Регуляция работы сердца и сосудов кратко. Тема урока « Регуляция работы сердца и сосудов. Автоматизм сердечной деятельности. Рефлекторная регуляция сердечной деятельности со стороны центральной нервной системы. Что такое автоматизм сердца

Функция сердца, есть сила и частота его сокращений, изменяется в зависимости от состояния организма и условий, в которых организм находится. Обеспечиваются эти изменения регуляторными механизмами, которые можно разделить на миогенные (связанные с физиологическими свойствами собственно структур серйя), гуморальные (влияние различных физиологически активных веществ, производятся непосредственно в сердце и организме) и нервные (осуществляются с помощью интра-и экстракардиальные системы).
Миогенные механизмы. Закон Франка-Старлинга. Благодаря свойствам сократительных миофиламенты миокард может изменять силу сокращения зависимости от степени наполнения полостей сердца. При постоянной ЧСС сила сердечных сокращений увеличивается с ростом венозного притока крови. Это наблюдается, например, при росте конечно-диастолического объема с 130 до 180 мл.
Предполагают, что в основе механизма Франка-Старлинга лежит первоначальное расположение актиновых и миозинових филаментов в саркомири. Скольжение нитей друг относительно друга осуществляется при взаимном перекрытии благодаря создаваемых поперечным мостикам. Если эти нити растянуты, то количество возможных «шагов» возрастет, следовательно, увеличится и сила следующего сокращения (положительный инотропный эффект). Но дальнейшее растяжение может привести к тому, что актиновые И миозиновые нити уже не будут перекрываться и не смогут образовать мостики для сокращения. Поэтому
чрезмерное растяжение мышечных волокон приведет к уменьшению силы сокращения, т.е. отрицательный инотропный эффект. Это наблюдается при увеличении конечно-диастолического объема выше 180 мл.
Механизм Франка-Старлинга обеспечивает увеличение УО при повышении венозного притока крови в соответствующий отдел (правый или левый) сердца. Он способствует усилению сердечных сокращений при возрастании сопротивления выброса крови в сосуды. Последнее обстоятельство может быть следствием повышения диастолического давления в аорте (легочной артерии) или сужение этих сосудов (коарктации). В данном случае можно представить такую последовательность развития изменений. Повышение давления в аорте приводит к резкому увеличению коронарного кровотока, при котором механически растягиваются кардиомиоциты и, согласно механизму Франка-Старлинга, в их усиленного сокращения, повышение УО крови. Это явление носит название эффекта Анрепа.
Механизм Франка-Старлинга и эффект Анрепа обеспечивает авторегуляции функции сердца при многих физиологических состояниях (например, при физической нагрузке). В таком случае МОК может быть увеличен на 13-15 л / мин.
Хроноинотропия. Зависимость силы сокращения сердца от частоты его деятельности (лестница Боудича) является фундаментальным свойством миокарда. Сердце человека и большинства животных, за исключением крыс в ответ на повышение ритма реагирует увеличением силы сокращений и, наоборот, с уменьшением ритма сила сокращений падает. Механизм этого феномена связан с накоплением или падением в миоплазми концентрации Са2 +, а также увеличением или уменьшением количества поперечных мостиков, что приводит положительные или
негативные эффекты сердца.
Гуморальные механизмы. Влияние инкреторной функции сердца.
В сердце, особенно в его предсердиях, образуются биологически активные соединения (дигиталисоподибни факторы, катехоламины, продукты арахидоновой кислоты) и гормоны, в частности, предсердный натрийуретический и ренин-ангиотензин соединения. Оба гормоны участвуют в регуляции сократительной активности миокарда, МОК. Последний из них имеет специфические рецепторы, при воздействии на которые развивается гипертрофия миокарда.
Влияние ионов на функцию сердца. Подавляющее большинство регуляторных влияний на функциональное состояние сердца связана с мембранными механизмами проводящей системы и кардиомиоцитов. Мембраны прежде всего отвечают за проникновение ионов. Состояние мембранных каналов, переносчиков, а также насосов, использующих энергию АТФ, влияет на концентрацию ионов в миоплазми. Существенная роль в трансмембранному обмене ионами принадлежит концентрационном градиента, который определяется прежде всего концентрацией их в крови, а следовательно, и в межклеточной жидкости. Увеличение внеклеточного концентрации ионов приводит к росту пассивного поступления их в кардиоциты, снижение - к «вымыванию». Вполне вероятно, что кардиогенный эффект ионов послужил одним из оснований для формирования в процессе эволюции сложных систем регуляции, что обеспечивает их гомеостаз в крови.
Влияние Са2 +. Если содержание Са2 + в крови снижается, то возбудимость и сократимость сердца уменьшается, а при увеличении, напротив, повышается. Механизм этого явления связан с уровнем Са2 + в клетках проводящей системы и рабочего миокарда, в зависимости от которого развиваются положительные или отрицательные эффекты деятельности сердца.
Влияние К +. При уменьшении концентрации К + (менее 4 ммоль / л) в крови возрастают пейсмекерного активность и ЧСС. При увеличении его концентрации эти показатели уменьшаются. Двукратное повышение содержания К + в крови может привести к остановке сердца. Этот эффект используется в клинической практике для остановки сердца во время проведения на ньрму хирургических операций. Механизм этих изменений связан с уменьшением соотношения между внешним и внутриклеточным к + повышением проницаемости мембран до К + снижением потенциала покоя.
Влияние Na +. Снижение содержания Na + в крови может привести к остановке сердца. В основе этого влияния лежит нарушение градиентного трансмембранного транспорта Na +, Са2 + и сочетания возбудимости с сократимостью. Незначительное повышение уровня Na + благодаря Na + -, Са2 +-обменнике приведет к увеличению сократимости миокарда.
Влияние гормонов. Ряд настоящих (адреналин, норадреналин, глюкагон, инсулин и др.). И тканевых (ангиотензин II, гистамин, серотонин и др.). Гормонов стимулируют функцию сердца. Механизм действия, например, норадреналина, серотонина и гистамина связан с соответствующими рецепторами: p-адренорецепторами, Нг-гистаминовых и серотониновых. В результате их взаимодействия увеличиваются концентрации аденилатциклазы, цАМФ, активизируются кальциевые каналы, накапливается внутриклеточный Са2 +, что и обусловливает итоге улучшения деятельности сердца.
Кроме этого, гормоны, которые активизируют аденилатциклазу, образование цАМФ, могут действовать на миокард косвенно, через усиление расщепления гликогена и окисления глюкозы. Интенсифицируя образования АТФ, такие гормоны, как адреналин и глюкагон, также становятся причиной положительной игиотропнои реакции.
Напротив, стимуляция образования цГМФ инактивирует Са2 +-каналы, что обуславливает негативное влияние на функции сердца. Таким образом действуют на кардиомиоциты медиатор парасимпатической нервной системы ацетилхолин, а также брадикинин. Но, кроме этого, ацетилхолин? К +-проницаемость и тем самым предопределяет гиперполяризацию. Последствием этих влияний является снижение скорости деполяризации, сокращение продолжительности ПД, снижение силы сокращения.
Влияние метаболитов. Для нормального функционирования сердца нужна энергия. Поэтому все изменения коронарного кровотока, трофической функции крови сказываются на работе миокарда.
При гипоксии, внутриклеточном ацидозе блокируются на мембране кардиомиоцитов медленные Са2 +-каналы, подавляя тем самым сократительную активность. В этом эффекте есть элементы самозащиты сердца, поскольку не потрачена на сокращение АТФ обеспечивает жизнеспособность кардиомиоцитов. И если гипоксия будет ликвидирована, то сохраненный кардиомиоцит начнет Знобь выполнять нагнетательную функцию.
Увеличение в сердце концентраций креатинфосфата, свободных жирных кислот, молочной кислоты как источника энергии сопровождается повышением деятельности миокарда. Раскладывая молочную кислоту, сердце не только получает дополнительную энергию, но и способствует поддержанию постоянной рН крови.

