Митоз является симметричным процессом относительно метафазы таблица. Деление клетки. Нетипичные формы митоза

Интерфаза – это период между двумя клеточными делениями. В интерфазе ядро компактное, не имеет выраженной структуры, хорошо видны ядрышки. Совокупность интерфазных хромосом представляет собой хроматин. В состав хроматина входят: ДНК, белки и РНК в соотношении 1: 1,3: 0,2, а также неорганические ионы. Структура хроматина изменчива и зависит от состояния клетки.

Хромосомы в интерфазе не видны, поэтому их изучение ведется электронно-микроскопическими и биохимическими методами. Интерфаза включает три стадии: пресинтетическую (G1), синтетическую (S) и постсинтетическую (G2). Символ G представляет собой сокращение от англ. gap – интервал; символ S – сокращение от англ. synthesis – синтез. Рассмотрим эти стадии подробнее.

Пресинтетическая стадия (G1). В основе каждой хромосомы лежит одна двуспиральная молекула ДНК. Количество ДНК в клетке на пресинтетической стадии обозначается символом 2с (от англ. content – содержание). Клетка активно растет и нормально функционирует.

Синтетическая стадия (S). Происходит самоудвоение, или репликация ДНК. При этом одни участки хромосом удваиваются раньше, а другие – позже, то есть репликация ДНК протекает асинхронно. Параллельно происходит удвоение центриолей (если они имеются).

Постсинтетическая стадия (G2). Завершается репликация ДНК. В состав каждой хромосомы входит две двойных молекулы ДНК, которые являются точной копией исходной молекулы ДНК. Количество ДНК в клетке на постсинтетической стадии обозначается символом 4с. Синтезируются вещества, необходимые для деления клетки. В конце интерфазы процессы синтеза прекращаются.

Процесс митоза

Профаза – первая фаза митоза. Хромосомы спирализуются и становятся видны в световой микроскоп в виде тонких нитей. Центриоли (если они имеются) расходятся к полюсам клетки. В конце профазы ядрышки исчезают, ядерная оболочка разрушается, и хромосомы выходят в цитоплазму.

В профазе увеличивается объем ядра, и вследствие спирализации хроматина формируются хромосомы. К концу профазы видно, что каждая хромосома состоит из двух хроматид. Постепенно растворяются ядрышки и ядерная оболочка, и хромосомы оказываются беспорядочно расположенными в цитоплазме клетки. Центриоли расходятся к полюсам клетки. Формируется ахроматиновое веретено деления, часть нитей которого идет от полюса к полюсу, а часть - прикрепляется к центромерам хромосом. Содержание генетического материала в клетке остается неизменным (2n2хр).

Рис. 1. Схема митоза в клетках корешка лука

Рис. 2. Схема митоза в клетках корешка лука: 1- интерфаза; 2,3 - профаза; 4 - метафаза; 5,6 - анафаза; 7,8 - телофаза; 9 - образование двух клеток

Рис. 3. Митоз в клетках кончика корешка лука: а - интерфаза; б - профаза; в - метафаза; г - анафаза; л, е - ранняя и поздняя телофазы

Метафаза. Начало этой фазы называется прометафаза. В прометафазе хромосомы располагаются в цитоплазме довольно беспорядочно. Формируется митотический аппарат, в состав которого входит веретено деления и центриоли или иные центры организации микротрубочек. При наличии центриолей митотический аппарат называется астральным (у многоклеточных животных), а при их отсутствии – анастральным (у высших растений). Веретено деления (ахроматиновое веретено) – это система тубулиновых микротрубочек в делящейся клетке, обеспечивающая расхождение хромосом. В состав веретена деления входят два типа нитей: полюсные (опорные) и хромосомальные (тянущие).

После формирования митотического аппарата хромосомы начинают перемещаться в экваториальную плоскость клетки; это движение хромосом называется метакинез.

В метафазе хромосомы максимально спирализованы. Центромеры хромосом располагаются в экваториальной плоскости клетки независимо друг от друга. Полюсные нити веретена деления тянутся от полюсов клетки к хромосомам, а хромосомальные – от центромер (кинетохоров) – к полюсам. Совокупность хромосом в экваториальной плоскости клетки образует метафазную пластинку.

Анафаза. Происходит разделение хромосом на хроматиды. С этого момента каждая хроматида становится самостоятельной однохроматидной хромосомой, в основе которой лежит одна молекула ДНК. Однохроматидные хромосомы в составе анафазных групп расходятся к полюсам клетки. При расхождении хромосом хромосомальные микротрубочки укорачиваются, а полюсные – удлиняются. При этом полюсные и хромосомальные нити скользят вдоль друг друга.

Телофаза. Веретено деления разрушается. Хромосомы у полюсов клетки деспирализуются, вокруг них формируются ядерные оболочки. В клетке образуются два ядра, генетически идентичные исходному ядру. Содержание ДНК в дочерних ядрах становится равным 2c.

Цитокинез. В цитокинезе происходит разделение цитоплазмы и формирование мембран дочерних клеток. У животных цитокинез происходит путем перешнуровывания клетки. У растений цитокинез происходит иначе: в экваториальной плоскости образуются пузырьки, которые сливаются с образованием двух параллельных мембран.

На этом митоз завершается, и наступает очередная интерфаза.



Мейоз - это деление в зоне созревания половых клеток , сопровождающееся уменьшением числа хромосом вдвое. Он состоит из двух последовательно идущих деле­ний, имеющих те же фазы, что и митоз. Однако, как показано в таблице «Сравнение митоза и мейоза», продолжительность отдельных фаз и происходящие в них процессы значительно отличаются от процессов, происходящих при митозе.

Эти отличия в основном состоят в следующем.

В мейозе профаза I более продолжительна. В ней происходит конъюгация(соединение гомологичных хромосом) и обмен генетической информацией. В анафазе Iцентроме­ры, скрепляющие хроматиды, не делятся, а к полюсам отходит одна из гомологмейоза Митоз и его фазы митоза и ичных хромосом. Интерфаза перед вторым делением очень короткая, в ней ДНК не синтезируется. Клетки (галиты), образующиеся в результате двух мейотических делений, содержат гаплоидный (одинарный) набор хромосом. Диплоидность восстанавливается при слиянии двух клеток - материнской и отцовской. Опло­дотворенную яйцеклетку называютзиготой.

Митоз, или непрямое деление, наиболее широко рас­пространен в природе. Митоз лежит в основе деления всех неполовых клеток (эпителиальных, мышечных, нервных, костных и др.). Митоз состоит из четырех последователь­ных фаз (см. далее таблицу). Благодаря митозу обеспечи­вается равномерное распределение генетической информа­ции родительской клетки между дочерними. Период жизни клетки между двумя митозами называют интерфазой. Она в десятки раз продолжительнее митоза. В ней совершается ряд очень важных процессов, предшествующих делению клетки: синтезируются молекулы АТФ и белков , удваивается каждая хромосома, образуя две сестринские хроматиды, скрепленные общей центромерой, увеличивается число основных органоидов цитоплазмы.

