Строение слухового анализатора его функция. Строение слухового анализатора

Звуковые волны представляют собой вибрации, с определенной частотой передающиеся во всех трех средах: жидкой, твердой и газообразной. Для восприятия и анализа их человеком существует орган слуха - ухо, которое состоит из наружной, средней и внутренней частей, способное получать информацию и передавать ее к головному мозгу для обработки. Этот принцип работы в организме человека сходен с характерным для глаз. Строение и функции зрительного и слухового анализаторов похожи между собой, разница в том, что слух не смешивает звуковые частоты, воспринимает их отдельно, скорее, даже разделяя разные голоса и звуки. В свою очередь, глаза соединяют световые волны, получая при этом разные цвета и оттенки.

Слуховой анализатор, строение и функции

Фотографии основных отделов человеческого уха вы можете увидеть в этой статье. Ухо - основной орган слуха у человека, оно принимает звук и передает его дальше в мозг. Строение и функции слухового анализатора гораздо шире возможностей одного только уха, это слаженная работа передачи импульсов от барабанной перепонки к стволовым и корковым отделам головного мозга, отвечающими за обработку полученных данных.

Орган, отвечающий за механическое восприятие звуков, состоит из трех основных отделов. Строение и функции отделов слухового анализатора различны между собой, но выполняют одну общую работу - восприятие звуков и передача их в мозг для дальнейшего анализа.

Наружное ухо, его особенности и анатомия

Первое, что встречает звуковые волны на пути к восприятию их смысловой нагрузки, это Анатомия его довольно проста: это ушная раковина и наружный слуховой проход, который является связующим звеном между ним и средним ухом. Сама ушная раковина состоит из хрящевой пластины толщиной 1 мм, покрытой надхрящницей и кожей, она лишена мышечной ткани и не может двигаться.

Нижняя часть раковины - мочка уха, это жировая клетчатка, покрытая кожей и пронизанная множеством нервных окончаний. Плавно и воронкообразно раковина переходит в слуховой проход, ограниченный козелком спереди и противокозелком сзади. У взрослого человека проход имеет 2,5 см в длину и 0,7-0,9 см в диаметре, он состоит из внутреннего и перепончато-хрящевого отделов. Ограничивается барабанной перепонкой, за которой начинается среднее ухо.

Перепонка представляет собой фиброзную пластину в форме овала, на поверхности которой можно выделить такие элементы, как молоточек, задняя и передняя складки, пупочек и короткий отросток. Строение и функции слухового анализатора, представленные такой частью, как наружное ухо и барабанная перепонка, отвечают за улавливание звуков, их первичную обработку и передачу далее к средней части.

Среднее ухо, его особенности и анатомия

Строение и функции отделов слухового анализатора кардинально отличаются друг от друга, и если с анатомией наружной части все знакомы не понаслышке, то изучению информации о среднем и внутреннем ухе стоит уделить больше внимания. Среднее ухо представляет собой четыре воздухоносные полости, соединенные между собой, и наковальню.

Главная часть, выполняющая основные функции уха - это совмещенная с носоглоткой слуховой трубой, через это отверстие происходит вентиляция всей системы. Сама полость состоит из трех камер, шести стенок и которая, в свою очередь, представлена молоточком, наковальней и стременем. Строение и функции слухового анализатора в области среднего уха преображают полученные от наружной части звуковые волны в механические колебания, после чего передают их жидкости, которая заполняет полость внутренней части уха.

Внутреннее ухо, его особенности и анатомия

Внутреннее ухо представляет самую сложную систему из всех трех отделов слухового аппарата. Оно выглядит как лабиринт, который находится в толще височной кости, и являет собой костную капсулу и включенное в нее перепончатое образование, которое полностью повторяет строение костного лабиринта. Условно все ухо делится на три основные части:

  • средний лабиринт - преддверие;
  • передний лабиринт - улитка;
  • задний лабиринт - три полукружных канала.

Лабиринт полностью повторяет строение костной части, а полость между двумя этими системами заполнена перилимфой, напоминающей по своему составу плазму и спинномозговую жидкость. В свою очередь, полости в самом заполнены эндолимфой, по составу сходной с внутриклеточной жидкостью.

Слуховой анализатор, функция рецепторов внутреннего уха

Функционально работа внутреннего уха делится на две основные функции: передача звуковых частот к мозгу и координация движений человека. Основную роль в передаче звука к отделам головного мозга выполняет улитка, разные части которой воспринимают колебания с различной частотой. Все эти вибрации принимает на себя базилярная мембрана, покрытая волосковыми клетками с пучками стереолиций на верхушке. Именно эти клетки превращают колебания в электрические импульсы, которые идут в головной мозг по слуховому нерву. Каждый волосок мембраны имеет разный размер и принимает звук только строго определенной частоты.

Принцип работы вестибулярного аппарата

Строение и функции слухового анализатора не ограничиваются одним лишь восприятием и переработкой звуков, он играет важную роль во всей двигательной активности человека. За работу вестибулярного аппарата, от которого зависит координация движений, отвечают жидкости, которыми заполнена часть внутреннего уха. Основную роль здесь играет эндолимфа, она работает по принципу гироскопа. Малейший наклон головы приводит ее в движение, она, в свою очередь, заставляет двигаться отолиты, которые раздражают волоски реснитчатого эпителия. С помощью сложных нейронных связей вся эта информация передается в отделы мозга, дальше уже начинается его работа по координации и стабилизации движений и равновесия.

Принцип слаженной работы всех камер уха и головного мозга, преображение звуковых колебаний в информацию

Строение и функции слухового анализатора, кратко изучить которые можно выше, направлены не просто на улавливание звуков определенной частоты, а на их преобразование в информацию, понятную сознанием человека. Вся работа по превращению состоит из следующих основных этапов:

  1. Улавливание звуков и их движение по слуховому проходу, стимулирующие барабанную перепонку к колебанию.
  2. Вибрация трех слуховых косточек внутреннего уха, вызванная колебаниями барабанной перепонки.
  3. Движение жидкости во внутреннем ухе и колебания волосовидных клеток.
  4. Преобразование колебаний в электрические импульсы для дальнейшей их передачи по слуховым нервам.
  5. Продвижение импульсов по слуховому нерву в отделы мозга и преобразование их в информацию.

Слуховой кортекс и анализ информации

Какой отлаженной и идеальной не была бы работа всех отделов уха, все было бы бессмысленно без функций и работы головного мозга, преобразующего все звуковые волны в информацию и руководство к действию. Первое, что встречает звук на своем пути, это слуховой кортекс, находящийся в верхней височной извилине головного мозга. Здесь находятся нейроны, которые отвечают за восприятие и разделение всех диапазонов звука. Если в силу каких-либо повреждений головного мозга, например инсульта, повреждаются эти отделы, то человек может стать слабослышащим или вовсе потерять слух и возможность к восприятию речи.

Возрастные изменения и особенности в работе слухового анализатора

С увеличением возраста человека изменяется работа всех систем, строение, функции и возрастные особенности слухового анализатора не являются исключением. У людей в возрасте часто наблюдается снижение слуха, которое принято считать физиологическим, т. е. нормальным. Это не считается заболеванием, а лишь возрастным изменением под названием персбиакузис, которое не надо лечить, а можно лишь скорректировать с помощью специальных слуховых аппаратов.