Регуляция работы сердца

Если извлечь из трупа недавно погибшего человека сердце и пропустить через его сосуды питательную жидкость, обогащенную кислородом, оно может некоторое время сокращаться вне организма. При этом сокращения предсердий, желудочков и пауза будут проходить в нормальной последовательности. Это происходит потому, что в мышце сердца находятся нервно-мышечные структуры, способные обеспечивать его работу.

Способность органа ритмически возбуждаться без внешних раздражений под влиянием импульсов, возникающих в нем самом, называют автоматизмом . Автоматизмом обладает и сердце.

Быстрое и точное приспособление кровообращения к потребностям организма достигается благодаря многообразным механизмам регуляции работы сердца . Регуляторные механизмы можно разделить на внесердечные механизмы (нервная и гуморальная регуляция), и внутрисердечные механизмы (саморегуляция).

1. Нервная и гуморальная регуляция образуют единый нервно-гуморальный механизм регуляции работы сердца, обеспечивающий нормальное функционирование организма в меняющихся условиях среды.

Нервная регуляция работы сердца осуществляется вегетативной нервной системой. Нервные импульсы, поступающие к сердцу по ветвям блуждающего нерва (парасимпатическая нервная система), уменьшают силу и частоту сокращений. Импульсы, приходящие к сердцу по симпатическим нервам, повышают частоту и силу сердечных сокращений. Их центры находятся в шейном отделе спинного мозга. Активность симпатического и парасимпатического отделов регулирует центральная нервная система по механизму обратной связи: при повышении симпатической активности парасимпатическая снижается и наоборот. Центральная нервная система постоянно контролирует работу сердца посредством нервных импульсов. Например, у человека учащаются сокращения сердца, когда он быстро встаёт из положения лёжа. Дело в том, что переход в вертикальное положение приводит к накоплению крови в нижней части туловища и уменьшает кровенаполнение верхней части, особенно головного мозга. Чтобы восстановить кровоток в верхней части туловища, от рецепторов сосудов поступают импульсы в центральную нервную систему. Оттуда к сердцу по нервным волокнам передаются импульсы, ускоряющие сокращение сердца.

Центральная нервная система не изменяет последовательность сокращений предсердий и желудочков, но она может изменять их ритм. Когда человек отдыхает, сердце работает медленнее. Когда он занят напряженной физической работой, сердце работает сильнее и чаще. Это происходит потому, что к сердцу подходят два нерва: симпатический - ускоряющий и блуждающий , замедляющий сердечную деятельность.

Симпатический и блуждающий нервы относятся к вегетативной нервной системе. Они регулируют работу не только сердца, но и кровеносных сосудов. Так, симпатический нерв не только усиливает деятельность сердца, но и сужает артериальные сосуды, отходящие от сердца. Вследствие этого давление на стенки артериальных сосудов повышается. Но если оно достигает критического уровня, усиливается действие блуждающего нерва, который не только ослабляет деятельность сердца, но и расширяет просвет артериальных сосудов. Это приводит к понижению давления. В результате у здорового человека уровень артериального давления поддерживается в пределах определенных границ. Если оно станет ниже нормы, усилится действие симпатических нервов, которые исправят положение.