В профазе спиралируются и вследствие этого утолща­ются хромосомы, состоящие из двух сестринских хроматид, удерживаемых вместе центромерой. К концу профазы ядерная мембрана и ядрышки исчезают и хромосомы рас­средоточиваются по всей клетке, центриоли отходят к полюсам и образуют веретено деления. В метафазе проис­ходит дальнейшая спирализация хромосом. В эту фазу они наиболее хорошо видны. Их центромеры располагаются по экватору. К ним прикрепляются нити веретена деления.

В анафазе центромеры делятся, сестринские хроматиды отделяются друг от друга и за счет сокращения нитей веретена отходят к противоположным полюсам клетки.

В телофазе цитоплазма делится, хромосомы раскручи­ваются, вновь образуются ядрышки и ядерные мембраны. В животных клетках цитоплазма перешнуровывается, в растительных - в центре материнской клетки образуется перегородка. Так из одной исходной клетки (материнской) образу­ются две новые дочерние.

Мейоз и митоз

Таблица - Сравнение митоза и мейоза

1 деление

2 деление

Интерфаза

Набор хромосом 2n

Идет интенсивный синтез белков, АТФ и других органических веществ

Удваиваются хромосомы, каждая оказывается состоящей из двух сестринских хроматид, скрепленных общей центромерой.

Набор хромосом 2n Наблюдаются те же процессы, что и в митозе, но более продолжительна, особенно при обра­зовании яйцеклеток.

Набор хромосом гаплоидный (n). Синтез органических веществ отсутствует.

Непродолжительна, происходит спирализация хро­мосом, исчезают ядерная оболочка, ядрышко, образуется веретено деления

Более длительна. В начале фазы те же процессы, что и в митозе. Кроме того, происходит конъюгация хромосом, при которой гомологичные хромосомы сближаются по всей длине и скру­чиваются. При этом может происходить обмен генетической информацией (перекрест хромосом) -кроссинговер . Затем хромосомы расходятся.

Короткая; те же процессы, что и в митозе, но при nхромосом.

Метафаза

Происходит дальнейшая спирализация хромосом, их центромеры располагаются по экватору.

Происходят процессы, аналогичные тем, что и в митозе.

Центромеры, скрепляющие се­стринские хроматиды, делятся, каждая из них становится новой хромосомой и отходит к противоположным полюсам.

Центромеры не делятся. К противоположным полюсам отходит одна из гомологичных хро­мосом, состоящая из двух хроматид, скрепленных общей центромерой.

Происходит то же, что и в митозе, но при nхромосом.

Телофаза

Делится цитоплазма, образуются две дочерние клетки, каждая с диплоидным набором хромосом. Исчезает веретено деления, формируются ядрышки.

Длится недолго Гомологичные хро­мосомы попадают в разные клетки с гаплоидным набором хромосом. Цитоплазма делится не всегда.

Делится цитоплазма. После двух мейотических делений образуется 4 клетки с гаплоидным набором хромосом.

Клеточный цикл - это период существования клетки от момента её образования путем деления материнской клетки до собственного деления.

Длительность клеточного цикла эукариот

Длительность клеточного цикла у разных клеток варьируется. Быстро размножающиеся клетки взрослых организмов, такие как кроветворные или базальные клетки эпидермиса и тонкой кишки, могут входить в клеточный цикл каждые 12-36 ч. Короткие клеточные циклы (около 30 мин) наблюдаются при быстром дроблении яиц иглокожих , земноводных и других животных. В экспериментальных условиях короткий клеточный цикл (около 20 ч) имеют многие линии клеточных культур. У большинства активно делящихся клеток длительность периода между митозами составляет примерно 10-24 ч.

Фазы клеточного цикла эукариот

Клеточный цикл эукариот состоит из двух периодов:

Период клеточного роста, называемый «интерфаза », во время которого идет синтез ДНК и белков и осуществляется подготовка к делению клетки.

Периода клеточного деления, называемый «фаза М» (от слова mitosis - митоз ).

Интерфаза состоит из нескольких периодов:

G 1 -фазы (от англ. gap - промежуток), или фазы начального роста , во время которой идет синтез мРНК , белков , других клеточных компонентов;

S-фазы (от англ. synthesis - синтез), во время которой идет репликация ДНК клеточного ядра , также происходит удвоение центриолей (если они, конечно, есть).

G 2 -фазы, во время которой идет подготовка к митозу .

У дифференцировавшихся клеток, которые более не делятся, в клеточном цикле может отсутствовать G 1 фаза. Такие клетки находятся в фазе покоя G 0 .

Период клеточного деления (фаза М) включает две стадии:

-кариокинез (деление клеточного ядра);

-цитокинез (деление цитоплазмы).

В свою очередь, митоз делится на пять стадий.

Описание клеточного деления базируется на данных световой микроскопии в сочетании с микрокиносъемкой и на результатахсветовой и электронной микроскопии фиксированных и окрашенных клеток.

Регуляция клеточного цикла

Закономерная последовательность смены периодов клеточного цикла осуществляется при взаимодействии таких белков , какциклин-зависимые киназы и циклины . Клетки , находящиеся в G 0 фазе, могут вступать в клеточный цикл при действии на нихфакторов роста . Разные факторы роста, такие как тромбоцитарный , эпидермальный, фактор роста нервов, связываясь со своимирецепторами , запускают внутриклеточный сигнальный каскад, приводящий в итоге к транскрипции генов циклинов и циклин-зависимых киназ . Циклин-зависимые киназы становятся активными лишь при взаимодействии с соответствующими циклинами . Содержание различных циклинов в клетке меняется на протяжении всего клеточного цикла. Циклин является регуляторной компонентой комплекса циклин-циклин-зависимая киназа. Киназа же является каталитическим компонентом этого комплекса.Киназы не активны без циклинов . На разных стадиях клеточного цикла синтезируются разные циклины . Так, содержание циклина B в ооцитах лягушки достигает максимума к моменту митоза , когда запускается весь каскад реакций фосфорилирования , катализируемых комплексом циклин-В/циклин-зависимая киназа. К окончанию митоза циклин быстро разрушается протеиназами.

