Что такое простагландины? Функции простагландинов – консультация эндокринолога. Что такое простагландины и их применение Влияние диуретиков на синтез простагландинов в почках

Являются специфическим секретом предстательной

железы (prostata), не подтвердилось, поскольку, как теперь установлено, они содержатся во всех органах и тканях . Тем не менее этот термин в литературе сохранился (синонимы: простатогландины, простагландины).

Простациклин (PGI 2) синтезируется преимущественно в эндотелии сосудов , сердечной мышце, ткани матки и слизистой оболочке желудка. Он расслабляет в противоположность тромбоксану гладкие мышечные волокна сосудов и вызывает дезагрегацию тромбоцитов , способствуя фибринолизу .

Следует указать также на особое значение соотношения в крови тромбо-ксаны/простациклины, в частности TxA 2 /PGI 2 для физиологического статуса организма . Оказалось, что у больных, предрасположенных к тромбозам, имеется тенденция к смещению баланса в сторону агрегации; у больных, страдающих уремией, напротив, наблюдается дезагрегация тромбоцитов . Выдвинуто предположение о важности баланса TxA 2 /PGI 2 для регуляции функции тромбоцитов in vivo, сердечно-сосудистого гомеостаза , тромботи-ческой болезни и т.д.

На рис. 8.3 представлены также пути катаболизма простаноидов. Начальной стадией катаболизма «классических» простагландинов является стереоспецифическое окисление ОН-группы у 15-го углеродного атома с образованием соответствующего 15-кетопроизводного. Фермент , катализирующий эту реакцию ,– 15-оксипростагландиндегидрогеназа открыт в цитоплазме , требует наличия НАД или НАДФ. Тромбоксан инактивируется in vivo или путем химического расщепления до тромбоксана В 2 , или путем окисления дегидрогеназой либо редуктазой . Аналогично PGI 2 (простацик-лин) быстро распадается до 6-кето-РGF 1α in vitro, a in vivo инактивируется окислением 15-оксипростагландиндегидрогеназой с образованием 6,15-ди-кето-РGF 1α .

По химической природе простагландины (ПГ) - циклические ненасыщенные оксикислоты, производные простановой кислоты. Исследовано более 20 природных видов, которые подразделяют на 4 группы: E, A, B, F. Наиболее активны представители групп E и F. В свою очередь все простагландины входят в группу эйкозаноидов. Предшественниками веществ являются ненасыщенные жирные кислоты: арахидоновая, линоленовая и др. Очень редко в организме возможен синтез ПГ из олигосахаридов. Простагландины являются гормоноподобными веществами. В отличие от истинных гормонов, они быстро разрушаются. Активней всего этот процесс происходит в легких, почках и печени. Искусственно синтезированные простагландины нашли широкое применение в гинекологии и офтальмологии. Их используют при стимуляции родовой деятельности и лечении глаукомы.

    Показать всё

    Простагландины в организме

    Когда биологи впервые обнаружили простагландины в составе семенной жидкости, они решили, что эти вещества синтезируются в простате. В дальнейшем эта история послужила причиной современного названия.

    Для этой группы физиологически активных липидов характерно наличие в молекуле 20 атомов углерода, включая углеродное кольцо. Простагландины обнаружены практически во всех тканях животных и человека. Главным отличием веществ от гормонов является то, что они синтезируется не в специфических органах, а по всему организму.

    Особенности функционирования ПГ

    Этот класс гормоноподобных соединений до сих пор привлекает внимание исследователей в области биохимии благодаря своим уникальным свойствам. Замечено, что одно и то же вещество из этой группы в разных органах может оказывать различное или даже противоположное действие.

    Способность простагландина усиливать определенный тип биологической реакции в одной ткани и угнетать ее в другой обусловлена исключительно видом рецептора, с которым связывается молекула активного вещества. Известно 9 видов ПГ-рецепторов, расположенных во всем организме.