Гуморальная регуляция (лат. humor — жидкость) — один из механизмов координации процессов жизнедеятельности в организме, осуществляемый через жидкие среды организма (кровь, лимфу, тканевую жидкость) с помощью биологически активных веществ, выделяемых клетками, тканями и органами при их функционировании. Важную роль в гуморальной регуляции играют гормоны. Например, ацетилхолин оказывает угнетающее влияние на работу сердца, при этом чувствительность к этому веществу так велика, что в дозе 0,0000001 мг он отчётливо замедляет сердечный ритм. Противоположное действие оказывает адреналин, который даже в очень малых дозах усиливает работу сердца. Сердце чувствительно к ионному составу крови. Ионы кальция повышают возбудимость клеток миокарда, но высокая их насыщенность может вызывать остановку сердца, ионы калия угнетают функциональную активность сердца.

2. Второй уровень представлен внутрисердечными механизмами , регулирующими работу сердца на органном уровне, а также внутриклеточными механизмами, которые регулируют силу сердечных сокращений, скорость и степень расслабления миокарда.

В сердце функционирует внутриорганная нервная система, образующая миниатюрные рефлекторные дуги. Так, увеличение притока крови к правому предсердию и растяжение его стенок приводят к усилению сокращения левого желудочка.

Внутриклеточные механизмы регуляции имеют место, например, у спортсменов. Регулярная мышечная нагрузка приводит к усилению синтеза сократительных белков миокарда и утолщению стенок сердца и увеличению его размеров. Так, если масса нетренированного сердца составляет 300 г, то у спортсменов она увеличивается до 500 г.

Сердце способно возбуждаться без внешних раздражений, под влиянием импульсов, возникающих в нем самом. Последовательность сокращений предсердий, желудочков и паузы определяется внутренним автоматизмом сердца.

Регулирует работу сердца в целом вегетативный отдел нервной системы. Симпатический нерв ускоряет и усиливает деятельность сердца, блуждающий нерв - тормозит. Эти нервы влияют и на просвет сосудов, отходящих от сердца. Благодаря их согласованной работе поддерживается стабильное артериальное давление. На сердце и сосуды влияют также гуморальные факторы, в частности гормон адреналин, ацетилхолин, соли кальция и калия, а также некоторые другие вещества.

Психология и эзотерика

Закон сердечного ритма чем больше приток крови тем больше сила и частота сердечных сокращений. Хеморецепторы возбуждаются в результате сдвигов химического состава плазмы крови при увеличении в ней рСО2 или снижения рО2. Гуморальная регуляция деятельности сердца осуществляется путем воздействия на него химических веществ находящихся в крови. 0051 ДВИЖЕНИЕ КРОВИ ПО СОСУДАМ ГЕМОДИНАМИКА Движение крови по сосудам обусловлено градиентом давления в артериях и венах.

0050 Регуляция работы сердца

Закон Старлинга - чем больше растянуто мышечное волокно, тем сильнее оно сокращается.

Закон сердечного ритма - чем больше приток крови, тем больше сила и частота сердечных сокращений.

Закон все или ничего – сердце реагирует только на пороговое раздражение и отвечает по максимуму

Главную роль в регуляции деятельности сердца играют нервные и гуморальные влияния.

Нервная регуляция деятельности сердца осуществляется эфферентными ветвями блуждающего и симпатического нервов. Различные волокна этих нервов по-разному влияют на работу сердца. Раздражение одних волокон блуждающего нерва вызывает урежение сердцебиений, а раздражение других — их ослабление. Некоторые волокна симпатического нерва учащают ритм сердечных сокращений, другие — усиливают их.

Импульсы с нервных окончаний передаются на сердце посредством медиаторов. Для блуждающих нервов медиатором служит ацетилхолин, для симпатических — норадреналин.

Центры блуждающих нервов постоянно находятся в состоянии некоторого возбуждения, степень, которого изменяется под влиянием центростремительных импульсов от разных рецепторов тела. Тонус центров симпатических нервов выражен слабее. Возбуждение в этих центрах усиливается при эмоциях и мышечной деятельности, что ведет к учащению и усилению сердечных сокращений.

В рефлекторной регуляции работы сердца участвуют центры продолговатого и спинного мозга, гипоталамуса, мозжечка и коры больших полушарий, а также рецепторы некоторых сенсорных систем (зрительной, слуховой, двигательной, вестибулярной). Большое значение в регуляции сердца и кровеносных сосудов имеют импульсы от сосудистых рецепторов, расположенных в рефлексогенных зонах. Такие же рецепторы имеются и в самом сердце. Часть этих рецепторов воспринимает изменения давления в сосудах (барорецепторы). Хеморецепторы возбуждаются в результате сдвигов химического состава плазмы крови при увеличении в ней рСО2 или снижения рО2.

На деятельность сердечно-сосудистой системы влияют импульсы от рецепторов легких, кишечника, раздражение тепловых и болевых рецепторов, эмоциональных и условнорефлекторных воздействий. В частности, при повышении температуры тела на 1 °С частота сердцебиений возрастает на 10 ударов в 1 минуту.

