidu uhličitého sa krv stáva venóznou a zhromažďuje sa vo venulách a potom do žíl. Všetky žily sa spájajú do dvoch veľké nádoby- dolná a horná dutá žila, ktoré potom ústia do pravej predsiene.


Fungovanie a zmysel

Krvný obeh sa uskutočňuje v dôsledku kontrakcií srdca, kombinovanej činnosti jeho ventilov a tlakového gradientu v cievach orgánov. Pomocou toho všetkého sa nastaví potrebná postupnosť pohybu krvi v tele.

Vďaka pôsobeniu krvného obehu telo naďalej existuje. Konštantný krvný obeh má dôležité po celý život a vykonáva tieto funkcie:

  • plyn (dodávanie kyslíka do orgánov a tkanív a odstraňovanie oxidu uhličitého z nich cez žilový kanál);
  • transport živín a plastických látok (vstupujú do tkanív cez arteriálne lôžko);
  • dodávanie metabolitov (spracovaných látok) do vylučovacích orgánov;
  • transport hormónov z miesta ich produkcie do cieľových orgánov;
  • cirkulácia tepelnej energie;
  • dodanie ochranných látok na miesto potreby (na miesta zápalu a iných patologických procesov).

Koordinovaná práca všetkých častí kardiovaskulárneho systému, v dôsledku ktorej dochádza k nepretržitému prietoku krvi medzi srdcom a orgánmi, umožňuje výmenu látok s vonkajším prostredím a udržiava stálosť vnútorné prostredie pre plnohodnotné fungovanie tela po dlhú dobu.

Testy

27-01. V ktorej komore srdca zvyčajne začína pľúcny obeh?
A) v pravej komore
B) v ľavej predsieni
B) v ľavej komore
D) v pravej predsieni

Odpoveď

27-02. Ktoré tvrdenie správne popisuje pohyb krvi cez pľúcny obeh?
A) začína v pravej komore a končí v pravej predsieni
B) začína v ľavej komore a končí v pravej predsieni
B) začína v pravej komore a končí v ľavej predsieni
D) začína v ľavej komore a končí v ľavej predsieni

Odpoveď

27-03. Ktorá komora srdca dostáva krv zo žíl systémového obehu?
A) ľavá predsieň
B) ľavá komora
B) pravá predsieň
D) pravá komora

Odpoveď

27-04. Ktoré písmeno na obrázku označuje srdcovú komoru, v ktorej končí pľúcny obeh?

Odpoveď

27-05. Na obrázku je srdce a veľké cievy osoba. Aké písmeno predstavuje dolnú dutú žilu?

Odpoveď

27-06. Aké čísla označujú cievy, ktorými preteká venózna krv?

A) 2.3
B) 3.4
B) 1.2
D) 1.4

Odpoveď

27-07. Ktoré tvrdenie správne popisuje pohyb krvi systémovým obehom?
A) začína v ľavej komore a končí v pravej predsieni
B) začína v pravej komore a končí v ľavej predsieni
B) začína v ľavej komore a končí v ľavej predsieni
D) začína v pravej komore a končí v pravej predsieni

Odpoveď

27-08. Krv v ľudskom tele sa po odchode mení z venóznej na arteriálnu
A) kapiláry pľúc
B) ľavá predsieň
B) pečeňové kapiláry
D) pravá komora

Odpoveď

27-09. Ktorá cieva vedie venóznu krv?
A) oblúk aorty
B) brachiálna artéria
B) pľúcna žila
D) pľúcna tepna

V ľudskom tele sa krv pohybuje v dvoch uzavreté systémy cievy spojené so srdcom - malý A veľký kruhy krvného obehu.

Pľúcny obeh - Toto je cesta krvi z pravej komory do ľavej predsiene.