    Простациклин

    Этот простагландин активно синтезируется эндотелием - внутренней оболочкой кровеносных сосудов. Еще одно место выработки простациклина - легкие. Он известен как вазодилататор, поскольку оказывает сосудорасширяющее действие за счет влияния на специфические IP-рецепторы гладкомышечных клеток артерий.

    Усиление продукции простациклина возникает при кислородном голодании, повреждении сосудов, из-за активности медиаторов воспаления и адреналина. Вещество обладает выраженным антиагрегантным действием, поскольку предотвращает образование тромба в сосуде.

    При внутривенном введении простациклина снижается артериальное давление в большом и малом кругах кровообращения. Основное применение аналогов вещества - лечение легочной гипертензии. Препараты синтетического простациклина:

    Простагландин Е2 (ПГЕ2)

    Как и простациклин, ПГЕ2 оказывает сосудорасширяющее действие. Он играет важную роль в нормальной работе почек, поскольку уменьшает всасывание ионов натрия и хлора и снижает эффект гормона вазопрессина. Помимо этого, ПГЕ2 выполняет еще ряд функций:

    • Бронхоконстрикция (нарушение бронхиальной проходимости).
    • Бронходилатация (увеличение бронхов).
    • Расслабление и сокращение гладкой мускулатуры ЖКТ.
    • Снижение секреции соляной кислоты в желудке.
    • Усиление производства желудочной слизи.
    • Сокращение мышечного слоя матки.
    • Торможение липолиза (процесса расщепления жиров на жирные кислоты).
    • Выделение тепловой энергии (пирогенный эффект).
    • Участие в образовании тромба.

    Синтетический аналог простагландина Е2 (Динопростон) показан для стимуляции созревания шейки матки и индукции родов. Это обусловлено тем, что он оказывает действие на все органы, в которых есть гладкая мышечная мускулатура, в том числе на тонус и сократительную активность мышечного слоя матки. Помимо стимуляции мышечных клеток, Динопростон усиливает кровоснабжение шейки матки, тем самым ускоряет ее дозревание. Одно из показаний к применению препарата - медикаментозный аборт.

    Динопростон существует в виде таблеток, инфузионного раствора, раствора для внутривенного и экстраамниотического введения и вагинального геля. Этот препарат используют исключительно под наблюдением врача. При несоблюдении дозировок возможны следующие побочные эффекты:

    • Судорожные сокращения матки.
    • Тошнота, рвота, головная боль.
    • Покраснение кожи.
    • Повышение температуры тела.
    • Нарушение сердечного ритма плода.
    • Асфиксия плода.

    В условиях стационарного применения под контролем медиков ни один из указанных побочных эффектов наблюдаться не будет.

    Существуют аналоги Динопростона под названиями Цервипрост, Энзапрост-Е, Медуллин, Препидил и другие.

    Простагландин F2α

    Еще один представитель группы простагландинов. Ключевые функции ПГF2α заключаются в бронхоконстрикции, сокращении матки и начале разрушения желтого тела в яичнике (лютеолиз). В результате лютеолиза прекращается синтез стероида прогестерона. Выделение простагландина F2а регулируется уровнем окситоцина (нейрогормон, синтезируемый гипофизом).

    Аналоги ПГF2а нашли широкое применение в медицине. Препараты на основе вещества:

    Препараты для лечения глаукомы и офтальмогипертензии доступны в виде глазных капель. В редких случаях после их применения наблюдаются покраснение конъюнктивы, жжение век и временное затуманивание зрения. Возможно развитие таких системных нарушений, как повышение артериального давления и головная боль. Несмотря на это, аналоги ПГF2α являются эффективными и безопасными препаратами для лечения глаукомы и повышенного внутриглазного давления.

    Заключение

    Простагландины благодаря своему разнообразию и уникальным свойствам стали надежными помощниками медицины. Их применение дает хорошие результаты при минимальных рисках.

    Дальнейшие исследования этой группы физиологически активных соединений откроют новые возможности их использования для лечения заболеваний человека.