Гуморальная регуляция деятельности сердца осуществляется путем воздействия на него химических веществ, находящихся в крови. Гуморальные влияния на сердце могут оказываться гормонами, продуктами распада углеводов и белков, изменениями рН, ионов калия и кальция. Адреналин, норадреналин и тироксин усиливают работу сердца, ацетилхолин — ослабляет. Снижение рН, увеличение уровня мочевины и молочной кислоты повышают сердечную деятельность. При избытке ионов калия урежается ритм и уменьшается сила сокращений сердца, его возбудимость и проводимость. Высокая концентрация калия приводит к расслалению миокарда и остановке сердца в диастоле. Ионы кальция учащают ритм и усиливают сердечные сокращения, повышают возбудимость и проводимость миокарда; при избытке кальция сердце останавливается в систоле.

0051 ДВИЖЕНИЕ КРОВИ ПО СОСУДАМ (ГЕМОДИНАМИКА)

Движение крови по сосудам обусловлено градиентом давления в артериях и венах. Оно подчинено законам гидродинамики и определяется двумя силами: давлением, влияющим на движение крови, и сопротивлением, которое она испытывает при трении о стенки сосудов.

Силой, создающей давление в сосудистой системе, является работа сердца, его сократительная способность. Сопротивление кровотоку зависит прежде всего от диаметра сосудов, их длины и тонуса, а также от от объема циркулирующей крови и ее вязкости. При уменьшении диаметра сосуда в два раза сопротивление в нем возрастает в 16 раз. Сопротивление кровотоку в артериолахв 106 раз превышает сопротивление ему в аорте.

Различают объемную и линейную скорости движения крови.

Объемной скоростью кровотока называют количество крови, которое протекает за 1 минуту через всю кровеносную систему. Эта величина соответствует МОК и измеряется в миллилитрах в 1 мин. Как общая, так и местная объемные скорости кровотока непостоянны и существенно меняются при физических нагрузках.

Линейной скоростью кровотока называют скорость движения частиц крови вдоль сосудов. Эта величина, измеренная в сантиметрах в 1 с, прямо пропорциональна объемной скорости кровотока и обратно пропорциональна площади сечения кровеносного русла. Линейная скорость неодинакова: она больше в центре сосуда и меньше около его стенок, выше в аорте и крупных артериях и ниже в венах. Самая низкая скорость кровотока в капиллярах, общая площадь сечения которых в 600-800 раз больше площади сечения аорты. О средней линейной скорости кровотока можно судить по времени полного кругооборота крови. В состоянии покоя оно составляет 21 -23 с, при тяжелой работе снижается до 8-10 с.

При каждом сокращении сердца кровь выбрасывается в артерии под большим давлением. Вследствие сопротивления кровеносных сосудов ее передвижению в них создается давление, которое называют кровяным давлением. Величина его неодинакова в разных отделах сосудистого русла. Наибольшее давление в аорте и крупных артериях. В мелких артериях, артериолах, капиллярах и венах оно постепенно снижается; в полых венах давление крови меньше атмосферного.

На протяжении сердечного цикла давление в артериях неодинаково: оно выше в момент систолы и ниже при диастоле, Наибольшее давление называют систолическим (максимальным), наименьшее — диастолическим (минимальным). Колебания кровяного давления при систоле и диастоле сердца происходят лишь в аорте и артериях; в артериолах и венах давление крови постоянно на всем протяжении сердечного цикла. Среднее артериальное давление представляет собой ту величину давления, которое могло бы обеспечить течение крови в артериях без колебаний давления при систоле и диастоле. Это давление выражает энергию непрерывного течения крови, показатели которого близки к уровню диастолического давления.

Величина артериального давления зависит от сократительной силы миокарда, величины МОК, длины, емкости и тонуса сосудов, вязкости крови. Уровень систолического давления зависит, в первую очередь, от силы сокращения миокарда. Отток крови из артерий связан с сопротивлением в периферических сосудах, их тонусом, что в существенной мере определяет уровень диастолического давления. Таким образом, давление в артериях будет тем выше, чем сильнее сокращения сердца и чем больше периферическое сопротивление (тонус сосудов).

Артериальное давление у человека может быть измерено прямым и косвенным способами. В первом случае в артерию вводится полая игла, соединенная с манометром. Это наиболее точный способ, однако он мало пригоден для практических целей. Второй, так называемый манжеточный способ, был предложен Рива-Роччив 1896 г. и основан на определении величины давления, необходимой для полного сжатия артерии манжетой и прекращения в ней тока крови. Этим методом можно определить лишь величину систолического давления. Для определения систолического и диастолического давления применяется звуковой или аускультативный способ. При этом способе также используется манжета и манометр, о величине давления судят по возникновению и исчезновению звуков, выслушиваемых на артерии ниже места наложения манжеты (звуки возникают лишь тогда, когда кровь течет по сжатой артерии). В последние годы для измерения артериального давления у человека на расстоянии используются радиотелеметрические приборы.

В состоянии покоя у взрослых здоровых людей систолическое давление в плечевой артерии составляет 110-120 ммрт. ст., диас-толическое — 60-ЗОммрт. ст. Артериальное давление до 140/90 мм рт. ст. является нормотоническим, выше этих величин — гипертоническим, а ниже 100/60 мм рт. ст. — гипотоническим. Разница между систолическим и диастолическим давлениями называется пульсовым давлением или пульсовой амплитудой; ее величина в среднем равна 40-50 мм рт. ст.