Выделяют целый ряд причин, по которым возможно снижение слуха у людей, достигших определенного возрастного порога:

  1. Изменения в наружном ухе - истончение и дряблость ушной раковины, сужение и искривление слухового прохода, потеря его способности к передаче звуковых волн.
  2. Утолщение и помутнение барабанной перепонки.
  3. Снижение подвижности системы косточек внутреннего уха, закостенелость их суставов.
  4. Изменения в отделах головного мозга, отвечающих за переработку и восприятие звуков.

Помимо обычных функциональных изменений у здорового человека, проблемы могут усугубляться осложнениями и последствиями перенесенных отитов, они могут оставлять шрамы на барабанной перепонке, которые провоцируют проблемы в будущем.

После того как ученые-медики изучили такой важный орган, как слуховой анализатор (строение и функции), глухота, вызванная возрастом, перестала быть глобальной проблемой. Слуховые аппараты, направленные на улучшение и оптимизацию работы каждого из отделов системы, помогают пожилым людям жить полноценной жизнью.

Гигиена и уход за органами слуха человека

Чтобы сохранить уши здоровыми, за ними, как и за всем телом, нужен своевременный и аккуратный уход. Но, как это ни парадоксально, в половине случаев проблемы возникают именно из-за чрезмерного ухода, а не из-за его недостатка. Основная причина - неумелое орудование ушными палочками или другими средствами для механической очистки скопившейся серы, задевание барабанной перегородки, ее царапины и возможность случайной перфорации. Во избежание подобных травм следует очищать лишь наружную часть прохода, не используя при этом острые предметы.

Для сохранения слуха в будущем лучше придерживаться правил безопасности:

  • Ограниченное прослушивания музыки с использованием наушников.
  • Использование специальных наушников и берушей при работе на шумных предприятиях.
  • Защита от попадания воды в уши во время плавания в бассейне и водоемах.
  • Профилактика отитов и простудных заболеваний ушей в холодное время года.

Понимание принципов работы слухового анализатора, соблюдение правил гигиены и безопасности дома или на работе помогут сохранить слух и не столкнуться с проблемой его потери в будущем.

14.3. Слуховой анализатор

Слуховой анализатор представляет собой совокупность механиче­ских, рецепторных и нервных структур, воспринимающих и анализи­рующих звуковые колебания. Периферический отдел слухового ана­лизатора представлен слуховым органом, состоящим из наружного, среднего и внутреннего уха (рис. 58).

Наружное ухо состоит из ушной раковины и наружного слухового прохода.

Основу ушной раковины составляет эластичный хрящ, дополнен­ный кожной складкой - мочкой, заполненной жировой тканью. Уш­ная ракбвина у новорожденного уплощена, хрящ ее мягкий, кожа тонкая, мочка имеет небольшие размеры. Наиболее быстро ушная ра­ковина растет в течение первых двух лет и после 10 лет. В длину она растет быстрее, чем в ширину. Свободный край раковины завернут внутрь в форме завитка, а с ее дна поднимается противозавиток. Ме- диальнее последнего располагается полость раковины, в глубине ко­торой находится отверстие наружного слухового прохода. Спереди от него располагается козелок, сзади - противокозелок.

Наружный слуховой проход имеет длину 24 мм и оканчивается бара­банной перепонкой. Первая треть слухового прохода является хряще­вым продолжением раковины, остальные две трети костные и распо­лагаются в пирамиде височной кости. Наружный слуховой проход

у новорожденного узкий и длинный (15 мм), круто изогнут, имеет су­жение, медиальный и латеральный отделы его расширены. Стенки наружного слухового прохода хрящевые, за исключением барабанно­го кольца. Длина слухового прохода у ребенка 1 года составляет 20 мм, а 5 лет - 22 мм. Слуховой проход выстлан кожей с тонкими волокна­ми и видоизмененными потовыми железками, выделяющими ушную серу. Все это защищает барабанную перепонку от неблагоприятных воздействий внешней среды. Барабанная перепонка отделяет наруж­ное ухо от среднего. Она состоит из коллагеновых волокон, снаружи покрыта эпидермисом, а внутри - слизистой оболочкой. Барабанная перепонка у новорожденного хорошо развита. Ее высота равна 9 мм, ширина - 8 мм, как у взрослого человека, и образует угол в 35-40°.

Среднее ухо состоит из барабанной полости, слуховых косточек и слуховой трубы.

На передней стенке барабанной полости располагается отверстие слуховой трубы, через которое она заполняется воздухом. На задней стенке полости открываются ячейки сосцевидного отростка, а на ме­диальной размещаются окно преддверия и окно улитки, которые ведут во внутреннее ухо. Барабанная полость у новорожденного по разме­рам такая же, как у взрослого. Слизистая оболочка утолщена, и поэто­му барабанная полость заполнена жидкостью. С началом дыхания она поступает через слуховую трубу в глотку и проглатывается. Стенки ба­рабанной полости тонкие, особенно верхняя. Задняя стенка имеет широкое отверстие, ведущее в сосцевидную полость. Сосцевидные ячейки у грудных детей отсутствуют из-за слабого развития сосцевид­ного отростка. Окно улитки затянуто вторичной барабанной пере­понкой.

В среднем ухе располагаются три слуховые косточки: молоточек, наковальня и стремя. Молоточек соединяется с одной стороны с бара­банной перепонкой, а с другой - с телом наковальни. Длинный от­росток последней сочленяется с головкой стремени. Основание стре­мени прилегает к окну преддверия. Слуховые косточки у новорож­денного имеют размеры, близкие к таковым у взрослого. Все три косточки соединяют барабанную перепонку с внутренним ухом.

Слуховая труба - это длинный (3,5 см) и узкий (2 мм) хрящевой канал, который переходит в костный со стороны пирамиды. Труба служит для выравнивания давления воздуха на барабанную перепон­ку. Отверстие трубы в глотке находится в спавшемся состоянии и воз­дух в барабанную полость поступает лишь при глотании или зевании.

Слуховая труба у новорожденного прямая, широкая и короткая, дли­ной 17-18 мм. В течение первого года жизни она растет медленно (20 мм), на втором году быстрее (30 мм). В 5 лет длина ее составляет 35 мм, у взрослого человека - 35-38 мм. Просвет слуховой трубы су­живается от 2,5 мм в 6 месяцев до 2 мм в 2 года и 1 -2 мм в 6 лет.

Внутреннее ухо, или лабиринт, имеет двойные стенки: перепонча­тый лабиринт вставлен в костный. Между ними находится прозрач­ная жидкость - перилимфа, а внутри перепончатого - эндолимфа.

Костный лабиринт состоит из преддверия, улитки и трех полу­кружных каналов. Преддверие представляет собой овальную полость, соединяющуюся с барабанной полостью с помощью перегородки с двумя окнами: овальным (окно преддверия) и круглым (окно улит­ки). В преддверие открываются отверстия трех полукружных каналов и спиральный канал улитки. Строение полукружных каналов будет рассмотрено при описании вестибулярного анализатора. Костная улитка представляет собой спиральный канал, имеющий два с поло­виной оборота вокруг стержня улитки. От стержня отходит костная спиральная пластинка, не доходящая до наружной стенки канала. От свободного конца спиральной пластинки до противоположной стен­ки улитки натянуты две мембраны - спиральная и вестибулярная, которые ограничивают улитковый проток. Улитковый проток делит улитку на две части, или лестницы. Верхняя часть, или лестница пред­дверия, начинается от овального окна преддверия и идет до вершины улитки, где через маленькое отверстие сообщается с нижним каналом, или барабанной лестницей. Она располагается от верхушки улитки до круглого окна улитки. Вестибулярная и барабанная лестницы запол­нены перилимфой, а просвет улиткового протока - эндолимфой. Внутреннее ухо у новорожденного развито хорошо, его размеры близ­ки к таковым у взрослого человека. Костные стенки полукружных ка­налов тонкие, постепенно утолщаются за счет окостенения в пирами­де височной кости.