Простагландин — соединение, которым пронизан в буквальном смысле весь наш организм, его влияние отражается на всех уровнях регулировки и контроля физиологических реакций и процессов нашего тела, таких сложных, как, например, стимуляции беременности. Простагландины имеют способность менять интенсивность ферментов, активизировать производство гормонов и направлять их действие на все наши физиологические процессы. Нарушение баланса этих элементов мгновенно приводит к развитию целого ряда болезней нашего организма.

Что же это за элементы, к какому виду физиологически активных компонентов они относятся? В каждом живом организме бесконечное множество одних элементов переходят в другие, и этот постоянный поток элементов определяет физическое существование жизни. Микробиологические процессы в теле человека очень хорошо выстроены и строго сбалансированы, конкретно определен материальный и временный график и очередь событий систем.

Как же устроен такой точный порядок в бесконечно сложных биологических системах? Какие функции организма позволяют ему поддерживать упорядоченность операций? Ответ будет таков – эта точная и строгая очередность физиологических процессов возможна лишь благодаря действию такого регулятора, как простагландин. Он участвует в таких важнейших процессах, как стимуляции беременности, вызывание родов и многих других.

Как происходит образование простагландинов? Биосинтез простагландинов выглядит следующим образом. В одном виде клетки всегда воспроизводится только один определенный тип простагландинов и соответствующий гормон. В отдельно взятом человеческом органе простагландины всегда присутствуют парами с взаимно противоположным действием, как два полюса у магнита. Воспроизводство простагландинов ведет к тому, что количество в органе каждого из этих элементов пары как раз и определяет состояние органа, эго нормальное или нарушенное функционирование.

Например, в клетках дыхательной системы производятся простагландины F2 и простагландины E2. Гормон простагландин F2 воспроизводится в ткани легких и предназначен для стимуляции тканей бронхов, а простагландины Е2 — в бронхах, но выполняют прямо противоположную функцию – подавляют активность мышц бронхов.

Современные научные эксперименты показали, что активизация производства простагландина F2a и снижение количества E2 ведет к появлению и прогрессированию всевозможных видов бронхиальной астмы. Так, ненормальное соотношение количества простагландин F2а и простагландин E2 наблюдается и у пациентов, страдающих пневмонией и бронхитом и у пациенток, нуждающихся в стимуляции беременности.

В нашей крови воспроизводится гормон простагландин I2 и гормон простагландин A2, которые по своей природе воздействия тоже являются антагонистами. Производимый в клетках стенок кровеносных сосудов гормон простациклин не допускает приклеивание тромбоцитов к стенкам и создание тромбов, а гормон тромбоксан, наоборот, увеличивает их липучесть, то есть способствует процессам сворачивания крови, что обеспечивает остановку кровотечений.

В здоровом режиме совместное противодействие простациклина и тромбоксана уравновешено, что позволяет крови иметь одновременно и жидкое состояние, и быструю сворачиваемость и заживляемость стимуляции беременности.

В мозге человека находятся простагландины практически всех, изученных наукой групп. В мозге синтезируется в основном простагландин D2, который считается основным простагландином именно нервных тканей. Произведенные в мозге простагландины обеспечивают полноценное сердцебиение, частоту работы легких, термостатическую функцию тела, участвуют в стимуляции беременности и другие важнейшие процессы в теле человека.

В детородных органах синтезируются, как правило, те же простагландины, что и в органах легочной системы — F2 и E2, но в половых органах их концентрация значительно выше, чем в каких-либо других системах организма. В настоящее время учеными бурно изучается роль простагландинов, производящихся в семенной жидкости.

Последние научные исследования показывают, что во время беременности подготовка шейки матки выполняется не только под действием гормонов, но и в немаловажной степени под влиянием простагландинов. В случае беременности можно говорить о двух разновидностях: гормон Е2 и гормон F2α. Установлено, что простагландин Е2, как и другие препараты ингибиторы, синтезируется не только во внутренней части плаценты, но и в теле плода, а еще больше его в тканях шейки матки, особенно при ее стимуляции.