Контрольные точки клеточного цикла

Для определения завершения каждой фазы клеточного цикла необходимо наличие в нем контрольных точек. Если клетка «проходит» контрольную точку, то она продолжается «двигаться» по клеточному циклу. Если же какие-либо обстоятельства, например повреждение ДНК, мешают клетке пройти через контрольную точку, которую можно сравнить со своего рода контрольным пунктом, то клетка останавливается и другой фазы клеточного цикла не наступает по крайней мере до тех пор, пока не будут устранены препятствия, не позволявшие клетке пройти через контрольный пункт. Существует как минимум четыре контрольных точки клеточного цикла: точка в G1, где проверяется интактность ДНК, перед вхождением в S-фазу, сверочная точка в S-фазе, в которой проверяется правильность репликации ДНК, сверочная точка в G2, в которой проверяются повреждения, пропущенные при прохождении предыдущих сверочных точек, либо полученные на последующих стадиях клеточного цикла. В G2 фазе детектируется полнота репликации ДНК, и клетки, в которых ДНК недореплицирована, не входят в митоз. В контрольной точке сборки веретена деления проверяется, все ли кинетохоры прикреплены к микротрубочкам.

Нарушения клеточного цикла и образование опухолей

Увеличение синтеза белка p53 ведет к индукции синтеза белка p21 - ингибитора клеточного цикла

Нарушение нормальной регуляции клеточного цикла является причиной появления большинства твердых опухолей. В клеточном цикле, как уже говорилось, прохождение контрольных пунктов его возможно только в случае нормального завершения предыдущих этапов и отсутствия поломок. Для опухолевых клеток характерны изменения компонентов сверочных точек клеточного цикла. При инактивации сверочных точек клеточного цикла наблюдается дисфункция некоторых опухолевых супрессоров и протоонкогенов, в частности p53 , pRb , Myc иRas . Белок p53 является одним из факторов транскрипции, который инициирует синтез белка p21 , являющегося ингибитором комплекса CDK-циклин, что приводит к остановке клеточного цикла в G1 и G2 периоде. Таким образом клетка, у которой повреждена ДНК, не вступает в S-фазу. При мутациях, приводящих к потере генов белка p53, или при их изменениях, блокады клеточного цикла не происходит, клетки вступают в митоз, что приводит к появлению мутантных клеток, большая часть из которых нежизнеспособна, другая - дает начало злокачественным клеткам.

Деление клеток

Все клетки появляются путём деления родительских клеток. Большинству клеток свойственен клеточный цикл, состоящий из двух основных стадий: интерфазы и митоза.

Интерфаза состоит из трех этапов. В течение 4–8 часов после рождения клетка увеличивает свою массу. Некоторые клетки (например, нервные клетки мозга) навсегда остаются в этой стадии, у других же в течение 6–9 часов удваивается хромосомная ДНК. Когда масса клетки увеличивается в два раза, начинается митоз .

В стадии анафазы хромосомы перемещаются к полюсам клетки. Когда хромосомы достигают полюсов, начинается телофаза . Клетка делится надвое в экваториальной плоскости, нити веретена разрушаются, вокруг хромосом формируются ядерные мембраны. Каждая дочерняя клетка получает собственный набор хромосом и возвращается в стадию интерфазы. Весь процесс занимает около часа.

Процесс митоза может варьировать в зависимости от типа клетки. В растительной клетке отсутствуют центриоли, хотя веретено деления образуется. В грибных клетках митоз происходит внутри ядра, ядерная мембрана не распадается.

Наличие хромосом не является необходимым условием деления клетки. С другой стороны, один или несколько митозов могут останавливаться на стадии телофазы, в результате чего возникают многоядерные клетки (например, у некоторых водорослей).

Размножение при помощи митоза называют бесполым или вегетативным, а также клонированием . При митозе генетический материал родительских и дочерних клеток идентичен.

Мейоз , в отличие от митоза, является важным элементом полового размножения . При мейозе образуются клетки, содержащие лишь один набор хромосом, что делает возможным последующее слияние половых клеток (гамет) двух родителей. По сути, мейоз является разновидностью митоза. Он включает два последовательных деления клетки, однако хромосомы удваиваются только в первом из этих делений. Биологическая сущность мейоза заключается в уменьшении числа хромосом в два раза и образовании гаплоидных гамет (то есть гамет, имеющих по одному набору хромосом).

В результате мейотического деления у животных образуются четыре гаметы . Если мужские половые клетки имеют примерно одинаковые размеры, то при образовании яйцеклеток распределение цитоплазмы происходит очень неравномерно: одна клетка остаётся крупной, а три остальных настолько малы, что их почти целиком занимает ядро. Эти мелкие клетки служат лишь для размещения избыточного генетического материала.

Мужские и женские гаметы сливаются, образуя зиготу . Хромосомные наборы при этом объединяются (этот процесс называется сингамией ), в результате чего в зиготе восстанавливается удвоенный набор хромосом – по одному от каждого из родителей. Случайное расхождение хромосом и обмен генетическим материалом между гомологичными хромосомами приводят к возникновению новых комбинаций генов, повышая генетическое разнообразие. Образовавшаяся зигота развивается в самостоятельный организм.

В последнее время проводились эксперименты по искусственному слиянию клеток одного или разных видов. Наружные поверхности клеток склеивались вместе, а мембрана между ними разрушалась. Таким образом удалось получить гибридные клетки мыши и цыплёнка, человека и мыши. Однако при последующих делениях клетки теряли большинство хромосом одного из видов.

В других экспериментах клетка разделялась на компоненты, например, ядро, цитоплазму и мембрану. После этого компоненты различных клеток снова соединяли вместе, и в результате получалась живая клетка, состоящая из компонентов клеток разных видов. В принципе, опыты по сборке искусственных клеток могут оказаться первым шагом на пути к созданию новых форм жизни.

Вскоре после того, как немецкий патофизиолог Р.Вирхов в середине XIX в. сформулировал основной принцип клеточной теории в виде афоризма Omni cellula ex cellula («Всякая клетка – из другой клетки»), было установлено, что жизнь соматической клетки протекает циклически, начинаясь с деления и делением оканчиваясь. За полтора века, прошедшие с тех пор, получено множество новых данных об особенностях деления различных клеток. Стали понятны многие процессы организации и регуляции деления, их невероятная сложность. И все большее восхищение исследователей вызывает точность, с которой происходит разделение хромосом между будущими дочерними клетками. Именно о механизмах разделения хромосом (на примере клеток животных) и пойдет речь ниже.

Клеточный цикл – это последовательность закономерно сменяющих друг друга фаз от образования клетки в результате деления до либо разделения ее на дочерние клетки в следующем акте деления, либо гибели. У эукариот клеточный цикл состоит из интерфазы и собственно деления, или митоза. Каждой из этих фаз соответствуют определенные явления и процессы, которые позволяют разделить их на более мелкие стадии. У разных организмов количество и последовательности стадий клеточного цикла различаются.