На спиральной мембране лежит спиральный орган, состоящий из опорных и рецепторных клеток. На опорных клетках цилиндриче­ской формы лежат рецепторные волосковые клетки, которые имеют на своей верхней части выросты, представленные крупными микро­ворсинками (стереоцилиями). Волосковые клетки бывают наружны­ми, располагающимися в три ряда, и внутренними, образующими только один ряд. Между наружными и внутренними волосковыми клетками лежит кортиев туннель, выстланный столбчатыми клетками.

Реснички наружных и внутренних волосковых клеток соприкасаются с покровной (текториальной) мембраной. Эта мембрана представляет собой однородную желеобразную массу, прикрепленную к клеткам эпителия. Спиральная мембрана неодинакова по ширине: у человека вблизи овального окна ее ширина составляет 0,04 мм, а затем по на­правлению к вершине улитки, постепенно расширяясь, она достигает в конце 0,5 мм. В базальной части спирального органа располагаются рецепторные клетки, воспринимающие более высокие частоты, а в апи­кальной части (на вершине улитки) - клетки, воспринимающие только низкие частоты.

Базальные части рецепторных клеток контактируют с нервными волокнами, которые проходят в базальной мембране, а затем выходят в канал спиральной пластинки. Далее они идут к нейронам спираль­ного ганглия, лежащего в костной улитке, где и начинается провод­никовый отдел слухового анализатора. Аксоны нейронов спирально­го узла образуют волокна слухового нерва, который входит в мозг между нижними ножками мозжечка и мостом и направляется в по­крышку моста, где имеет место первый перекрест волокон и образуется латеральная петля. Часть ее волокон оканчивается на клетках нижнего двухолмия, где находится первичный слуховой центр. Другие волокна латеральной петли в составе ручки нижнего двухолмия подходят к ме­диальному коленчатому телу. Отростки клеток последнего образуют слуховую лучистость, оканчивающуюся в коре верхней височной из­вилины (корковый отдел слухового анализатора).

Механизм образования звука

Кортиев орган, расположенный на основной мембране, содержит рецепторы, которые превращают механические колебания в электри­ческие потенциалы, возбуждающие волокна слухового нерва. При действии звука основная мембрана начинает колебаться, волоски ре- цепторных клеток деформируются, что вызывает генерацию электри­ческих потенциалов, которые через синапсы достигают волокон слу­хового нерва. Частота этих потенциалов соответствует частоте звуков, а амплитуда зависит от интенсивности звука.

В результате возникновения электрических потенциалов происхо­дит возбуждение волокон слухового нерва, для которых характерна спонтанная активность даже в тишине (100 имп./с). При звуке частота импульсации в волокнах нарастает в течение всего времени действия раздражителя. Для каждого волокна нерва существует оптимальная частота звука, которая дает наибольшую частоту разрядов и мини­мальный порог реакции. Эта оптимальная частота определяется ме­стом на основной мембране, где расположены рецепторы, связанные с данным волокном. Таким образом, для волокон слухового нерва ха­рактерна частотная избирательность, обусловленная возбуждением разных клеток спирального органа. При повреждении спирального органа у основания выпадают высокие тона, у вершины - низкие тона. Разрушение среднего завитка приводит к выпадению тонов средней частоты диапазона.

Существует два механизма различения высоты тона: пространст­венное и временное кодирование. Пространственное кодирование основано на неодинаковом расположении возбужденных рецептор- ных клеток на основной мембране. При низких и средних тонах осу­ществляется и временное кодирование. Информация в этом случае передается в определенные группы волокон слухового нерва, частота соответствует частоте воспринимаемых улиткой звуковых колебаний.

Для всех слуховых нейронов характерно наличие частотно-поро­говых показателей. Эти показатели отражают зависимость порогово­го звука, необходимого для возбуждения клетки, от его частоты. В обе стороны от оптимальной частоты порог реакции нейрона возрастает, т.е. нейрон оказывается настроенным на звуки лишь определенной частоты.

Все это подтвердило гипотезу Г. Гельмгольца (1863) о механизме различения в кортиевом органе звуков по их высоте. Согласно этой гипотезе, поперечные волокна основной мембраны короткие в ее уз­кой части - у основания улитки и в 3-4 раза длиннее в ее широкой части - у вершины. Они настроены как струны музыкальных инстру­ментов. Колебание отдельных групп волокон вызывает на соответст­вующих участках основной мембраны раздражение соответствующих рецепторных клеток. Эти предположения Г. Гельмгольца подтверди­лись и были частично модифицированы и развиты в работах амери­канского физиолога Д. Бекеши (1968).

Сила звука кодируется числом возбужденных нейронов. При сла­бых раздражителях в реакцию вовлекается лишь небольшое число наиболее чувствительных нейронов, а при усилении звука возбужда­ется все больше дополнительных нейронов. Это связано с тем, что нейроны слухового анализатора резко отличаются друг от друга по по­рогу возбуждения. Порог различен у внутренних и наружных клеток (для внутренних клеток он значительно выше), поэтому в зависимо­сти от силы звука изменяется соотношение числа возбужденных на­ружных и внутренних клеток.

Человек воспринимает звуки с частотой от 16 до 20 ООО Гц. Этот диапазон соответствует 10-11 октавам. Границы слуха зависят от воз­раста: чем человек старше, тем чаще он не слышит высоких тонов. Различение частоты звуков характеризуется той минимальной разни­цей по частоте двух звуков, которую человек улавливает. Человек спо­собен заметить разницу в 1-2 Гц.

Абсолютная слуховая чувствительность - это минимальная сила звука, слышимого человеком в половине случаев его звучания. В об­ласти от 1000 до 4000 Гц слух человека обладает максимальной чувст­вительностью. В этой зоне лежат и речевые поля. Верхний предел слышимости возникает, когда увеличение силы звука неизменной частоты вызывает неприятное чувство давления и боли в ухе. Едини­цей громкости звука является бел. В быту обычно используют в каче­стве единицы громкости децибел, т.е. 0,1 бела. Максимальный уро­вень громкости, когда звук вызывает боль, равен 130-140 дБ над порогом слышимости.

Если на ухо долго действует тот или иной звук, то чувствитель­ность слуха падает, т.е. наступает адаптация. Механизм адаптации связан с сокращением мышц, идущих к барабанной перепонке и стре­мени (при их сокращении изменяется интенсивность звуковой энергии, передающейся на улитку), и с нисходящим влиянием ретикулярной формации среднего мозга.

Слуховой анализатор обладает двумя симметричными половинами (бинауральный слух), т.е. для человека характерен пространственный слух - способность определять положение источника звука в про­странстве. Острота такого слуха велика. Человек может определить расположение источника звука с точностью до 1°. Это связано с тем, что, если источник звука находится в стороне от средней линии голо­вы, звуковая волна приходит на одно ухо раньше и с большей силой, чем на другое. Кроме того, на уровне задних холмов четверохолмия найдены нейроны, реагирующие лишь на определенное направление движения источника звука в пространстве.