Простагландины влияют на модификацию структуры тканей шейки матки, прогрессируя ее развитие, а также эти препараты стимулируют важное тонизирующее действие на перешеек при стимуляции беременности, шейку и нижнюю часть матки во время стимуляции беременности. При наличии характерной ступени развития шейки матки, под действием Е2 плавно начинается активизация родовой деятельности. А значит, именно Е2 принадлежит стартовая роль в наступлении родов.

Ингибиторы и простагландин F2α синтезируются в гендерной части плаценты и в тканях матки. Этот гормон, как и другие препараты (ингибиторы), сопровождает процесс протекания родовой деятельности, выполняя очень сильное и сужающее воздействие, способствуя уменьшению потери крови при схватках и родах.

Приготовление шейки матки к родам требует применения самых биологически обоснованных активаторов процесса родовой деятельности, чаще всего лекарственных средств, содержащих простагландины. Применение простагландина Е2 ведет не только к развитию шейки матки, но и стимулирует сжатие миометрии, что служит стартовым механизмом для начала родов.

Наибольшее развитие метод применения Е2 получил тогда, когда были придуманы уникальные гели, имеющие различные названия, в состав которых включалась специальная точная концентрация препарата. Как правило, чтобы получить необходимую степень зрелости шейки матки и готовности ее к родам, такой гель вводят в канал шейки матки. Но чтобы препарат применялся эффективно и не вызывал различных осложнений, при его использовании нужно выполнять целый ряд правил и соблюдать требуемые противопоказания.

Обоснование для применения геля при подготовке шейки матки возникает при торможении физиологической готовности пациентки к родам. Другим обоснованием может быть показание для экстренных родов при всевозможных операционных или других нарушениях.

Фармакология

Широкое значение в медицине имеют все препараты групп E2 и F2, даже с учетом их баснословной цены. Их применяют для искусственного вызова родов и прерывания беременности. ВОЗ даже открыла уникальную Программу по применению гормонов для медикаментозного прерывания беременности. Очень высокая цена простагландинов, которые выводили биосинтетическим путем, вынудила проводить многочисленные научные изыскания по поиску более доступных способов синтеза.

Препараты E2 и F2 синтезируют биохимическими методами, но область применения их так широка и потребность в таких препаратах настолько высока, что до сегодняшнего дня их так и не хватает. На сегодняшний день эти гормоны рассматриваются как некая новая группа медицинских препаратов: кроме акушерства, их широко используют для помощи больным с сердечно-сосудистыми заболеваниями и нарушениями дыхательной системы. Их даже начали пробовать использовать в сельском хозяйстве для ускорения селекции.

Но использование гормонов высокой степени очистки не просто очень дорого – очень сложно достичь правильного эффекта их действия. Они очень нестабильны и по этой причине, не имея возможности использования гормонов высокой очистки, ученые пытаются найти области применения, где смогут быть эффективны их искусственные аналоги. Это направление медицинской науки быстро развивается, и есть надежда, что не за горами время, когда такие необходимые препараты станут общедоступными и дешевыми.

Самое известное использование в медицине принадлежит E1 . В малых медикаментозных дозах он угнетает образование тромб, а значит служит панацеей от всех самых ужасных разновидностей сердечно-сосудистых заболеваний, ставших основной проблемой нашего времени, не щадящей ни пожилых, ни молодых.