В капиллярах происходит обмен веществ между кровью и тканями, поэтому количество капилляров в организме человека очень велико. Оно больше там, где интенсивнее метаболизм. Кровяное давление в разных капиллярах колеблется от 8 до 40 мм рт. ст.; скорость кровотока в них небольшая — 0.3-0.5 мм с"1.

В начале венозной системы давление крови равно 20-30 мм рт. ст., в венах конечностей — 5-10 мм рт. ст. и в полых венах оно колеблется около 0. Стенки вен тоньше, и их растяжимость в 100-200раз больше, чем у артерий. Поэтому емкость венозного сосудистого русла может возрастать в 5-6 раз даже при незначительном повышении давления в крупных венах. В этой связи вены называют емкостными сосудами в отличие от артерий, которые оказывают большое сопротивление току крови и называются резистивными сосудами (сосудами сопротивления). Линейная скорость кровотока даже в крупных венах меньше, чем в артериях. Например, в полых венах скорость движения крови почти в два раза ниже, чем в аорте. Участие дыхательных мышц в венозном кровообращении образно называется дыхательным насосом, скелетных мышц— мышечным насосом. При динамической работе мышц движению крови в венах способствуют оба этих фактора. При статических усилиях приток крови к сердцу снижается, что приводит к уменьшению сердечного выброса, падению артериального давления и ухудшению кровоснабжения головного мозга.

В легких имеется двойное кровоснабжение. Газообмен обеспечивается сосудами малого круга кровообращения, т. е. легочными артериями, капиллярами и венами. Питание легочной ткани осуществляется группой артерий большого круга — бронхиальными артериями, отходящими от аорты.

Сопротивление току крови в сосудах малого круга кровообращения примерно в 10раз меньше, чем в сосудах большого круга. Это в значительной мере обусловлено широким диаметром легочных артериол. В связи с пониженным сопротивлением правый желудочек сердца работает с небольшой нагрузкой и развивает давление в несколько раз меньшее, чем левый. Систолическое давление в легочной артерии составляет 25-30 мм рт. ст., диастолическое — 5-10 мм рт. ст.

Капиллярная сеть малого круга кровообращения имеет поверхность около 140м2. Одномоментно в легочных капиллярах находится от 60 до 90 мл крови Эритроциты проходят через легкие за 3-5 с, находясь в легочных капиллярах (где происходит газообмен) в течение 0.7 с, при физической работе — 0.3с. Большое количество сосудов в легких приводит к тому, что кровоток здесь в 100 раз выше, чем в других тканях организма.

Кровоснабжение сердца осуществляется коронарными, или венечными, сосудами. В сосудах сердца кровоток происходит преимущественно во время диастолы. В период систолы желудочков сокращение миокарда настолько сдавливает расположенные в нем артерии, что кровоток в них резко снижается.

В покое через коронарные сосуды протекает в 1 минуту 200-250 мл крови, что составляет около 5% МОК. Во время физической работы коронарный кровоток может возрасти до 3-4 л -мин"1. Кровоснабжение миокрада в 10-15 раз интенсивнее, чем тканей других органов. Через левую венечную артерию осуществляется 85% коронарного крвотока, черз правую—15%. Венечные артерии являются концевыми и имеют мало анастомозов, поэтому их резкий спазм или закупорка приводят к тяжелым последствиям.

Различные факторы влияют на свойства сердечной мышцы (возбудимость, проводимость, сократимость, автоматизм, тонус) и, следовательно, на основные параметры деятельности сердца - частоту и силу сокращений.

Влияния на частоту сердечных сокращений называются хронотропными, на силу сокращений - инотропными, на возбудимость - батмотропными, на проводимость - дромотропными, на тонус сердечной мышцы - тонотропными влияниями. Влияния, вызывающие увеличение этих показателей называются положительными, а уменьшение - отрицательными.

Регуляция деятельности сердца. Принято различать несколько форм регуляции деятельности сердца: авторегуляцию (представленную двумя ее видами - миогенным и нейрогенным) и экстракардиальную регуляцию (нервную, гуморальную, рефлекторную).

Миогенная авторегуляция включает в себя гетерометрический и гомеометрический механизмы. Гетерометрический механизм опосредован внутриклеточными взаимодействиями и связан с изменением взаиморасположения актиновых и миозиновых нитей в миофибриллах кардиомиоцитов при растяжении миокарда кровью, поступающей в полости сердца. Растяжение миокардиоцитов приводит к увеличению количества миозиновых мостиков, способных соединить миозиновые и актиновые нити во время сокращения. Чем более растянут кардиомиоцит, тем на большую величину он может укоротиться при сокращении, и тем более сильным будет это сокращение. Этот вид регуляции был установлен на сердечно-легочном препарате и сформулирован в виде "закона сердца" или закона Франка-Старлинга. Согласно этому, закону, чем больше миокард растянут во время диастолы, тем больше сила последующего сокращения (систолы). Предсистолическое растяжение миокарда обеспечивается дополнительным объемом крови, нагнетаемым в желудочки во время систолы предсердии. При утомлении сердечной мышцы и длительной нагрузки (например, при гипертонии) этот закон проявляется только в том случае, если сердечная мышца растягивается значительно больше, чем обычно. Однако, величина минутного объема сердца и в этих состояниях длительное время удерживается на нормальном уровне. При дальнейшем нарастании утомления или нагрузки этот показатель уменьшается.