Слух в онтогенезе

Несмотря на раннее развитие слухового анализатора, орган слуха у новорожденного еще не вполне сформирован. У него имеет место от­носительная глухота, которая связана с особенностями строения уха. Полость среднего уха у новорожденных заполнена амниотической жидкостью, что затрудняет колебание слуховых косточек. Амниоти- ческая жидкость постепенно рассасывается, и в полость уха из носо­глотки через евстахиеву трубу проникает воздух.

Новорожденный реагирует на громкие звуки вздрагиванием, прекра­щением плача, изменением дыхания. Вполне отчетливым слух у детей становится к концу 2-го - началу 3-го месяца. На 2-м месяце жизни ребенок дифференцирует качественно различные звуки, в 3-4 месяца различает высоту в пределах от 1 до 4 октав, в 4-5 месяцев звуки ста­новятся условными раздражителями, хотя условные пищевые и обо­ронительные рефлексы на звуковые раздражители вырабатываются уже с 3-5-недельного возраста. К 1-2 годам дети дифференцируют звуки, разница между которыми составляет 1 тон, а к 4 годам - даже 3/4 и 1/2 тона.

Острота слуха определяется наименьшей силой звука, которая мо­жет вызвать звуковое ощущение (порог слышимости). У взрослого че­ловека порог слышимости лежит в пределах 10-12 дБ, удетей 6-9 лет - 17-24 дБ, 10-12-лет- 14-19 дБ. Наибольшая острота звука достига­ется к среднему и старшему школьному возрасту. Низкие тоны дети воспринимают лучше, чем высокие. В развитии слуха у детей большое значение имеет общение со взрослыми. Развивает слух у детей слуша­ние музыки, обучение игре на музыкальных инструментах.

Строение слухового анализатора - тема нашей статьи. Как взаимосвязаны его строение и функции? Какое значение имеет слух для человека? Давайте разберемся вместе.

Что такое сенсорные системы

Каждую секунду наш организм воспринимает информацию из окружающей среды и соответствующим образом реагирует на нее. Это возможно благодаря сенсорным, или анализаторным системам. Строение слухового анализатора аналогично другим подобным структурам.

Всего в организме человека различают пять сенсорных систем. Кроме слуховой к ним относятся зрительная, обонятельная, осязательная, вкусовая. Ученые утверждают, что человек обладает еще и шестым чувством. Речь идет об интуиции - умении предвидеть события. Но структура, которая отвечает за формирование этого чувства, пока неизвестна.

Принцип работы анализаторов

Если описать строение слухового анализатора кратко, то можно назвать три его отдела. Они называются периферический, проводниковый и центральный. Такой план строения имеют все сенсорные системы.

Периферический отдел представлен рецепторами. Это чувствительные образования, которые воспринимают различные виды раздражений и преобразуют их в импульсы. Нервные волокна, которые представляют проводниковый отдел, передают информацию головной мозг. Здесь происходит ее анализ и формирование ответной реакции на раздражение.

Строение и функции слухового анализатора: кратко

Как происходит восприятие звуковых колебаний? Строение слухового анализатора подобно всем остальным. Его периферический отдел представлен ухом. Проводниковый - это слуховой нерв. По нему нервные импульсы продвигаются к центральной части. Это слуховая зона коры конечного мозга.

Способность к адаптации

Общим свойством для всех сенсорных систем является их способность приспосабливать уровень своей чувствительности к интенсивности силы действия раздражителя. Это свойство еще называют адаптацией. И строение слухового анализатора человека - не исключение.

В чем же заключается суть процесса адаптации? Дело в том, что чувствительность слуховых рецепторов может регулироваться в зависимости от степени воздействия раздражителя. Если сигнал сильный, уровень восприятия снижается, и наоборот. К примеру, вспомните, как мы постепенно начинаем различать тихие звуки через определенное время.

Для организма человека адаптация имеет защитное значение. Также она повышает функциональные возможности анализаторов путем длительных повторений. Так происходит тренировка слуха у профессиональных музыкантов. Люди, которые продолжительное время работают в условиях интенсивного шума или живут рядом с железной дорогой, через определенный период перестают его замечать. Это также проявление адаптации.

Как и все сенсорные системы, слуховая компенсируется функционированием остальных. Ярким примером этого является величайший композитор Людвиг Бетховен. Он был признанным мастером уже в молодом возрасте, а к тридцати годам его глухота начала быстро прогрессировать. Но даже когда Бетховен полностью лишился слуха, он продолжал сочинять музыкальные шедевры. Он помещал в рот небольшую деревянную палочку и прижимал ее к музыкальному инструменту. Таким образом осязательная сенсорная система компенсировала слуховой анализатор. А отсутствие зрения частично заменяется развитым слухом и обонянием.

Значение слуха

Возможно ли жить глухим? Естественно, людей с нарушениями слуха огромное количество. Несмотря на то, что больше всего информации человек воспринимает с помощью зрения, восприятие звуков также имеет большое значение.

Основные принципы строения слухового анализатора делают его работу непрерывной. Мы слышим даже во время сна. Слух позволяет воспринимать информацию на расстоянии, передавать опыт в поколениях, является средством общения.

Что такое звуковое давление

Все ли звуки мы способны воспринимать? Далеко нет. В процессе эволюции сенсорные системы приспособились к анализу информации только определенного диапазона. Это является защитой мозга от перегрузок.

Звуки формируются из колебаний воздуха. Строение слухового анализатора обеспечивает их превращение в нервные импульсы, которые анализируются в головном мозге. Амплитуту таких колебаний называют звуковым давлением. Ее единицей измерения является децибел. При обычном разговоре эта величина равна 60 дБ.

Частоту звуковых колебаний измеряют в герцах. Мы воспринимаем очень узкий диапазон - от 16 до 20 кГц. Другие колебания мы не способны слышать. Если частота колебаний ниже 16 Гц, они называются инфразвуком. В природе его используют для общения киты и слоны.

Ультразвук возникает при частоте колебаний более 20 кГц. Летучие мыши используют его для ориентации в ночное время суток. Они издают звуки, которые отражаются от предметов. Такой способ называется эхолокацией.

Орган слуха

Слуховой анализатор, строение и функции которого мы рассматриваем в нашей статье, состоит из трех отделов. Периферический представлен ухом. А правильнее сказать, органом слуха. Далее следует проводниковый отдел. Это слуховой нерв. Он передает информацию в центральный отдел, представленный слуховой зоной коры конечного мозга.

Внешнее ухо

В чем заключаются особенности анатомического строения периферического отдела слухового анализатора? Прежде всего в том, что он также состоит из трех частей. Это внешнее, среднее и внутреннее ухо.

Элементами первой части яляются ушная раковина и внешний слуховой проход. Они улавливают и направляют звуковые колебания к внутренним отделам. Ушная раковина образована эластичной хрящевой тканью, которая формирует характерные завитки.

Внешний слуховой проход имеет длину около 2,5 см, заканчиваясь барабанной перепонкой. Его кожа богата видоизмененными потовыми железами. Они выделяют особое вещество - ушную серу. Вместе с волосками она задерживает пыль и микроорганизмы.

Слуховые косточки

Строение органа слуха и слухового анализатора продолжает среднее ухо. Звуковые колебания передаются на барабанную перепонку, вызывая ее вибрацию. Чем выше звук, тем колебания интенсивнее.

Место нахождения среднего уха - черепа. Его границами являются две перепонки - барабанная и овального окна. Здесь колебания передаются на слуховые косточки. Они имеют характерную форму, которая определяет их названия: молоточек, стремя и наковальня. Слуховые косточки анатомически соединены между собой. Молоточек узкой частью крепится к наковальне. Последняя подвижно соединена со стременем. Колебания барабанной перепонки через слуховые косточки поступают к перепонке овального окна.