предшественником всех простагландинов являются полиненасыщенные жирные кислоты, в частности арахидоновая кислота (и ряд ее производных, дигомо-γ-линоленовая и пентаноевая кислоты, в свою очередь образующиеся в организме из линолевой и линоленовой кислот) (см. главу 11). Арахидоновая кислота после освобождения из фосфоглице-ринов (фосфолипидов) биомембран под действием специфических фосфоли-паз А (или С) в зависимости от ферментативного пути превращения дает начало простагландинам и лейкотриенам по схеме:

Первый путь получил наименование циклооксигеназного пути превращения арахидоновой кислоты , поскольку первые стадии синтеза простагландинов катализируются циклооксигеназой, точнее простаглан-дин-синтазой (КФ 1.14.99.1). В настоящее время известны данные о биосинтезе основныхпростаноидов (рис. 8.3). Центральным химическим процессом биосинтеза является включение молекулярного кислорода (двух молекул) в структуру арахидоновой кислоты, осуществляемое специфическими оксигеназами, которые, помимо окисления, катализируют циклизацию с образованием промежуточных продуктов.

Тромбоксан А , в частности тромбоксан А2 (ТхА2), синтезируется преимущественно в ткани мозга, селезенки, легких, почек, а также в тромбоцитах и воспалительной гранулеме

Простациклин (PGI2 ) синтезируется преимущественно в эндотелии сосудов, сердечной мышце, ткани матки и слизистой оболочке желудка. Он расслабляет в противоположность тромбоксану гладкие мышечные волокна сосудов и вызывает дезагрегацию тромбоцитов, способствуя фибринолизу.

Простагландины обладают разнообразной физиол. активностью, активны в низких концентрациях (10-9 М и менее). Они участвуют в поддержании гомеостаза организма (относит. динамич. постоянства внутр. среды и устойчивости осн. физиол. ф-ций), в воздействии на болевые рецепторы, регулировании иммунного ответа (напр., PGE1), в родовой деятельности. Простагландины взаимод. со специфич. рецепторами цитоплазматич. мембран, что приводит к изменению (увеличению или уменьшению) концентрации внутриклеточных циклич. нуклеотидов (напр., циклич. аденозинмонофосфата), способны проникать через мембраны (включая гематоэнцефалич. барьер) и связываться С внутриклеточными компонентами, влияя, напр., на синтез ДНК. Нек-рые простагландины индуцируют перенос катионов через биол. мембраны, изменяя физиол. состояние клеток.

Эйкозаноиды - гормоны местного действия по ряду признаков:

образуются в различных тканях и органах, а не только в эндокринных железах;

действуют по аутокринному или паракринному механизмам;

концентрация эйкозаноидов в крови меньше, чем необходимо, чтобы вызвать ответ в клетках-мишенях.


Эйкозаноиды действуют на клетки через специальные рецепторы. Некоторые рецепторы эйкозаноидов связаны с аденилатциклазной системой и протеинкиназой А

Все типы эйкозаноидов быстро инактивируются . Т1/2 эйкозаноидов составляет от нескольких секунд до нескольких минут. Простагландины инактивируются путём окисления гидроксильной группы в положении 15, важнейшей для их активности, до кетогруппы. Двойная связь в положении 13 восстанавливается. Затем происходит β-окисление боковой цепи, а после него - ω-окисление. Конечные продукты (дикарбоновые кислоты) выделяются с мочой.

Причина "аспириновой" бронхиальной астмызаключается в том, что аспирин и другие нестероидные противовоспалительные препараты ингибируют только циклооксигеназный путь превращений арахидоновой кислоты и, таким образом, увеличивают доступность субстрата для действия липоксигеназы и, соответственно, синтеза лейкотриенов. Стероидные препараты ингибируют использование арахидоновой кислоты и по липоксигеназному и по циклооксигеназному пути, поэтому они не могут вызывать бронхоспазма.

Билет

1. изменение обмена глюкозы в печени (синтез и распад гликогена, гликолиз) при смене периода пищеварения на постабсорбтивный период и состояния покоя на мышечную работу .

Гликоген синтезируется в период пищеварения (через 1-2 ч после приёма углеводной пищи). Следует отметить, что синтез гликогена из глюкозы (рис. 7-23), как и любой анаболический процесс, является эндергоническим, т.е. требующим затрат энергии.