Интерфаза значительно более длительна, чем митоз (обычно занимает не менее 90% всего времени клеточного цикла), и обычно подразделяется на три периода: пресинтетический (G1), синтетический (S) и постсинтетический (G2). На стадии G2 клетка может перейти к следующему делению или к состоянию покоя (G0). Переход к делению возможен только из стадии G2, поэтому, если клетка находится в состоянии G0, для продолжения деления ей необходимо вернуться в состояние G2. Стадия G1 может продолжаться от 2 ч до нескольких недель или даже месяцев, продолжительность стадии S 6–12 ч, а стадии G2 – от получаса до нескольких часов.

Собственно непрямое деление , или митоз , состоит из стадий кариокинеза (деления ядра) и цитокинеза (деления цитоплазмы). Разделение хромосом происходит на стадии кариокинеза, поэтому рассмотрим ее подробнее.

В первой фазе митоза – профазе – хромосомы спирализуются и становятся видны в световой микроскоп в виде тонких нитей. Клеточные центры, удвоение которых происходит на стадии S, расходятся к полюсам клетки. В конце профазы ядрышки исчезают, ядерная оболочка разрушается и хромосомы выходят в цитоплазму.

Затем клетка переходит в метафазу , начало которой называют прометафазой . В прометафазе хромосомы располагаются в цитоплазме довольно беспорядочно. Формируется митотический аппарат, в состав которого входит веретено деления и центриоли. Веретено деления – это система особых структур, микротрубочек (МТ), в делящейся клетке, обеспечивающая расхождение хромосом. Затем кинетохоры (центромеры) хромосом захватываются МТ, отходящими от обоих полюсов веретена деления, и через некоторое время хромосомы выстраиваются в экваториальной плоскости клетки. В метафазе хромосомы максимально спирализованы. Центромеры хромосом располагаются в экваториальной плоскости клетки независимо друг от друга. Совокупность хромосом в экваториальной плоскости клетки образует метафазную пластинку.

На следующей стадии деления – в анафазе – происходит разделение хромосом на хроматиды. С этого момента каждая хроматида становится самостоятельной однохроматидной хромосомой. Сначала сестринские хроматиды расходятся к противоположным полюсам веретена деления, а сами полюса остаются неподвижными (анафаза А ), а затем полюса веретена расходятся к противоположным концам клетки (анафаза В ).

После этого клетка переходит в телофазу : веретено деления разрушается, хромосомы у полюсов клетки деспирализуются, вокруг них формируются ядерные оболочки. В клетке образуются два ядра, генетически идентичные исходному ядру.

С окончанием кариокинеза клетка переходит в стадию цитокинеза, на которой происходит разделение цитоплазмы и формирование мембран дочерних клеток. У животных цитокинез происходит путем «перешнуровывания» клетки. У растений цитокинез происходит иначе: в экваториальной плоскости образуются пузырьки, которые сливаются с образованием двух параллельных мембран. На этом митоз завершается, и дочерние клетки переходят в интерфазу.

На всех стадиях кариокинеза важнейшую роль играют МТ – их образование и пространственная ориентация, взаимодействие с кинетохорами хромосом, структурные изменения, создающие силы, необходимые для разделения хромосом, и, наконец, их разрушение. МТ входят в состав цитоскелета и играют важнейшую роль в поддержании и изменении формы клетки и направленном переносе внутриклеточных компонентов (везикул, органелл, белков и т.п.) в цитоплазме. В клетках животных несколько тысяч МТ. Все они растут из специальных образований, называемых центрами организации МТ (ЦОМТ). В клетке может быть 1–2 ЦОМТ. Исследования показали, что от центросомы отходят всего несколько десятков МТ, следовательно, МТ не обязательно связаны с центросомой. Центриоли же дают начало новым МТ, которые приходят на смену постепенно деполимеризующимся старым.

Центросома, или клеточный центр, – главный ЦОМТ и регулятор хода клеточного цикла в клетках эукариот. Центросома состоит из аморфного материала и пары центриолей – материнской и дочерней, расположенных строго определенным образом и образующих структуру, называемую диплосомой. (О структуре и функциях центросом можно прочитать, например, в журнале «Природа», 2007, №5.) Помимо участия в делении ядра, центросома играет важную роль в формировании жгутиков и ресничек. Центриоли, расположенные в ней, выполняют функцию центров организации для МТ аксонем жгутиков. У организмов, лишенных центриолей (например, у сумчатых и базидиевых грибов, покрытосеменных растений), жгутики не развиваются.

ЦОМТ могут репродуцироваться самостоятельно: новый центр образуется рядом с существующим, а затем отходит от него. До сих пор оставалось тайной, как это происходит. Но совсем недавно американские ученые, изучая экстракты центросом ооцитов моллюска Spisula solidissima , обнаружили, что центросомы содержат особые молекулы РНК. Учитывая, что центросомы имеют очень древнее происхождение и чрезвычайно консервативны, это открытие позволило предположить, что они имеют собственный генетический аппарат.

МТ представляет собой очень маленькую трубочку длиной несколько микрометров при наружном диаметре 25 нм. Она построена из 13 длинных «палочек» – протофиламентов, параллельных оси трубочки и расположенных по кругу. Протофиламент составлен из чередующихся глобул альфа- и бета-тубулина, причем в каждой паре таких глобул (димере тубулина) альфа-тубулин взаимодействует с бета-тубулином, а бета-тубулин – с альфа-тубулином ближайших соседних димеров, что и позволяет образоваться очень прочной цилиндрической конструкции. Как же такая конструкция может обеспечивать перемещение чего-либо внутри клетки?

Что касается органелл, белков и других компонентов клетки, то они перемещаются по МТ, прикрепляясь к белкам-моторам: динеинам и кинезинам, которые способны буквально «шагать» по МТ в определенном направлении, потребляя в качестве топлива АТФ. Хромосомы же прикрепляются к концам МТ, которые затем каким-то образом быстро растаскивают их к полюсам веретена деления.

Было известно, что длина МТ может быть постоянной, как, например, в жгутиках. Однако длина цитоплазматических МТ меняется постоянно: они то растут, то укорачиваются, могут исчезнуть совсем, потом опять начнут расти… Когда МТ в процессе роста достигает мишени, ее длина стабилизируется, но как это происходит, до сих пор не вполне ясно.

Экспериментально установлено, что МТ может находиться в трех основных состояниях: полимеризации, деполимеризации и катастрофы. Полимеризация – это присоединение одиночных молекул тубулина, находящихся в цитоплазме, к торцу трубочки (деполимеризация – обратный процесс). Альфа- и бета-субъединицы димера тубулина в цитоплазме сначала присоединяют по одной молекуле гуанозинтрифосфата (ГТФ), похожего по свойствам на АТФ, а затем уже могут присоединиться к торцу растущей МТ. Для роста МТ необходимо также наличие в цитоплазме некоторых специфических белков, присутствие ионов магния и отсутствие ионов кальция.