В этом отделе среднее ухо анатомически соединяется с носоглоткой при помощи евстахиевой, или слуховой трубы. Такое строение позволяет проникать сюда воздуху из окружающей среды. Поэтому давление на барабанную перепонку одинаково с обеих сторон.

Внутреннее ухо

Уже много сказано о строении и функциях слухового анализатора, а о самих рецепторах - ни слова. Это не ошибка. Их содержит внутреннее ухо. Его месторасположением является височная кость. Это сложная система извитых канальцев и полостей. Они заполнены специальной жидкостью.

От овального окна строение слухового анализатора продолжает канал, состоящий из 2,5 оборотов. Это улитка, в которой находятся слуховые рецепторы, или волосковые клетки. В улитке различают основную и покровную мембраны. Первая образована из поперечных волокон, имеющих разную длину. Их очень много - до 24 тысяч. Покровная мембрана нависает над волосковыми клетками. В результате образуется звуковоспринимающий аппарат, который называется кортиев орган. Он состоит из мембран и слуховых рецепторов.

Механизм действия

Когда перепонка овального окна начинает колебаться, это раздражение передается жидкости улитки. В результате возникает явление резонанса. Начинаются колебания волокон разной длины и слуховых рецепторов.

Этот процесс имеет свои закономерности. Сильный звук вызывает большой размах колебательных движений волокон. При высоком тоне звука начинают резонировать короткие волокна.

Далее механическая энергия колебательных движений превращается в электрическую. Так возникают нервные импульсы. Их дальнейшее передвижение происходит уже с помощью нейронов и их отростков. Они поступают в слуховую зону коры конечного мозга, который находится в височной доле.

Анализ звука - также важная функция слухового анализатора. Головной мозг определяет силу звука, его характер, высоту, направление в пространстве. Воспринимается также интонация слов. В результате формируется звуковой образ.

Даже с закрытыми глазами мы можем определить, из какого направления слышен сигнал. Благодаря чему это возможно? Если звук поступает в оба уха, мы воспринимает звук посредине. А точнее - спереди и сзади. Если же в одно ухо звук попадает раньше, чем в другое, то звук воспринимается справа или слева.

Приходилось ли вам замечать, что один и тот же звук люди воспринимают по-разному? Для одного телевизор работает слишком тихо, другой же ничего не слышит. Оказывается, каждый человек имеет свой порог слуховой чувствительности. От чего зависит данный показатель? Он определяется не только строением, функциями и возрастными особенностями слухового анализатора. Наиболее острым восприятием звуков обладают люди в возрасте от 15 до 20 лет. Далее острота слуха постепенно понижается.

Существует также такое понятие, как порог слышимости. Это самая маленькая сила звука, при которой он начинает восприниматься. Данный показатель также определяется индивидуальными особенностями.

Процесс формирования слухового анализатора

Когда человек начинает воспринимать звуки? Сразу после рождения. Ответной реакцией на звуки в этот период является проявление условных рефлексов. Это продолжается около двух месяцев. Теперь организм уже реагирует условнорефлекторно. К примеру, мамин голос становится знаком о кормлении.

На третьем месяце малыш уже различает тон, тембр, высоту и направления звуков. К году, как правило, ребенок уже понимает смысловую окраску слов.

Гигиена слуха

Строение слухового анализатора хотя и совершенно от природы, но требует постоянного внимания. Самые элементарные правила гигиены позволят вам надолго сохранить возможность восприятия звуков.

Самая простая причина ухудшения звука - накопление серы в наружном слуховом проходе. Если не удалять это вещество, могут образоваться так называемые пробки. Чтобы предупредить это, серу нужно периодически удалять.

Серьезно нужно отнестись и к последствиям вирусных заболеваний. Самый элементарный ринит, ангина или грипп могут привести к воспалению в среднем ухе. Такое заболевание называется отит. В среднее ухо опасные микроорганизмы проникают из носоглотки через слуховую трубу.

Нарушение слуха может быть вызвано и чисто механическими причинами. Одна из них - повреждение барабанной перепонки. Оно может быть вызвано и действием острого предмета, и чрезмерно громким звуком. К примеру, взрывом. Если вы ожидаете, что это может произойти, необходимо открыть рот. Такое действие делает одинаковым давление по обе стороны от барабанной перепонки.

Но вернемся к ежедневной жизни. Мы не задумываемся, что систематическое использование наушников, постоянный бытовой и транспортный шум постепенно снижают эластичность барабанной перепоки. В результате острота слуха значительно падает. А ведь процесс этот является необратимым. Только представьте, что пневматическая дрель работает с интенсивностью звука до 100 децибел, а дискотека - 110!

Итак, слуховая сенсорная система человека состоит из трех отделов, таких как:

  • Периферический . Представлен органом слуха: внешним, средним и внутренним ухом. Завитки ушной раковины направляют колебания воздуха в наружный слуховой проход, оттуда - на специализированные косточки (молоточек, стемя и наковальню), перепонку овального окна и улитку. В последней структуре находятся волосковые клетки. Это слуховые рецепторы, которые преобразуют механические колебания в нервные импульсы.
  • Проводниковый . Это слуховой нерв, по которому передаются импульсы.
  • Центральный . Находится в коре большого мозга. Здесь информация анализируется, благодаря чему формируются звуковые ощущения.

Рецепторный (периферический) отдел слухового анализатора, превращающий энергию звуковых волн в энергию нервного возбуждения, представлен рецепторными волосковыми клетками кортиева органа (орган Корти), находящимися в улитке. Слуховые рецепторы (фонорецепторы) относятся к механорецепторам, являются вторичными и представлены внутренними и наружными волосковыми клетками. У человека приблизительно 3500 внутренних и 20 000 наружных волосковых клеток, которые расположены на основной мембране внутри среднего канала внутреннего уха.

Рис. 2.6. Орган слуха

Внутреннее ухо (звуковоспринимающий аппарат), а также среднее ухо (звукопередающий аппарат) и наружное ухо (звукоулавливающий аппарат) объединяются в понятие орган слуха (рис. 2.6).

Наружное ухо за счет ушной раковины обеспечивает улавливание звуков, концентрацию их в направлении наружного слухового прохода и усиление интенсивности звуков. Кроме того, структуры наружного уха выполняют защитную функцию, охраняя барабанную перепонку от механических и температурных воздействий внешней среды.

Среднее ухо (звукопроводящий отдел) представлено барабанной полостью, где расположены три слуховые косточки: молоточек, наковальня и стремечко. От наружного слухового прохода среднее ухо отделено барабанной перепонкой. Рукоятка молоточка вплетена в барабанную перепонку, другой его конец сочленен с наковальней, которая, в свою очередь, сочленена со стремечком. Стремечко прилегает к мембране овального окна. Среднее ухо имеет специальный защитный механизм, представленный двумя мышцами: мышцей, натягивающей барабанную перепонку, и мышцей, фиксирующей стремечко. Степень сокращения этих мышц зависит от силы звуковых колебаний. При сильных звуковых колебаниях мышцы ограничивают амплитуду колебаний барабанной перепонки и движение стремечка, предохраняя тем самым рецепторный аппарат во внутреннем ухе от чрезмерного возбуждения и разрушения. При мгновенных сильных раздражениях (удар в колокол) этот защитный механизм не успевает срабатывать. Сокращение обеих мышц барабанной полости осуществляется по механизму безусловного рефлекса, который замыкается на уровне стволовых отделов мозга. В барабанной полости поддерживается давление, равное атмосферному, что очень важно для адекватного восприятия звуков. Эту функцию выполняет евстахиева труба, которая соединяет полость среднего уха с глоткой. При глотании труба открывается, вентилируя полость среднего уха и уравнивая давление в нем с атмосферным. Если внешнее давление быстро меняется (быстрый подъем на высоту), а глотания не происходит, то разность давлений между атмосферным воздухом и воздухом в барабанной полости приводит к натяжению барабанной перепонки и возникновению неприятных ощущений, снижению восприятия звуков.