Синтез гликогена. Глюкоза, поступающая в клетку, фосфорилируется при участии АТФ (реакция 1).

Затем глюкозо-6-фосфат в ходе обратимой реакции превращается в глюкозо-1 -фосфат (реакция 2) под действием фермента фосфоглюкомутазы.

Глюкозо-1-фосфат по термодинамическому состоянию мог бы служить субстратом для синтеза гликогена. Но в силу обратимости реакции глюкозо-6-фосфат ↔ глюкозо-1-фосфат синтез гликогена из глюкозо-1-фосфата и его распад оказались бы также обратимыми и поэтому неконтролируемыми.

Чтобы синтез гликогена был термодинамически необратимым , необходима дополнительная стадия образования уридинди-фосфатглюкозы из УТФ и глюкозо-1-фосфата (реакция 3). Фермент, катализирующий эту реакцию, назван по обратной реакции: УДФ-глюкопирофосфорилаза.

Однако в клетке обратная реакция не протекает, потому что образовавшийся в ходе прямой реакции пирофосфат очень быстро расщепляется пирофосфатазой на 2 молекулы фосфата

Так как гликоген в клетке никогда не расщепляется полностью, синтез гликогена осуществляется путём удлинения уже имеющейся молекулы полисахарида, называемой "затравка ", или "праймер ". К "затравке" последовательно присоединяются молекулы глюкозы .

Глюкозные остатки переносятся гликогенсинтазой на нередуцирующий конец олигосахарида и связываются α-1,4-гликозидными связями. По окончании синтеза гликогенин остаётся включённым в гранулу гликогена.

Разветвлённая структура гликогена образуется при участии амило-1,4 →1,6-глюкозилтрансферазы , называемой ферментом "ветвления " (от англ, branchingenzyme ). Как только гликогенсинтаза удлиняет линейный участок примерно до 11 глюкозных остатков, фермент ветвления переносит её концевой блок, содержащий 6-7 остатков, на внутренний остаток глюкозы этой или другой цепи. В точке ветвления концевой остаток глюкозы олигосахарида соединяется с гидроксильной группой в С6 положении с образованием α-1,6-гликозидной связи.

Распад гликогена или его мобилизация происходят в ответ на повышение потребности организма в глюкозе. Гликоген печени распадается в основном в интервалах между приёмами пищи, кроме того, этот процесс в печени и мышцах ускоряется во время физической работы.

Распад гликогена (рис. 7-25) происходит путём последовательного отщепленияостатков глюкозы в виде глюкозо-1-фосфата .

Как в период покоя, так и во время продолжительной физической работы сначала источником глюкозы для мышц служит гликоген, запасённый в самих мышцах, а затем глюкоза крови. Известно, что 100 г гликогена расходуется на бег примерно в течение 15 мин, а запасы гликогена в мышцах после приёма углеводной пищи могут составлять 200-300 г .

При голодании в течение первых суток исчерпываются запасы гликогена в организме, и в дальнейшем источником глюкозы служиттолько глюконеогенез (из лактата, глицерина и аминокислот).

2.Окисление высших жирных кислот. Энергетическая эффективность этого процесса.

β-Окисление жирных кислот - специфический путь катаболизма жирных кислот, протекающий в матриксе митохондрий только в аэробных условиях и заканчивающийся образованием ацетил-КоА.

β-Окисление начинается с дегидрирования ацил-КоА FAD-зависимой ацил-КоАдегидрогеназой с образованием двойной связи между α- и β-атомами углерода в продукте реакции - еноил-КоА .

Восстановленный в этой реакции кофермент FADH2 передаёт атомы водорода в ЦПЭ на кофермент Q. В результате синтезируются 2 молекулы АТФ (рис. 8-27). В следующей реакции В-окисления по месту двойной связи присоединяется молекула воды таким образом, что ОН-группа находится у β-углеродного атома ацила , образуя β-гидроксиацил-КоА.