Venózna krv s nízkym obsahom kyslíka vstupuje do pravá strana srdiečka. Zmršťovanie pravej komory hodí to do pľúcna tepna. Cez dve vetvy, na ktoré sa delí pľúcna tepna, táto krv prúdi do svetlo. Tam prechádzajú vetvy pľúcnej tepny, deliace sa na menšie a menšie tepny kapiláry, ktoré husto splietajú početné pľúcne vezikuly obsahujúce vzduch. Pri prechode cez kapiláry je krv obohatená kyslíkom. Súčasne prechádza oxid uhličitý z krvi do vzduchu, ktorý napĺňa pľúca. V kapilárach pľúc sa teda venózna krv premieňa na arteriálnu krv. Vstupuje do žíl, ktoré sa navzájom spájajú a tvoria štyri pľúcne žily , ktoré sa vlievajú do ľavej predsiene(obr. 57, 58).

Doba cirkulácie krvi v pľúcnom obehu je 7-11 sekúnd.

Systémový obeh - to je cesta krvi z ľavej komory cez tepny, kapiláry a žily do pravej predsiene.Materiál zo stránky

Ľavá komora sa sťahuje a tlačí do nej arteriálnu krv aorta- najviac veľká tepna osoba. Odchádzajú z nej tepny, ktoré zásobujú krvou všetky orgány, najmä srdce. Tepny v každom orgáne sa postupne rozvetvujú a vytvárajú hustú sieť menších tepien a vlásočníc. Z kapilár systémového obehu prúdi kyslík a živiny do všetkých tkanív tela a oxid uhličitý prechádza z buniek do kapilár. V tomto prípade sa krv zmení z arteriálnej na venóznu. Kapiláry sa spájajú do žíl, najprv do malých a potom do väčších. Z nich sa všetka krv zhromažďuje v dvoch veľkých vena cava. Horná dutá žila prenáša krv do srdca z hlavy, krku, rúk a dolnú dutú žilu- zo všetkých ostatných častí tela. Obe duté žily ústia do pravej predsiene (obr. 57, 58).

Čas krvného obehu v systémovom obehu je 20-25 sekúnd.

Venózna krv z pravej predsiene vstupuje do pravej komory, z ktorej prúdi cez pľúcny obeh. Na výstupe aorty a pľúcnej tepny zo srdcových komôr, polmesačné chlopne(obr. 58). Vyzerajú ako nasadené vrecká vnútorné steny cievy. Keď je krv tlačená do aorty a pľúcnej tepny, semilunárne chlopne sú pritlačené k stenám ciev. Keď sa komory uvoľnia, krv sa nemôže vrátiť do srdca, pretože prúdi do vreciek, napína ich a tesne sa uzatvárajú. V dôsledku toho polmesačné chlopne zabezpečujú pohyb krvi jedným smerom - z komôr do tepien.

Pľúcny obeh

Obehové kruhy - tento koncept podmienečne, pretože iba u rýb je krvný obeh úplne uzavretý. U všetkých ostatných zvierat je koniec systémového obehu začiatkom malého a naopak, čo znemožňuje hovoriť o ich úplnej izolácii. V skutočnosti oba kruhy krvného obehu tvoria jeden celý krvný obeh, v ktorých dvoch častiach (pravom a ľavom srdci) sa krvi odovzdáva kinetická energia.

Obeh je cievna dráha, ktorá má svoj začiatok a koniec v srdci.

Systémový (systémový) obeh

Štruktúra

Začína sa ľavou komorou, ktorá počas systoly vytláča krv do aorty. Z aorty vychádzajú početné tepny, čo vedie k prietoku krvi distribuovanému medzi niekoľko paralelných regionálnych cievnych sietí, z ktorých každá zásobuje samostatný orgán. Ďalšie rozdelenie tepien nastáva na arterioly a kapiláry. Celková plocha všetkých kapilár v ľudskom tele je približne 1000 m².

Po prechode orgánom sa začína proces spájania kapilár do venulov, ktoré sa zase zhromažďujú do žíl. K srdcu sa približujú dve duté žily: horná a dolná, ktoré po splynutí tvoria časť pravej predsiene srdca, ktorá je koncom systémového obehu. Cirkulácia krvi v systémovom obehu nastáva za 24 sekúnd.