Внутреннее ухо представлено улиткой – спирально закрученным костным каналом, имеющим 2,5 завитка, который разделен основной мембраной и мембраной Рейснера на три узких части (лестницы). Верхний канал (вестибулярная лестница) начинается от овального окна и соединяется с нижним каналом (барабанной лестницей) через геликотрему (отверстие в верхушке) и заканчивается круглым окном. Оба канала представляют собой единое целое и заполнены перилимфой, сходной по составу со спинномозговой жидкостью. Между верхним и нижним каналами находится средний (средняя лестница). Он изолирован и заполнен эндолимфой. Внутри среднего канала на основной мембране расположен собственно звуковоспринимающий аппарат – орган Корти (кортиев орган) с рецепторными клетками, представляющий периферический отдел слухового анализатора.

Основная мембрана вблизи овального окна по ширине составляет 0,04 мм, затем по направлению к вершине она постепенно расширяется, достигая у геликотремы 0,5 мм.

Проводниковый отдел слухового анализатора представлен периферическим биполярным нейроном, расположенным в спиральном ганглии улитки (первый нейрон). Волокна слухового (или кохлеарного) нерва, образованные аксонами нейронов спирального ганглия, заканчиваются на клетках ядер кохлеарного комплекса продолговатого мозга (второй нейрон). Затем после частичного перекреста волокна идут в медиальное коленчатое тело метаталамуса, где опять происходит переключение (третий нейрон), отсюда возбуждение поступает в кору (четвертый нейрон). В медиальных (внутренних) коленчатых телах, а также в нижних буграх четверохолмия располагаются центры рефлекторных двигательных реакций, возникающих при действии звука.



Центральный, или корковый, отдел слухового анализатора находится в верхней части височной доли большого мозга (верхняя височная извилина, поля 41 и 42 по Бродману). Важное значение для функции слухового анализатора имеют поперечные височные извилины (извилины Гешля).

Слуховая сенсорная система дополняется механизмами обратной связи, обеспечивающими регуляцию деятельности всех уровней слухового анализатора с участием нисходящих путей. Такие пути начинаются от клеток слуховой коры, переключаясь последовательно в медиальных коленчатых телах метаталамуса, задних (нижних) буграх четверохолмия, в ядрах кохлеарного комплекса. Входя в состав слухового нерва, центробежные волокна достигают волосковых клеток кортиева органа и настраивают их на восприятие определенных звуковых сигналов.

1. В чем заключаются особенности экономико-географического подхода к оценке экологического состояния территории?

2. Какими факторами определяется экологическое состояние территории?

3. Какие виды районирования с учетом экологического фактора выделяются в современной географической литературе?

4. Каковы критерии и в чем заключаются особенности экологического, эколого-экономического и природно-хозяйственного районирования?

5. Как можно классифицировать антропогенное воздействие?

6. Что можно отнести к первичным и вторичным последствиям антропогенного воздействия?

7. Как изменились основные параметры антропогенного воздействия в России в переходный период?

Литература:

1. Бакланов П. Я., Поярков В. В., Каракин В. П. Природно-хозяйственное районирование: общая концепция и исходные принципы. // География и природные ресурсы. - 1984, №1.

2. Битюкова В. Р. Новый подход к методике районирования состояния городской среды (на примере Москвы). // Изв. РГО. 1999. Т. 131. Вып. 2.

3. Блануца В. И. Интегральное экологическое районирование: концепция и методы. - Новосибирск: Наука, 1993.

4. Борисенко И. Л. Экологическое районирование городов по техногенным аномалиям в почвах (на примере Московской области) // Матер. науч. семин. по экол. районир. «Экорайон-90». - Иркутск, 1991.

5. Булатов В. И. Российская экология на рубеже ХХI века. - ЦЕРИС, Новосибирск, 2000.Владимиров В. В. Расселение и экология. - М., 1996.

6. Гладкевич Г. И., Сумина Т. И. Оценка силы воздействия промышленных центров природно-хозяйственных районов СССР на природную среду. // Вестник Моск. ун-та, сер. 5, геогр. - 1981., №6.

7. Исаченко А. Г. Экологическая география России. - С.П-б.: Изд.-во С-Пб. ун.-та, 2001.

8. Кочуров Б. И., Иванов Ю. Г. Оценка эколого-хозяйственного состояния территории административного района. // География и природные ресурсы. - 1987, №4.

9. Малхазова С. М. Медико-географический анализ территорий: картографирование, оценка, прогноз. - М.: Научный мир, 2001.

10. Моисеев Н. Н. Экология в современном мире // Экология и образование. - 1998, №1

11. Мухина Л. И., Преображенский В.С., Ретеюм А.Ю. География, техника, проектирование. - М.: Знание, 1976.

12. Преображенский В. С., Райх Е. А. Контуры концепции общей экологии человека. // Предмет экологии человека. Ч. 1. - М. 1991.

13. Приваловская Г. А. Волкова И. Н. Регионализация ресурсопользования и охрана окружающей среды. // Регионализация в развитии России: географические процессы и проблемы. - М.: УРСС, 2001.

14. Приваловская Г. А., Рунова Т. Г. Территориальная организация промышленности и природные ресурсы СССР. - М.: Наука, 1980

15. Прохоров Б. Б. Медико-экологическое районирование и региональный прогноз здоровья населения России: Конспект лекций к спецкурсу. - М.: Изд-во МНЭПУ, 1996.

16. Ратанова М. П. Битюкова В. Р. Территориальные различия степени экологической напряженности Москвы. // Вестник Моск. ун-та, сер. 5, геогр. - 1999, №1.

17. Регионализация в развитии России: географические процессы и проблемы. - М.: УРСС, 2001.

18. Реймерс Н. Ф. Природопользование: Словарь-справочник. - М.: Мысль, 1990.

19. Чистобаев А. И., Шарыгин М. Д. Экономическая и социальная география. Новый этап. - Л.: Наука, 1990.

Глава 3. СТРОЕНИЕ И ФУНКЦИИ СЛУХОВОГО АНАЛИЗАТОРА.

3.1 Строение органа слуха. Переферический отдел слухового анализатора представлен ухом, с помощью которого человек воспринимает воздействие внешней среды, выраженное в виде звуковых колебаний, оказывающих физическое давление на барабанную перепонку. Через орган слуха человек получает значительно меньше информации, чем с помощью органа зрения (примерно 10%). Но слух имеет большое значение для общего развития и формирования личности и, в частности, для развития речи у ребенка, оказывающей решающее влияние на его психическое развитие.

Орган слуха и равновесия содержит чувствительные клетки нескольких видов: рецепторы, воспринимающие звуковые колебания; рецепторы, определяющие положение тела в пространстве; рецепторы, воспринимающие изменения направления и быстроты движения. Выделяют три части органа: наружное, среднее и внутреннее ухо (рис. 7).