Затем β-гидроксиацил-КоА окисляется NАD+-зависимой дегидрогеназой . Восстановленный NADH, окисляясь в ЦПЭ, обеспечивает энергией синтез 3 молекул АТФ .

Образовавшийся β-кетоацил-КоА подвергается тиолитическому расщеплению ферментом тиолазой , так как по месту разрыва связи С-С через атом серы присоединяется молекула кофермента А .

В результате этой последовательности из 4 реакций отделяется двухуглеродный остаток - ацетил-КоА . Жирная кислота, укороченная на 2 атома углерода, опять проходит реакции дегидрирования, гидратации, дегидрирования, отщепления ацетил-КоА.

Формула для подсчета

[(n/2 -1)*5 + n/2*12]-2 = для предельных

[(n/2*17)-6]-2m = для непредельных

Аэробный распад глюкозы. Последовательность реакций до образования пирувата (аэробный гликолиз) как специфический для глюкозы путь катаболизма. Распространение и физиологическое значение аэробного распада глюкозы.СМ БИЛЕТ 5

Образовавшийся в гликолизе пируват в аэробных условиях превращается в ПВК-‑дегидрогеназном комплексе (посмотреть) в ацетил-S-КоА, при этом образуется 1 молекула НАДН.

Ацетил-S-КоА вовлекается в ЦТК и, окисляясь, дает 3 молекулы НАДН, 1 молекулу ФАДН2, 1 молекулу ГТФ. Молекулы НАДН и ФАДН2 движутся в дыхательную цепь (посмотреть), где при их окислении в сумме образуется 11 молекул АТФ. В целом при сгорании одной ацетогруппы в ЦТК образуется 12 молекул АТФ.

Суммируя результаты окисления "гликолитического" и "пируватдегидрогеназного" НАДН, "гликолитический" АТФ, энергетический выход ЦТК и умножая все на 2, получаем 38 молекул АТФ.

Депонирование и мобилизация жиров в жировой ткани, регуляция синтеза и мобилизация жиров. Роль инсулина, глюкагона и адреналина. Транспорт жирных кислот альбумином крови. Физиологичекая роль резервирования и мобилизации жиров в жировой ткани. Нарушение этих процессов при ожирении

Мобилизация жиров - гидролиз до глицерола и жирных кислот, происходит в постабсорбтивный период, при голодании и активной физической работе . Гидролиз внутриклеточного жира осуществляется под действием фермента гормончувствительной липазы - ТАГ-липазы. Этот фермент отщепляет 1 жирную кислоту у первого углеродного атома глицерола с образованием диацилглицерола, а затем другие липазы гидролизуют его до глицерола и жирных кислот, которые поступают в кровь. Глицерол как водорастворимое вещество транспортируется кровью в свободном виде, а жирные кислоты (гидрофобные молекулы) в комплексе с белком плазмы - альбумином.

Жиры хранятся до момента их использования. Катаболизм жира идет в три этапа.

Термин "простагландины" был введен Эйлером, впервые показавшим, что в семенной жидкости человека и в экстрактах из семенных пузырьков барана содержатся вещества, дающие выраженный вазопрессорный эффект и вызывающие сокращение гладкой мускулатуры матки. Хотя предположение Эйлера о том, что эти вещества являются специфическим секретом предстательной железы, в дальнейшем не подтвердилось, поскольку, как теперь установлено, они обнаружены во всех органах и тканях 2 , тем не менее этот термин в литературе сохраняется.

2 Простагландины и ферментные системы, катализирующие их биосинтез, не обнаружены только в эритроцитах человека и индюшки. Следует, однако, отметить, что наибольшее количество простагландинов содержат органы и ткани, относящиеся к репродуктивной системе.