Пока с димером тубулина связаны две молекулы ГТФ, он находится в Т-состоянии, и при этом вся конструкция трубочки устойчива. Однако на бета-субъединице димера тубулина через некоторое время происходит гидролиз ГТФ, который превращается в гуанозиндифосфат (ГДФ), при этом весь димер переходит в D-состояние, а кольцо молекул тубулина на торце МТ становится напряженным, неустойчивым. В этом состоянии к торцу МТ уже не могут присоединиться новые димеры тубулина, и МТ переходит в состояние катастрофы. Поэтому рост МТ возможен только пока на конце МТ есть кольцо из Т-димеров тубулина, так называемая Т-шапочка. Если концентрация тубулина в цитоплазме невелика, димеры «Т-шапочки» могут успеть перейти в D-состояние, прежде чем к ним присоединятся новые Т-димеры и трубочка перейдет в состояние катастрофы.

Если при деполимеризации происходит отсоединение молекул тубулина по кольцу на торце МТ, то при катастрофе протофиламенты разъединяются, как отдельные проволочки, и стремятся закрутиться в колечки. При этом разборка МТ происходит очень быстро. Конец МТ, закрепленный в центросоме и защищенный от катастроф, называют «минус»-концом МТ, а другой конец, который либо нарастает, либо быстро разрушается – «плюс»-концом. В цитоплазме существует множество белков, которые могут взаимодействовать с тубулином в разных состояниях, влияя на скорость роста или распада МТ. Существенно, что белки-моторы умеют различать «плюс»- и «минус»-концы МТ: динеины движутся к «минус»-концу, а кинезины – к «плюс»-концу микротрубочки.

Каждой стадии митоза соответствует особое поведение МТ. Митотическое деление происходит с образованием специальной структуры – веретена деления, основой строения которого являются МТ, исходящие из двух клеточных центров, расположенных в полюсах клетки. Веретено деления состоит как бы из двух перекрывающихся в центральной части полуверетен, на концах которых находятся центросомы. В растительных клетках образование веретена деления происходит без участия центросом.Всего можно выделить три типа МТ: астральные, полюсные и кинетохорные. Кинетохорные МТ связывают центросому с кинетохором хромосомы. Они образуются в прометафазе. На стадии ранней профазы быстро растут астральные МТ, направленные радиально от каждого из двух клеточных центров. Астральные МТ тянутся от центросом к периферии клетки, их «плюс»-концы взаимодействуют с белками, закрепленными в клеточной мембране, по-видимому, с помощью динеинов, притягивающих центросомы к мембране.

В это же время появляются полюсные МТ, которые растут по направлению от одного клеточного центра к другому. Полюсные МТ имеют тенденцию объединяться в группы от двух до шести МТ (на стадии метафазы), в основном с МТ противоположного полюса. Так образуются полюсные нити, в которых МТ направлены антипараллельно, т.е. «плюс»-концами в противоположные стороны. Упомянутые выше моторные белки, взаимодействуя с антипараллельными МТ, приводят либо к стягиванию клеточных центров по направлению друг к другу или к их расталкиванию. Отсутствие или дефекты какого-либо из этих моторных белков приводят к нарушениям расхождения центросом и митоза в целом.

Кроме изменений в организации МТ, связанной с удвоением центросомы, изменяется и их динамика. Во время интерфазы МТ относительно длинные и стабильные, состояние роста длится в среднем около 10 мин. При переходе к митозу частота катастроф увеличивается примерно в 10 раз, поэтому состояние роста МТ укорачивается и становится меньше 1 мин. Эти изменения вызываются, в основном, специальными белками, контролирующими ход митоза, и приводят к тому, что МТ становятся нестабильными, быстро изменяющимися.

Благодаря тому, что на стадии прометафазы ядерная мембрана уже разрушена, МТ могут дотянуться до хромосом. Присоединение их к кинетохорам происходит случайно, при соприкосновении кинетохора с «плюс»-концом или боковой поверхностью МТ. В последнем случае (латеральное взаимодействие) хромосома начинает быстро, со скоростью 20–25 мкм/мин, двигаться к соответствующему полюсу веретена деления. Эта скорость сравнима со скоростью перемещения динеина вдоль МТ, но прямых данных об участии динеина в этом процессе пока нет. Затем латеральное взаимодействие заменяется концевым за счет разрушения МТ в кинетохоре, и длина МТ стабилизируется.

Кинетохор представляет собой трехслойную структуру, видимую на микрофотографиях как два темных слоя, разделенных светлым промежутком. Он имеет длину 0,3–0,6 мкм и толщину около 0,1 мкм. Один темный слой кинетохора связан с центромерой, другой – с МТ. К кинетохору могут быть прикреплены и МТ, не связанные с центросомой (в растительных и некоторых других клетках веретено деления образуется вообще без центросом). Полярность присоединения таких МТ та же: «плюс»-конец присоединен к кинетохору, а «минус»-конец находится вблизи полюса веретена. Такие МТ более стабильны, чем МТ, заканчивающиеся в полюсах веретена деления.

Направленный транспорт белков внутри клетки

В начале митоза кинетохоры хромосом расположены несимметрично относительно полюсов веретена деления, поэтому они быстрее захватываются МТ, идущими из ближайшего полюса. Однако до тех пор, пока сестринский кинетохор не будет захвачен МТ, идущей от другого полюса, и пара хромосом не будет расположена по экватору веретена деления, митоз не перейдет к следующей стадии – анафазе. Это обеспечивают специальные белки, входящие в состав системы контрольных точек митоза. Таких контрольных точек в клеточном цикле несколько. Только если предыдущая стадия митоза завершена нормально, они вырабатывают сигнал готовности к продолжению митоза.

К каждому их двух кинетохоров сестринских хроматид прикрепляется по 10–40 МТ, образующих кинетохорную нить. При этом скорость присоединения МТ к кинетохорам возрастает к концу метафазы примерно в 10 раз по сравнению с прометафазой. Это объясняется тем, что уже присоединившиеся к кинетохору МТ облегчают присоединение следующих МТ. Такой процесс называется кооперативным.

Наша справка

Нарушения митоза. При различных патологических процессах нормальное течение митоза нарушается. Выделяют 3 основных вида патологии:

1) повреждения хромосом (набухание, склеивание, фрагментация, образование мостов, повреждения центромеров, отставание отдельных хромосом при движении, нарушение их спирализации и деспирализации, раннее разъединение хроматид, образование микроядер;

2) повреждения митотического аппарата (задержка митоза в метафазе, многополюсный, моноцентрический и асимметричный митоз, трёхгрупповая и полая метафазы);

3) нарушения цитотомии.