Гомеометрическая авторегуляция сердца связана с определенными межклеточными отношениями и не зависит от пред систолического его растяжения. Большую роль в гомеометрической регуляции играют вставочные диски - нексусы, через которые миокардиоциты обмениваются ионами и информауией. Реализуется данная форма регуляции в виде "эффекта Анрепа" - увеличение силы сердечного сокращения при возрастании сопротивления в магистральных сосудах.



Другим проявлением гомеометрической регуляции является так называемая ритмоинотропная зависимость: изменение силы сердечных сокращений при изменении частоты. Это явление обусловлено изменением длительности потенциала действия миокардиоцитов и, следовательно, изменением количества экстрацеллюлярного кальция, входящего в миокардиоцит при развитии возбуждения.

Нейрогенная авторегуляция сердца в своей основе имеет периферические внутрисердечные рефлексы. Рефлексогенные зоны (скопление рецепторов, с которых начинаются определенные рефлексы) сердца условно делятся на контролирующие "вход" (приток крови к сердцу), "выход" (отток крови от сердца) и кровоснабжение самой сердечной мышцы (расположены в устьях коронарных сосудов). При любом изменении параметров этих процессов возникают местные рефлексы, направленные на ликвидацию отклонений гемодинамики. Например, при увеличении венозного притока и увеличении давления в устьях полых вен и в правом предсердии возникает рефлекс Бейнбриджа заключающийся в увеличении частоты сокращений сердца.

Экстракардиальная регуляция. Гуморальная регуляция. Сердечная мышца обладает высокой чувствительностью к составу крови, протекающей через ее сосуды и полости сердца. К гуморальным факторам, которые оказывают влияние на функциональное состояние сердца, относятся:

Гормоны (адреналин, тироксин и др.);

Ионы (калия, кальция, натрия и др.);

Продукты метаболизма (молочная и угольная кислоты и др.);

Температура крови.

Адреналин оказывает на сердечную мышцу положительный хроно- и инотропный эффект. Его взаимодействие с бета-адренорецепторами кардиомиоцитов приводит к активации внутриклеточного фермента аденилатциклазы, которая ускоряет образование циклического АМФ, необходимого для превращения неактивной фосфарилазы в активную. Последняя обеспечивает снабжение миокарда энергией путем расщепления внутриклеточного гликогена с образованием глюкозы. Такое же влияние на сердце (и тем же путем) оказывает глюкагон.



Гормон щитовидной железы - тироксин - обладает ярко выраженным положительным хронотропным эффектом и повышает чувствительность сердца к симпатическим воздействиям.

Положительный инотропный эффект на сердце оказывают кортикостероиды, ангиотензин, серотонин.

Избыток ионов калия оказывает на сердечную деятельность отрицательный ино-, хроно-, батмо- и дромотропный эффекты. Повышение концентрации калия в наружной среде приводит к снижению величины потенциала покоя (вследствие уменьшения градиента концентрации калия), возбудимости, проводимости и длительности ПД.

При значительном увеличении концентрации калия сино-атриальный узел перестает функционировать как водитель ритма, и происходит остановка сердца в фазе диастолы. Снижение концентрации ионов калия приводит к повышению возбудимости центров автоматии, что может сопровождаться, прежде всего, нарушениями ритма сердечных сокращений.

Умеренный избыток ионов кальция в крови оказывает положительный инотропный эффект. Это связано с тем, что ионы кальция активируют фосфарилазу и обеспечивают сопряжение возбуждения и сокращения. При значительном избытке ионов кальция происходит остановка сердца в фазе систолы, т.к. кальциевый насос миокардиоцитов не успевает выкачивать избыток ионов кальция из межфибриллярного ретикулума и разобщение нитей актина, и миозина, следовательно, и расслабления не происходит.

Нервная регуляция. Нервные влияния на деятельность сердца осуществляются импульсами, которые поступают к нему по блуждающему и симпатическим нервам. Тела первых нейронов, образующих блуждающие нервы, расположены в продолговатом мозге. Их аксоны, образующие преганглионарные волокна, идут в интрамуральные ганглии, расположенные в стенке сердца. Здесь находятся вторые нейроны, аксоны которых образуют постганглионарные волокна и иннервируют сино-атриальный узел, мышечные волокна предсердий, атрио-вентрикулярный узел и начальную часть проводящей системы желудочков.

Первые нейроны, образующие симпатические нервы, иннервирующие сердце, расположены в боковых рогах пяти верхних грудных Сегментов спинного мозга. Их аксоны (преганглионарные волокна) заканчиваются в шейных и верхних грудных симпатических узлах, в которых находятся вторые нейроны, отростки которых (постганглионарные волокна) идут к сердцу. Большая их часть отходит от звездчатого ганглия. Симпатическая иннервация, в отличие от парасимпатической, более равномерно распределена по всем отделам сердца, включая миокард желудочков. Братьями Э. и Г. Вебер впервые было показано, что раздражение блуждающих нервов оказывает на деятельность сердца отрицатель-вый ино-, хроно-, батмо- и дромотропный эффекты. Микроэлектродные отведения потенциалов от мышечных волокон предсердий показали, что при сильном раздражении блуждающего нерва происходит увеличение мембранного потенциала (гиперполяризация), которое обусловлено повышением проницаемости мембраны для ионов калия, что препятствует развитию деполяризации. Гиперполяризация пейсмекерных клеток сино-атриального узла снижает их возбудимость, что приводит вначале к запаздыванию развития МДД в сино-атриальном узле, а затем и полному ее устранению, что приводит сначала к замедлению сердечного ритма, а затем к остановке сердца. Инотропный эффект связан с укорочением ПД миокарда предсердий и желудочков. Дромотропный - связан с уменьшением атрио-вентрикулярной проводимости.