Наружное ухо воспринимает звуки и направляет их к барабанной перепонке. Оно включает проводящие отделы – ушную раковину и наружный слуховой проход.

Рис. 7. Строение органа слуха.

Ушная раковина состоит из эластического хряща, покрытого тонким слоем кожи. Наружный слуховой проход представляет собой изогнутый канал длиной 2,5 – 3 см. Канал имеет два отдела: хрящевой наружный слуховой проход и внутренний костный слуховой проход, находящийся в височной кости. Наружный слуховой проход выстлан кожей с тонкими волосками и особыми потовыми железами, которые выделяют ушную серу.

Его конец изнутри закрыт тонкой полупрозрачной пластинкой – барабанной перепонкой, отделяющей наружное ухо от среднего. Последнее включает в себя несколько образований, заключенных в барабанную полость: барабанную перепонку, слуховые косточки, слуховую (евстахиеву) трубу. На стенке, обращенной к внутреннему уху, находятся два отверстия – овальное окно (окно преддверия) и круглое окно (окно улитки). На стенке барабанной полости, обращенной к наружному слуховому проходу, находится барабанная перепонка, воспринимающая звуковые колебания воздуха и передающая их звукопроводящей системе среднего уха – комплексу слуховых косточек (его можно сравнить со своеобразным микрофоном). Едва заметные колебания барабанной перепонки здесь усиливаются и преобразуются, передаваясь во внутреннее ухо. Комплекс состоит из трех косточек: молоточка, наковальни и стремечка. Молоточек (длиной 8 – 9 мм) плотно сращен с внутренней поверхностью барабанной перепонки своей рукояткой, а головкой сочленен с наковальней, которая из-за наличия двух ножек напоминает коренной зуб с двумя корнями. Одна ножка (длинная) выполняет функцию рычага для стремени. Стремечко имеет размер 5 мм, своим широким основанием вставлено в овальное окно преддверия, плотно прилегая к его перепонке. Движения слуховых косточек обеспечиваются мышцей, напрягающей барабанную перепонку, и стременной мышцей.

Слуховая труба (длиной 3,5 - 4 см) соединяет барабанную полость с верхним отделом глотки. Через нее из носоглотки в полость среднего уха попадает воздух, благодаря чему выравнивается давление на барабанную перепонку со стороны наружного слухового прохода и барабанной полости. Когда затруднено прохождение воздуха по слуховой трубе (воспалительный процесс), то преобладает давление со стороны наружного слухового прохода, и барабанная перепонка вдавливается в полость среднего уха. Это приводит к значительной потере возможностей барабанной перепонки совершать колебательные движения в соответствии с частотой звуковых волн.

Внутреннее ухо – очень сложно устроенный орган, внешне напоминает лабиринт или улитку, имеющую 2,5 круга в своем “домике”. Оно расположено в пирамиде височной кости. Внутри костного лабиринта находится замкнутый соединительный перепончатый лабиринт, повторяющий форму внешнего. Пространство между стенками костного и перепончатого лабиринтов заполнено жидкостью – перилимфой, а полость перепончатого лабиринта – эндолимфой.

Преддверие – небольшая овальная полость в средней части лабиринта. На медиальной стенке преддверия гребень отделяет друг от друга две ямки. Задняя ямка – эллиптическое углубление – лежит ближе к полукружным каналам, которые открываются в преддверие пятью отверстиями, а передняя – сферическое углубление – связана с улиткой.

В перепончатом лабиринте, который располагается внутри костного и в основном повторяет его очертания, выделяют эллиптический и сферичекий мешочки.

Стенки мешочков покрыты плоским эпителием, за исключением небольшого участка – пятна. Пятно выстлано цилиндрическим эпителием, содержащим опорные и волосковые сенсорные клетки, имеющие на своей поверхности тонкие отростки, обращенные в полость мешочка. От волосковых клеток начинаются нервные волокна слухового нерва (его вестибулярной части).Поверхность эпителия покрыта особой тонковолокнистой и студенистой мембраной, называемой отолитовой, так как в ней находятся кристаллы отолиты, состоящие из карбоната кальция.

Сзади к преддверию примыкают три взаимоперпендикулярных полукружных канала – один в горизонтальной и два в вертикальных плоскостях. Все они представляют собой узкие трубочки, наполненные жидкостью – эндолимфой. Каждый канал заканчивается расширением – ампулой; в слуховом гребешке ее сконцентрированы клетки чувствительного эпителия, от которого начинаются ветви вестибулярного нерва.

Спереди от преддверия находится улитка. Канал улитки загибается по спирали и образует 2,5 оборота вокруг стержня. Стержень улитки состоит из губчатой костной ткани, между балками которой расположены нервные клетки, образующие спиральный ганглий. От стержня отходит в виде спирали тонкий костный листок, состоящий из двух пластин, между которыми проходят миелинизированные дендриты нейронов спирального ганглия. Верхняя пластина костного листка переходит в спиральную губу, или лимб, нижняя – в спиральную основную, или базиллярную, мембрану, которая простирается до наружной стенки улиткового канала. Плотная и упругая спиральная мембрана представляет собой соединительнотканную пластинку, которая состоит из основного вещества и коллагеновых волокон – струн, натянутых между спиральной костной пластинкой и наружной стенкой улиткового канала. У основания улитки волокна более короткие. Их длина составляет 104 мкм. По направлению к вершине длина волокон увеличивается до 504 мкм. Общее их число составляет около 24 тыс.

От костной спиральной пластинки к наружной стенке костного канала под углом к спиральной мембране отходит еще одна мембрана, менее плотная – вестибулярная, или рейснерова.

Полость канала улитки разделена мембранами на три отдела: верхний канал улитки, или вестибулярная лестница, начинается от окна преддверия; средний канал улитки – между вестибулярной и спиральной мембранами и нижний канал, или барабанная лестница, начинающаяся от окна улитки. У вершины улитки вестибулярная и барабанная лестницы сообщаются посредством маленького отверстия – геликотремы. Верхний и нижний каналы заполнены перилимфой. Средний канал – это улитковый проток, который тоже представляет собой спирально извитый канал в 2,5 оборота. На наружной стенке улиткового протока расположена сосудистая полоска, эпителиальные клетки которой обладают секреторной функцией, продуцируя эндолимфу. Вестибулярная и барабанная лестницы заполнены перилимфой, а средний канал – эндолимфой. Внутри улиткового протока, на спиральной мембране, располагается сложное устройство (в виде выступа нейроэпителия), представляющее собой собственно воспринимающий аппарат слуховой перцепции, - спиральный (кортиев) орган (рис. 8).

Кортиев орган образован чувствительными волосковыми клетками. Различают внутренние и наружные волосковые клетки. Внутренние волосковые клетки несут на своей поверхности от 30 до 60 коротких волосков, расположенных в 3 – 5 рядов. Число внутренних волосковых клеток составляет у человека около 3500. Наружные волосковые клетки расположены в три ряда, каждая из них имеет около 100 волосков. Общее число наружных волосковых клеток составляет у человека 12 – 20 тысяч. Наружные волосковые клетки более чувствительны к действию звуковых раздражителей, чем внутренние.

Над волосковыми клетками расположена текториальная мембрана. Она имеет лентовидную форму и желеобразную консистенцию. Ее ширина и толщина увеличиваются от основания улитки к вершине.