Патологические митозы возникают после воздействия митотических ядов, токсинов, экстремальных факторов (ионизирующее излучение, аноксия, гипотермия), при вирусной инфекции и в опухоли. Резкое увеличение числа патологических митозов типично для злокачественных опухолей.

Основная функция веретена деления – это обеспечение правильного разделения сестринских хроматид. Для направленного движения таких больших структур, как хроматиды, необходимо действие на них значительных сил. Эксперименты показывают, что существуют несколько типов таких сил.

Сила первого типа возникает за счет непрерывного наращивания «плюс»-конца МТ и деполимеризации «минус»-конца. Эти процессы (при равенстве их скоростей) приводят к тому, что димеры тубулина непрерывно перемещаются в сторону «минус»-конца, а длина трубочки при этом не меняется. Если заблокировать присоединение тубулина на «плюс»-конце МТ (добавлением таксола), то разборка МТ в центросомах все равно продолжается и центросомы начинают двигаться по направлению к хромосомам со скоростью, определяемой скоростью деполимеризации МТ. Определение скорости перемещения тубулина по таким МТ показало, что возникающая при этом сила обеспечивает до 25% скорости движения хромосом к полюсу веретена деления в анафазе. В изолированном из яйца лягушки митотическом веретене движение хромосом полностью обеспечивается этой силой.

Силы второго типа («полярный ветер») действуют на участки хроматид, не связанные с кинетохором. Экспериментально показано, что после отрезания плеч хромосом от центромеры они начинают двигаться к экватору веретена деления со скоростью около 2 мкм/мин и в конце концов занимают положение между полюсами веретена деления. Скорее всего, эти силы обусловлены взаимодействием связанных с хроматином белков-моторов (типа кинезина) с МТ.

Наконец, сила третьего типа – это сила, с которой кинетохорная нить тянет хромосому к полюсу веретена деления. Это главная сила, обеспечивающая расхождение хромосом в анафазе. Она имеет, по-видимому, несколько составляющих. Во-первых, в состав кинетохора входят моторные белки (динеин), которые могут взаимодействовать с боковой поверхностью МТ и вызывать перемещение кинетохора в сторону центросомы. Во-вторых, в кинетохоре имеются белки, которые способны существенно влиять на скорость роста или разрушения МТ в зависимости от сигналов системы контрольной точки, белки которой также находятся в кинетохоре. После прохождения контрольной точки и перехода клетки в анафазу скорость деполимеризации МТ в кинетохоре резко возрастает. В результате МТ начинает быстро сокращаться, развивая необходимую для движения хромосомы к полюсу силу. Кроме того, натяжение кинетохорных нитей возрастает даже при постоянной их длине за счет расхождения антипараллельных участков полюсных МТ и, как результат, увеличения их длины. Сила, генерируемая за счет этого процесса, тем меньше, чем больше длина полюсных МТ: упругость МТ конечна, поэтому при увеличении длины они начинают изгибаться, и сила, раздвигающая полюсы веретена деления, уменьшается. Следовательно, чем дальше друг от друга находятся полюсы веретена деления, тем меньше расталкивающая их сила.

Баланс перечисленных выше сил приводит сначала к выстраиванию хромосом по экватору веретена деления, а затем, как следствие изменения баланса, к их расхождению к полюсам. Надо отметить, что баланс этот динамический, а не статический, поэтому даже при стабильном расположении хромосом в плоскости экватора веретена деления, они постоянно смещаются то к одному полюсу, то к другому. Скорость таких колебательных движений – 2–3 мкм/мин. Пока точной модели этих колебаний нет.

Кратко суммируем сказанное выше. Важнейшей задачей митоза является правильное разделение сестринских хромосом, которое осуществляется с помощью веретена деления. Веретено деления образуется МТ, с которыми взаимодействуют белки-моторы (динеины и кинезины), кинетохоры, центриоли, мембранные белки. Белки-моторы могут связываться с белками различных внутриклеточных структур (например, с хроматином) и обеспечивают их перемещение по МТ в одну или другую сторону, осуществляемое за счет энергии гидролиза АТФ. Перемещение хромосом обеспечивается как за счет взаимодействия МТ с белками-моторами, так и за счет процессов роста или распада МТ. При этом именно соотношение скоростей последних двух процессов, регулируемое белками системы контрольных точек, обеспечивает, в основном, и выстраивание хромосом в экваториальной плоскости, и расхождение их к полюсам веретена деления.

Хотя непосредственно измерить силы, действующие со стороны МТ на хромосомы, не представляется возможным, многие детали молекулярных механизмов этих процессов позволят выяснить их адекватные модели. В последнее время стали появляться модели, связывающие биохимические и механические процессы в ходе митоза, но решающее слово, как всегда, остается за экспериментальными исследованиями, которые еще предстоит выполнить.

Митоз (непрямое деление) - это деление соматических клеток (клеток тела). Биологическое значение митоза - размножение соматических клеток, получение клеток-копий (с тем же самым набором хромосом, с точно такой же наследственной информацией). Все соматические клетки организма получаются из одной исходной клетки (зиготы) путем митоза.


1) Профаза

  • хроматин спирализуется (скручивается, конденсируется) до состояния хромосом
  • ядрышки исчезают
  • ядерная оболочка распадается
  • центриоли расходятся к полюсам клетки, формируется веретено деления

2) Метафаза - хромосомы выстраиваются по экватору клетки, образуется метафазная пластинка


3) Анафаза - дочерние хромосомы отделяются друг от друга (хроматиды становятся хромосомами) и расходятся к полюсам


4) Телофаза

  • хромосомы деспирализуются (раскручиваются, деконденсируются) до состояния хроматина
  • появляются ядро и ядрышки
  • нити веретена деления разрушаются
  • происходит цитокинез - разделение цитоплазмы материнской клетки на две дочерних

Продолжительность митоза - 1-2 часа.

Клеточный цикл

Это период жизни клетки от момента её образования путем деления материнской клетки до собственного деления или смерти.


Клеточный цикл состоит из двух периодов:

  • интерфаза (состояние, когда клетка НЕ делится);
  • деление (митоз или ).

Интерфаза состоит из нескольких фаз:

  • пресинтетическая: клетка растет, в ней происходит активный синтез РНК и белков, увеличивается количество органоидов; кроме этого, происходит подготовка к удвоению ДНК (накопление нуклеотидов)
  • синтетическая: происходит удвоение (репликация, редупликация) ДНК
  • постсинтетическая: клетка готовится к делению, синтезирует необходимые для деления вещества, например белки веретена деления.