Однако, слабое раздражение блуждающего нерва может вызывать симпатический эффект. Это объясняется тем, что в сердечном интрамуральном ганглии, кроме холинэргических эфферентных нейронов, находятся адренэргические, которые, обладая более высокой возбудимостью, формируют симпатические эффекты.

Вместе с тем, при одной и той же силе раздражения эффект блуждающего нерва может иногда сопровождаться противоположными реакциями. Это связано со степенью наполнения кровью полостей сердца и сердечных сосудов, т. е. с активностью собственного (внутрисердечного) рефлекторного аппарата. При значительном наполнении и переполнении сосудов и полостей сердца, раздражение блуждающего нерва сопровождается тормозными (отрицательными) реакциями, а при слабом наполнении сердца и, следовательно, слабом возбуждении механорецепторов внутрисердечной нервной сети - стимулирующими (положительными).

Исследованиями И.Ф. Циона впервые было показано, что раздражение симпатических нервов оказывает на сердечную деятельность положительные хроно-, ино-, батмо- и тромотропныи эффекты. Среди симпатических нервов, идущих к сердцу, И.П. Павлов обнаружил нервные веточки, раздражение которых вызывает только положительный инотропный эффект. Они были названы усиливающим нервом сердца, который действует на сердце путем стимуляции в нем обмена веществ, т.е. трофики.

Раздражение симпатических нервов вызывает:

Повышение проницаемости мембраны для ионов кальция, что приводит к повышению степени сопряжения возбуждения и сокращения миокарда;

Ускорение спонтанной деполяризации клеток водителей ритма сердца, что приводит к учащению сердечных сокращений;

Ускорение проведения возбуждения в атрио-вентрикулярном узле, что уменьшает интервал между возбуждением предсердий и желудочков.

Удлинение ПД и увеличение его амплитуды, в результате чего больше экзогенного кальция поступает в саркоплазму и сила мышечного сокращения возрастает.

При раздражении ваго-симпатического ствола раньше наступает парасимпатический эффект, а затем - симпатический. Это связано с тем, что постганглионарные волокна блуждающего нерва (от интрамуральных ганглиев) очень короткие и обладают достаточно высокой скоростью проведения возбуждения. У симпатического нерва постганглионарные волокна длинные, скорость проведения возбуждения меньше, поэтому эффект от его раздражения запаздывает. Однако, действие блуждающего нерва кратковременное, т. к. его медиатор - ацетилхолин - быстро разрушается ферментом холинэстеразой. Медиатор симпатических волокон - норадреналин - разрушается значительно медленнее, чем ацетилхолин, и он действует дольше, поэтому после прекращения раздражения симпатических нервов некоторое время сохраняется учащение и усиление сердечной деятельности.

Из сравнения влияний симпатического и парасимпатического нервов на деятельность сердца видно, что они являются нервами-антагонистами, т, е. оказывают противоположные эффекты. Однако, при определенных условиях раздражения парасимпатического нерва можно получить симпатикоподобный эффект, а симпатического - вагусный. В условиях деятельности целостного организма можно говорить только об их относительном антагонизме, так как они совместно обеспечивают наилучшее, адекватное функционирование сердца в различных функциональных системах. Следовательно, их влияния не антагонистические, а скорее содружественные, т. е. они функционируют как нервы-синергисты.

Рефлекторные влияния на деятельность сердца могут возникать при раздражении различных интеро- и экстерорецепторов. Но особое значение в изменении деятельности сердца имеют рефлексы, возникающие с рецепторов, расположенных в сосудистой системе, получивших название сосудистых рефлексогенных зон. Они расположены в дуге аорты, в каротидном синусе (область разветвления общей сонной артерии) и в других участках сосудистой системы. В этих рефлексогенных зонах находится множество механо, баро-, хеморецеторов, которые реагируют на различные изменения гемодинамики и состав крови.

Рефлекторные влияния с механорецепторов каротидного синуса и дуги аорты особенно важны при повышении кровяного давления. Последнее приводит к возбуждению этих рецепторов и, как следствие, повышению тонуса блуждающего нерва, в результате чего возникает торможение деятельности сердца (отрицательный хроно- и инотропный эффекты). При этом сердце меньше перекачивает крови из венозной системы в артериальную и давление в аорте и крупных сосудах снижается.

Интенсивное раздражение интерорецепторов может рефлекторно привести к изменению деятельности сердца, вызывая либо учащение и усиление, либо ослабление и урежение сердечных сокращений. Так, например, раздражение рецепторов, брюшины (поколачивание пинцетом но животу лягушки) может привести к урежению сердечной деятельности и даже к его остановке (рефлекс Гольца). У человека кратковременная остановка сердечной деятельности также может наступить при ударе в область живота. При этом афферентные импульсы по чревным нервам достигают спинного мозга, а затем ядер блуждающих нервов, от которых по эфферентным волокнам вагуса импульсы направляются к сердцу, вызывая его остановку. К вагусным рефлексам относится и глазо-сердечный рефлекс (рефлекс Данини-Ашнера) - урежение сердечной деятельности при легком надавливании на глазные яблоки.

Корковая регуляция деятельности сердца . Изменение сердечной деятельности могут вызвать различные эмоции или упоминание о факторах, их вызывающих, что свидетельствует об участии коры больших полушарий мозга в регуляции деятельности сердца.