Výnimky v štruktúre

  • Krvný obeh sleziny a čriev. Všeobecná štruktúra nezahŕňa krvný obeh v črevách a slezine, pretože po vytvorení slezinových a črevných žíl sa spoja a vytvoria portálnu žilu. Portálna žila sa v pečeni opäť rozpadne na kapilárnu sieť a až potom krv prúdi do srdca.
  • Obličkový obeh. V obličkách sú tiež dve kapilárne siete - tepny sa rozpadajú na aferentné arterioly Shumlyansky-Bowmanovej kapsuly, z ktorých každá sa rozpadá na kapiláry a zhromažďuje sa do eferentnej arterioly. Eferentná arteriola dosiahne stočený kanálik nefrónu a znovu sa rozpadne na kapilárnu sieť.

Funkcie

Prívod krvi do všetkých orgánov ľudského tela vrátane pľúc.

Malý (pľúcny) obeh

Štruktúra

Začína v pravej komore, ktorá vytláča krv do pľúcneho kmeňa. Pľúcny kmeň je rozdelený na pravú a ľavú pľúcnu tepnu. Artérie sa dichotomicky delia na lobárne, segmentálne a subsegmentálne artérie. Subsegmentálne artérie sú rozdelené na arterioly, ktoré sa rozpadajú na kapiláry. Odtok vyteká krv cez žily, ktoré sa zhromažďujú opačné poradie, ktoré v množstve 4 ks ústia do ľavej predsiene. Krvný obeh v pľúcnom obehu nastáva za 4 sekundy.

Pľúcny obeh prvýkrát opísal Miguel Servetus v 16. storočí vo svojej knihe „Obnova kresťanstva“.

Funkcie

  • Odvod tepla

Funkcia malého kruhu nie je výživa pľúcneho tkaniva.

„Dodatočné“ obehové kruhy

Záležiac ​​na fyziologický stav organizmu, ako aj praktická účelnosť sa niekedy rozlišujú dodatočné kruhy krvný obeh:

  • placentárna,
  • srdečný.

Placentárny obeh

Existuje v plode umiestnenom v maternici.

Krv, ktorá nie je úplne okysličená, odteká cez pupočnú žilu, ktorá prebieha v pupočnej šnúre. Odtiaľ, väčšina z nich krv prúdi cez ductus venosus do dolnej dutej žily a mieša sa s neokysličenou krvou z dolnej časti tela. Do ľavej vetvy sa dostáva menej krvi portálna žila, prechádza pečeňou a pečeňovými žilami a vstupuje do dolnej dutej žily.

Dolnou dutou žilou prúdi zmiešaná krv, ktorej saturácia kyslíkom je asi 60 %. Takmer všetka táto krv prejde foramen ovale v stene pravej predsiene do ľavej predsiene. Z ľavej komory je krv vypudzovaná do systémového obehu.

Krv z hornej dutej žily najskôr vstupuje do pravej komory a kmeňa pľúcnice. Keďže pľúca sú v kolapse, tlak v pľúcne tepny viac ako v aorte a takmer všetka krv prechádza cez ductus arteriosus (Botallov) do aorty. Ductus arteriosus prúdi do aorty po tom, čo z nej odchádzajú tepny hlavy a Horné končatiny, ktorá im poskytuje viac obohatenú krv. Veľmi veľa vstupuje do pľúc malá časť krv, ktorá následne vstupuje do ľavej predsiene.

Časť krvi (~ 60 %) zo systémového obehu vstupuje do placenty cez dve pupočníkové tepny; zvyšok ide do orgánov dolnej časti tela.

Srdcový obehový systém alebo koronárny obehový systém

Štrukturálne je súčasťou veľkého okruhu krvného obehu, ale vzhľadom na dôležitosť orgánu a jeho prekrvenie možno niekedy nájsť zmienku o tomto okruhu v literatúre.

Arteriálna krv prúdi do srdca vpravo a vľavo koronárnej artérie. Začínajú na aorte nad jej polmesiacovými chlopňami. Z nich vychádzajú menšie vetvy, vstupujú do svalovej steny a rozvetvujú sa do vlásočníc. Odtok žilovej krvi vyskytuje sa v 3 žilách: veľká, stredná, malá, srdcová žila. Zlúčením vytvárajú koronárny sínus a ten ústi do pravej predsiene.


Nadácia Wikimedia. 2010.



Páčil sa vám článok? Zdieľaj to
Hore