БОЛЬШЕ ИНФОРМАЦИИ: ,
ЗАДАНИЯ ЧАСТИ 2:

Тесты и задания

Выберите один, наиболее правильный вариант. Процесс размножения клеток организмов разных царств живой природы называют
1) мейозом
2) митозом
3) оплодотворением
4) дроблением

Ответ


Все приведенные ниже признаки, кроме двух, можно использовать для описания процессов интерфазы клеточного цикла. Определите два признака, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.
1) рост клетки
2) расхождение гомологичных хромосом
3) расположение хромосом по экватору клетки
4) репликация ДНК
5) синтез органических веществ

Ответ


Выберите один, наиболее правильный вариант. На каком этапе жизни клетки хромосомы спирализуются
1) интерфаза
2) профаза
3) анафаза
4) метафаза

Ответ


Выберите три варианта. Какие структуры клетки претерпевают наибольшие изменения в процессе митоза?
1) ядро
2) цитоплазма
3) рибосомы
4) лизосомы
5) клеточный центр
6) хромосомы

Ответ


1. Установите последовательность процессов, происходящих в клетке с хромосомами в интерфазе и последующем митозе
1) расположение хромосом в экваториальной плоскости
2) репликация ДНК и образование двухроматидных хромосом
3) спирализация хромосом
4) расхождение сестринских хромосом к полюсам клетки

Ответ


2. Установите последовательность процессов, происходящих в ходе интерфазы и митоза. Запишите соответствующую последовательность цифр.
1) спирализация хромосом, исчезновение ядерной оболочки
2) расхождение сестринских хромосом к полюсам клетки
3) образование двух дочерних клеток
4) удвоение молекул ДНК
5) размещение хромосом в плоскости экватора клетки

Ответ


3. Установите последовательность процессов, происходящих в интерфазе и в митозе. Запишите соответствующую последовательность цифр.
1) растворение ядерной мембраны
2) репликация ДНК
3) разрушение веретена деления
4) расхождение к полюсам клетки однохроматидных хромосом
5) образование метафазной пластинки

Ответ


4. Установите правильную последовательность процессов, происходящих во время митоза. Запишите цифры, под которыми они указаны.
1) распад ядерной оболочки
2) утолщение и укорочение хромосом
3) выстраивание хромосом в центральной части клетки
4) начало движения хромосом к центру
5) расхождение хроматид к полюсам клетки
6) формирование новых ядерных оболочек

Ответ


5. Установите последовательность процессов, происходящих в ходе митоза. Запишите соответствующую последовательность цифр.
1) спирализация хромосом
2) расхождение хроматид
3) образование веретена деления
4) деспирализация хромосом
5) деление цитоплазмы
6) расположение хромосом на экваторе клетки

Ответ

ФОРМИРУЕМ 6:
1) нити веретена деления прикрепляются к каждой хромосоме

2) формируется ядерная оболочка
3) происходит удвоение центриолей

4) исчезновение нитей веретена деления

Выберите один, наиболее правильный вариант. При делении клетки происходит формирование веретена деления в
1) профазе
2) телофазе
3) метафазе
4) анафазе

Ответ


Выберите один, наиболее правильный вариант. В профазе митоза НЕ происходит
1) растворения ядерной оболочки
2) формирования веретена деления
3) удвоения хромосом
4) растворения ядрышек

Ответ


Выберите один, наиболее правильный вариант. На каком этапе жизни клетки хроматиды становятся хромосомами
1) интерфаза
2) профаза
3) метафаза
4) анафаза

Ответ


Выберите один, наиболее правильный вариант. Деспирализация хромосом при делении клетки происходит в
1) профазе
2) метафазе
3) анафазе
4) телофазе

Ответ


Выберите один, наиболее правильный вариант. В какую фазу митоза пары хроматид прикрепляются своими центромерами к нитям веретена деления
1) анафазу
2) телофазу
3) профазу
4) метафазу

Ответ


Установите соответствие между процессами и фазами митоза: 1) анафаза, 2) телофаза. Запишите цифры 1 и 2 в правильном порядке.
А) образуется ядерная оболочка
Б) сестринские хромосомы расходятся к полюсам клетки
В) веретено деления окончательно исчезает
Г) хромосомы деспирализуются
Д) центромеры хромосом разъединяются

Ответ


Установите соответствие между характеристиками и фазами деления клетки: 1) анафаза, 2) метафаза, 3) телофаза. Запишите цифры 1-3 в порядке, соответствующем буквам.
А) деспирализация хромосом
Б) число хромосом и ДНК 4n4c
В) расположение хромосом по экватору клетки
Г) расхождение хромосом к полюсам клетки
Д) соединение центромер с нитями веретена деления
Е) образование ядерной мембраны

Ответ


Все приведенные ниже признаки, кроме двух, можно использовать для описания процессов, происходящих в интерфазе. Определите два признака, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.
1) репликация ДНК
2) формирование ядерной оболочки
3) спирализация хромосом
4) синтез АТФ
5) синтез всех видов РНК

Ответ


Все перечисленные ниже признаки, кроме двух, используются для описания изображенной на рисунке фазы митоза. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) исчезает ядрышко
2) образуется веретено деления
3) происходит удвоение молекул ДНК
4) хромосомы активно участвуют в биосинтезе белков
5) хромосомы спирализуются

Ответ


Выберите один, наиболее правильный вариант. Чем сопровождается спирализация хромосом в начале митоза
1) приобретением двухроматидной структуры
2) активным участием хромосом в биосинтезе белка
3) удвоением молекулы ДНК
4) усилением транскрипции

Ответ


Установите соответствие между процессами и периодами интерфазы: 1) постсинтетический, 2) пресинтетический, 3) синтетический. Запишите цифры 1, 2 ,3 в порядке, соответствующем буквам.
А) рост клетки
Б) синтез АТФ для процесса деления
В) синтез АТФ для репликации молекул ДНК
Г) синтез белков для построения микротрубочек
Д) репликация ДНК

Ответ


1. Все перечисленные ниже признаки, кроме двух, можно использовать для описания процесса митоза. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) лежит в основе бесполого размножения
2) непрямое деление
3) обеспечивает регенерацию
4) редукционное деление
5) увеличивается генетическое разнообразие

Ответ


2. Все приведенные признаки, кроме двух, можно использовать для описания процессов митоза. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) образование бивалентов
2) конъюгация и кроссинговер
3) неизменность числа хромосом в клетках
4) образование двух клеток
5) сохранение структуры хромосом

Ответ



Все перечисленные ниже признаки, кроме двух, используются для описания изображенного на рисунке процесса. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) дочерние клетки имеют одинаковый с родительскими клетками набор хромосом
2) неравномерное распределение генетического материала между дочерними клетками
3) обеспечивает рост
4) образование двух дочерних клеток
5) прямое деление