Отличительными особенностями простагландинов как гормонов являются следующие свойства. Во-первых, как было уже отмечено, они синтезируются практически во всех органах и тканях, а не в специализированных железах внутренней секреции. Во-вторых, имеются доказательства тесной взаимосвязи действия простагландинов с действием ряда других гормональных веществ и с системой аденилатциклаза - цАМФ. И, наконец, простагландины обладают широким спектром биологического действия: оказывают влияние на гемодинамику почек, сократительную деятельность гладкой мускулатуры, секреторную функцию желудка, секрецию стероидных гормонов, на жировой и водно-солевой обмен и др. Имеются веские основания считать, что биологические эффекты простагландинов внутри клеток опосредованы через цАМФ и цГМФ.

В химически чистом виде первые простагландины были получены в 1957 г. Бергстремом и соавт. В настоящее время открыто 14 простагландинов, из которых 13 обнаружены в семенной жидкости человека. Предшественниками простагландинов в организме являются полиненасыщенные жирные кислоты, в частности линолевая и арахидоновая. Из семенников и ряда других органов выделен также специфический фермент - простагландин-синтаза, катализирующая синтез этих веществ. Химическое строение известных к настоящему времени простагландинов можно представить в виде схемы:

Как видно из представленных структурных формул, для всех 14 простагландинов общими и характерными свойствами является, помимо общего числа, 20 углеродных атомов, наличие циклопентанового кольца, двух боковых цепей, двойной связи между C 13 - и С 14 -атомами и гидроксильной группы у С 15 -атома; для биологической активности простагландинов эта последняя функциональная группа оказалась весьма существенной. Видно также, что в зависимости от типа строения циклопентанового кольца простагландины делятся на четыре основные группы, обозначаемые латинскими буквами: простагландины Е (сокращенно ПГ-Е), F (ПГ-F), А (ПГ-А) и В (ПГ-В); внутри группы простагландины различаются количеством и местоположением двойных связей, что обозначается в виде цифрового индекса внизу буквы.

Биосинтез простагландинов осуществляется, как было отмечено выше, простагландинсинтазой, представленной, по-видимому, сложной ферментной системой, локализованной преимущественно в мембранах микросом. Система для максимальной активности требует присутствия термостабильного фактора из цитозоля, легко заменяемого восстановленным глутатионом, НАД или ТГФ, но не НАДФН 2 или НАДН 2 (см. Витамины). Пути биосинтеза простагландинов окончательно еще не раскрыты, хотя на отдельных этапах синтеза, в частности в цепи переноса электронов, участие цитохрома Р-450 доказано.

Простагландины оказывают локальный эффект в той ткани, в которой они синтезируются и подвергаются различным ферментативным превращениям, приводящим к потере биологической активности. В частности, простагландины подвергаются окислению (у С 15 -атома), восстановлению по месту двойных связей, β-окислению, ω-окислению и ω-гидроксилированию. Основным продуктом окисления ПГ-E 1 и ПГ-Е 2 у человека является 7α-окси-5,11-дикетотетранорпростан-1,16-диоевая кислота, выделяемая с мочой.

Таким образом, простагландины отличаются от других гормонов желез внутренней секреции тем, что они синтезируются во многих органах и тканях, а не в специализированных железах, оказывают разностороннее действие (торможение липолиза и желудочной секреции, стимулирование стероидогенеза и др.), тесно связанное с другими гормональными веществами; кроме того, биологический эффект простагландинов сопряжен с системой аденилатциклаза - цАМФ.

Простагландины нашли широкое применение в медицинской практике. Это обстоятельство стимулирует исследования по химическому синтезу аналогов простагландинов с защищенной гидроксильной группой у С 15 -атома и более стабильных при введении в организм.

В данной главе описаны не все известные к настоящему времени гормональные вещества. Сведения о некоторых из них, в частности гастрине (17 аминокислотных остатков), стимулирующем секрецию желудочного сока, о гормонах кининовой системы (кининогены, ангиотензины и др.), а также о растительных гормонах [ауксины, гетероауксин (β-индолилуксусная кислота), гиббереллины, кинетин] изложены частично (см. Обмен белков, Биохимия крови).



Понравилась статья? Поделитесь ей
Наверх