Информация от волосковых клеток передается по дендритам клеток, образующих спиральный узел. Второй отросток этих клеток -– аксон – в составе преддверно-улиткового нерва направляется к стволу мозга и к промежуточному мозгу, где происходит переключение на следующие нейроны, отростки которых идут в височный отдел коры головного мозга.

Рис. 8. Схема органа Корти:

1 - покровная пластинка; 2, 3 - наружные (3-4 ряда) и внутренние (1-й ряд) волосковые клетки; 4 - опорные клетки; 5 - волокна улиткового нерва (в поперечном разре­зе); 6 - наружные и внутренние столбы; 7 - улитковый нерв; 8 - основная пластинка

Спиральный орган является аппаратом, принимающим звуковые раздражения. Преддверие и полукружные каналы обеспечивают равновесие. Человек может воспринимать до 300 тыс. различных оттенков звуков и шумов в диапазоне от 16 до 20 тыс. Гц. Наружное и среднее ухо способны усилить звук почти в 200 раз, однако усиливаются только слабые звуки, сильные ослабляются.

3.2 Механизм передачи и восприятия звука. Звуковые колебания улавливаются ушной раковиной и по наружному слуховому проходу передаются барабанной перепонке, которая начинает колебаться в соответствии с частотой звуковых волн. Колебания барабанной перепонки передаются цепи косточек среднего уха и при их участии мембране овального окна. Колебания мембраны окна преддверия передаются перилимфе и эндолимфе, что вызывает колебания основной мембраны вместе с расположенным на ней кортиевым органом. При этом волосковые клетки своими волосками касаются текториальной мембраны, и вследствие механического раздражения в них возникает возбуждение, которое передается далее на волокна преддверно-улиткового нерва.

Слуховой анализатор человека воспринимает звуковые волны с частотой их колебаний от 20 до 20 тыс. в секунду. Высота тона определяется частотой колебаний: чем она больше, тем выше по тону воспринимаемый звук. Анализ звуков по частоте осуществляется периферическим отделом слухового анализатора. Под влиянием звуковых колебаний прогибается мембрана окна преддверия, смещая при этом какой-то объем перилимфы. При малой частоте колебаний частицы перилимфы перемещаются по вестибулярной лестнице вдоль спиральной мембраны по направлений к геликотреме и через нее по барабанной лестнице к мембране круглого окна, которая прогибается на такую же величину, что и мембрана овального окна. Если же действует большая частота колебаний, возникает быстрое смещение мембраны овального окна и повышение давления в вестибулярной лестнице. От этого прогибается спиральная мембрана в сторону барабанной лестницы и реагирует участок мембраны вблизи окна преддверия. При повышении давления в барабанной лестнице изгибается мембрана круглого окна, основная мембрана благодаря своей упругости возвращается в исходное положение. В это время частицы перилимфы смещают следующий, более инерционный участок мембраны, и волна пробегает по всей мембране. Колебания окна преддверия вызывают бегущую волну, амплитуда которой возрастает, и максимум ее соответствует какому-то определенному участку мембраны. По достижении максимума амплитуды волна затухает. Чем выше высота звуковых колебаний, тем ближе к окну преддверия находится максимум амплитуды колебаний спиральной мембраны. Чем меньше частота, тем ближе к геликотреме отмечаются наибольшие ее колебания.

Установлено, что при действии звуковых волн с частотой колебаний до 1000 в секунду в колебание приходит весь столб перилимфы вестибулярной лестницы и вся спиральная мембрана. При этом их колебания происходят в точном соответствии с частотой колебания звуковых волн. Соответственно в слуховом нерве возникают потенциалы действия с такой же частотой. При частоте звуковых колебаний свыше 1000 колеблется не вся основная мембрана, а какой-то ее участок, начиная от окна преддверия. Чем выша частота колебаний, тем меньший по длине участок мембраны, начиная от окна преддверия, приходит в колебание и тем меньшее число волосковых клеток приходит в состояние возбуждения. В слуховом нерве в этом случае регистрируются потенциалы действия, частота которых меньше частоты звуковых волн, действующих на ухо, причем при высокочастотных звуковых колебаниях импульсы возникают в меньшем числе волокон, чем при низкочастотных колебаниях, что связано с возбуждением лишь части волосковых клеток.

Значит при действии звуковых колебаний происходит пространственное кодирование звука. Ощущение той или иной высоты звука зависит от длины колеблющегося участка основной мембраны, а следовательно, от числа расположенных на ней волосковых клеток и от места их расположения. Чем меньше колеблющихся клеток и чем ближе они расположены к окну преддверия, тем более высоким воспринимается звук.

Колеблющиеся волосковые клетки вызывают возбуждение в строго определенных волокнах слухового нерва, а значит, и в определенных нервных клетках головного мозга.

Сила звука определяется амплитудой звуковой волны. Ощущение интенсивности звука связано с различным соотношением числа возбужденных внутренних и внешних волосковых клеток. Поскольку внутренние клетки менее возбудимы, чем внешние, возбуждение большого числа их возникает при действии сильных звуков.

3.3 Возрастные особенности слухового анализатора. Формирование улитки происходит на 12-й неделе внутриутробного развития, а на 20-й неделе начинается уже миелинизация волокон улиткового нерва в нижнем (основном) завитке улитки. Миелинизация в среднем и верхнем завитках улитки начинается значительно позднее.

Дифференцировка отделов слухового анализатора, которые расположены в головном мозге, проявляется в формировании клеточных слоев, в увеличении пространства между клетками, в росте клеток и изменении их структуры: в увеличении числа отростков, шипиков и синапсов.

Подкорковые структуры, относящиеся к слуховому анализатору, созревают раньше, чем его корковый отдел. Их качественное развитие заканчивается на 3-м месяце после рождения. Структура корковых полей слухового анализатора отличается от таковой у взрослых до 2 – 7 лет.

Слуховой анализатор начинает функционировать сразу же после рождения. Уже у новорожденных возможно осуществление элементарного анализа звуков. Первые реакции на звук носят характер ориентировочных рефлексов, осуществляемых на уровне подкорковых образований. Они отмечаются даже у недоношенных детей и проявляются в закрывании глаз, открывании рта, вздрагивании, уменьшении частоты дыхания, пулься, в различных мимических движениях. Звуки, одинаковые по интенсивности, но разные по тембру и высоте, вызывают разные реакции, что свидетельствует о способности их различесния новорожденным ребенком.

Условные пищевые и оборонительные рефлексы на звуковые раздражения вырабатываются с 3 – 5 недель жизни ребенка. Упрочнение этих рефлексов возможно лишь с 2 месяцев жизни. Дифференцирование разнородных звуков возможно с 2 – 3 месяцев. В 6 – 7 месяцев дети дифференцируют тоны, отличающиеся от исходного на 1 – 2 и даже на 3 – 4,5 музыкального тона.

Функциональное развитие слухового анализатора продолжается до 6 – 7 лет, что проявляется в образовании тонких дифференцировок на речевые раздражители. Различны у детей разного возраста пороги слышимости. Острота слуха и, следовательно, наименьший порог слышимости уменьшаются до 14 – 19 лет, когда отмечается самая малая величина порога, а затем вновь нарастают. Чувствительность слухового анализатора к разным частотам неодинакова в разном возрасте. До 40 лет наименьший порог слышимости падает на частоту 3000 Гц, в 40 – 49 лет – 2000 Гц, после 50 лет – 1000 Гц, причем с этого возраста понижается верхняя граница воспринимаемых звуковых колебаний.



Понравилась статья? Поделитесь ей
Наверх