Ответ


Все перечисленные ниже процессы, кроме двух, происходят в процессе непрямого деления клетки. Определите два процесса, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) образуются две диплоидные клетки
2) образуются четыре гаплоидные клетки
3) происходит деление соматических клеток
4) происходит конъюгация и кроссинговер хромосом
5) делению клеток предшествует одна интерфаза

Ответ


1. Установите соответствие между этапами жизненного цикла клетки и процессами. Происходящими в ходе них: 1) интерфаза, 2) митоз. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) формируется веретено деления
Б) клетка растет, в ней происходит активный синтез РНК и белков
В) осуществляется цитокинез
Г) количество молекул ДНК удваивается
Д) происходит спирализация хромосом

Ответ


2. Установите соответствие между процессами и стадиями жизненного цикла клетки: 1) интерфаза, 2) митоз. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) спирализация хромосом
Б) интенсивный обмен веществ
В) удвоение центриолей
Г) расхождение сестринских хроматид к полюсам клетки
Д) редупликация ДНК
Е) увеличение количества органоидов клетки

Учебник для 10-11 классов

Раздел II. Размножение и развитие организмов
Глава V. Размножение организмов

Каждую секунду на Земле гибнет от старости, болезней и хищников астрономическое количество живых существ, и только благодаря размножению, этому универсальному свойству организмов, жизнь на Земле не прекращается.

Может показаться, что процессы размножения у живых существ очень разнообразны, однако все их можно свести к двум формам: бесполому и половому. У некоторых организмов встречаются разные формы размножения. Например, многие растения могут размножаться черенками, отводками, клубнями (бесполое размножение) и семенами (половое).

При половом размножении каждый организм развивается из одной клетки, образующейся от слияния двух половых клеток - мужской и женской.

В основе размножения и индивидуального развития организма лежит процесс деления клеток.

§ 20. Деление клетки. Митоз

Способность к делению - важнейшее свойство клеток. Без деления невозможно представить себе увеличение числа одноклеточных существ, развитие сложного многоклеточного организма из одной оплодотворенной яйцеклетки, возобновление клеток, тканей и даже органов, утраченных в процессе жизнедеятельности организма.

Деление клеток осуществляется поэтапно. На каждом этапе деления происходят определенные процессы. Они приводят к удвоению генетического материала (синтезу ДНК) и его распределению между дочерними клетками. Период жизни клетки от одного деления до следующего называют клеточным циклом.

Подготовка к делению. Эукариотические организмы, состоящие из клеток, имеющих ядра, начинают подготовку к делению на определенном этапе клеточного цикла, в интерфазе.

Именно в период интерфазы в клетке происходит процесс биосинтеза белка, удваиваются хромосомы. Вдоль исходной хромосомы из имеющихся в клетке химических соединений синтезируется ее точная копия, удваивается молекула ДНК. Удвоенная хромосома состоит из двух половинок - хроматид. Каждая из хроматид содержит одну молекулу ДНК.

Интерфаза в клетках растений и животных в среднем продолжается 10-20 ч. Затем наступает процесс деления клетки - митоз.

Во время митоза клетка проходит ряд последовательных фаз, в результате которых каждая дочерняя клетка получает такой же набор хромосом, какой был в материнской клетке.

Фазы митоза. Различают следующие четыре фазы митоза: профаза, метафаза, анафаза и телофаза. На рисунке 29 схематически показан ход митоза. В профазе хорошо видны центриоли - образования, находящиеся в клеточном центре и играющие роль в расхождении дочерних хромосом животных. (Напомним, что только у некоторых растений есть центриоли в клеточном центре, который организует расхождение хромосом.) Мы же рассмотрим митоз на примере животной клетки, поскольку присутствие центриоли делает процесс расхождения хромосом более наглядным. Центриоли удваиваются и расходятся к разным полюсам клетки. От центриолей протягиваются микротрубочки, образующие нити веретена деления, которое регулирует расхождение хромосом к полюсам делящейся клетки.

Рис. 29. Схема митоза

В конце профазы ядерная оболочка распадается, ядрышко постепенно исчезает, хромосомы спирализуются и в результате этого укорачиваются и утолщаются, и их уже можно наблюдать в световой микроскоп. Еще лучше они видны на следующей стадии митоза - метафазе.

В метафазе хромосомы располагаются в экваториальной плоскости клетки. При этом хорошо видно, что каждая хромосома, состоящая из двух хроматид, имеет перетяжку - центромеру. Хромосомы своими центромерами прикрепляются к нитям веретена деления. После деления центромеры каждая хроматида становится самостоятельной дочерней хромосомой.

Затем наступает следующая стадия митоза - анафаза, во время которой дочерние хромосомы (хроматиды одной хромосомы) расходятся к разным полюсам клетки.

Следующая стадия деления клетки - телофаза. Она начинается после того, как дочерние хромосомы, состоящие из одной хроматиды, достигли полюсов клетки. На этой стадии хромосомы вновь деспирализуются и приобретают такой же вид, какой они имели до начала деления клетки в интерфазе (длинные тонкие нити). Вокруг них возникает ядерная оболочка, а в ядре формируется ядрышко, в котором синтезируются рибосомы. В процессе деления цитоплазмы все органоиды (митохондрии, комплекс Гольджи, рибосомы и др.) распределяются между дочерними клетками более или менее равномерно.

Таким образом, в результате митоза из одной клетки получаются две, каждая из которых имеет характерное для данного вида организма число и форму хромосом, а следовательно, постоянное количество ДНК.

Весь процесс митоза занимает в среднем 1-2 ч. Продолжительность его несколько различна для разных видов клеток. Зависит она также и от условий внешней среды (температуры, светового режима и других показателей).

Биологическое значение митоза заключается в том, что он обеспечивает постоянство числа хромосом во всех клетках организма. В процессе митоза происходит распределение ДНК хромосом материнской клетки строго поровну между возникающими из нее двумя дочерними клетками. В результате митоза все дочерние клетки получают одну и ту же генетическую информацию.

  1. Какие изменения в клетке предшествуют делению?
  2. Когда образуется веретено деления? Какова его роль?
  3. Охарактеризуйте фазы митоза и кратко расскажите, как происходит этот процесс.
  4. Что такое хроматида? Когда она становится хромосомой?
  5. Что такое центромера? Какую роль она выполняет при митозе?
  6. В чем заключается биологическое значение митоза?

Вспомните из курса ботаники, зоологии, анатомии, физиологии и гигиены человека, как происходит размножение в органическом мире.



Понравилась статья? Поделитесь ей
Наверх