Наиболее убедительные данные о наличии корковой регуляции сердечной деятельности получены методом условных рефлексов. Условно-рефлекторные реакции лежат в основе предстартовых состояний спортсменов, сопровождающихся такими же изменениями деятельности сердца, как и во время соревнований.

Кора больших полушарий головного мозга обеспечивает приспособительные реакции организма не только к настоящим, но и к будущим событиям. Условно-рефлекторные сигналы, предвещающие наступление этих событий, могут вызвать изменения сердечной деятельности и всей сердечно-сосудистой системы в той мере, в какой это необходимо, чтобы обеспечить предстоящую деятельность организма.

Сосудистая система

Функциональная организация сосудистой системы. Сосуды большого и малого кругов кровообращения, в зависимости от выполняемой ими функции, можно разделить на несколько групп:

Амортизирующие сосуды (сосуды эластического типа);

Резистивные сосуды (сосуды сопротивления);

Сосуды-сфинктеры;

Обменные сосуды;

Емкостные сосуды;

Шунтирующие сосуды (артерио-венозные анастомозы).

Амортизирующие сосуды. К этим сосудам относятся артерии эластического типа с большим содержанием в сосудистой стенке эластических волокон: аорта, легочная артерия, крупные артерия. Хорошо выраженные эластические свойства таких сосудов, в частности, аорты обусловливают амортизирующий эффект (эффект "компрессионной камеры"), который выражается в амортизации (сглаживании) резкого подъема артериального давления во время систолы. Во время диастолы желудочков, после закрытия аортальных клапанов, под влиянием эластических сил аорта и крупные артерии восстанавливают свой просвет и проталкивают находящуюся в них кровь, обеспечивая, тем самым, непрерывный ток крови.

Резистивные сосуды (сосуды сопротивления). К резистивным сосудам относятся средние и мелкие артерии, артериолы и прекапиллярные сфинктеры. Эти прекапиллярные сосуды, имеющие малый просвет (диаметр) и хорошо развитую гладкую мускулатуруих стенок, оказывают наибольшее сопротивление кровотоку. Это особенно относится к артериолам, которые называют "кранами" артериальной системы. Сосудам сопротивления свойственна высокая степень внутреннего (базального) тонуса, который постоянно изменяется под влиянием местных физических и химических факторов, а также под влиянием симпатических нервов. Изменение степени сокращения мышечных волокон этих сосудов приводит к изменению их диаметра и, следовательно, общей площади поперечного сечения, а значит и изменения объемной скорости кровотока. Прекапиллярные сосуды сопротивления, таким образом влияют на отток крови из амортизирующих сосудов. Особое место среди сосудов сопротивления занимают прекапиллярные сфинктеры (сосуды-сфинктеры) - это конечные отделы прекапиллярных артериол, в стенке которых содержится больше, чем в артериоле, мышечных элементов. От функционального состояния прекапиллярных сфинктеров зависит ток крови через капилляры. Кровоток может быть настолько перекрыт, что через капилляры не проходят форменные элементы, движется только плазма ("плазменные капилляры"). Если кровоток через капилляр полностью перекрывается, то капилляр перестает функционировать, он выключается из кровообращения. Таким образом, прекапиллярные сфинктеры, изменяя число функционирующих капилляров, изменяют площадь обменной поверхности. Функциональное состояние гладкомышечных клеток прекапиллярных сфинктеров находятся под контролем механизмов внутренней миогенной регуляции и непрерывно изменяется под влиянием местных сосудорасширяющих метаболитов.

Обменные сосуды. К этим сосудам относятся капилляры, т. к. Именно в них осуществляются обменные процессы между кровью и межклеточной жидкостью (транссосудистый обмен). Интенсивность транссосудистого обмена зависит от скорости кровотока через эти сосуды и давления, под которым находится протекающая кровь. Капилляры не способны к активному изменению своего диаметра. Он изменяется вслед за колебаниями давления в пре- и посткапиллярных резистивных сосудах, т. е. меняется в зависимости от состояния прекапиллярных сфинктеров и посткапиллярных венул, вен. Емкостные сосуды. Они представлены венами, которые благодаря своей высокой растяжимости способны вмещать большие объемы крови, играя, таким образом, роль депо крови. Сопротивление Капиллярному кровотоку со стороны емкостных сосудов влияет на его скорость и давление, а, следовательно, на интенсивность транссосудистого обмена.

Артерио-венозные анастомозы (шунтирующие сосуды) - это сосуды, соединяющие артериальную и венозную части сосудистого русла, минуя капилляры. Различают два типа артерио-венозных анастомозов:

Соединяющие каналы замыкательного типа;

Гломерулярный или клубочковый тип.

При открытых артерио-венозных анастомозах кровоток через капилляры либо резко уменьшается, либо полностью прекращается. Таким образом, с помощью шунтирующих сосудов регулируется кровоток через обменные сосуды. При закрытии прекапиллярных сфинктеров через артерио-венозные анастомозы сбрасывается кровь из артериол в венулы. Состояние шунтов отражается и на общем кровотоке. При открытии анастомозов увеличивается давление в венозном русле, что увеличивает венозный приток к сердцу и, следовательно, величину сердечного выброса.

Функции артерио-венозных анастомозов:

Регулируют ток крови через орган;

Участвуют в регуляции общего и местного давления крови;

Регулируют кровенаполнение органа;

Стимулируют венозный кровоток;

Обеспечивают артериолизацию венозной крови;

Обеспечивают мобилизацию депонированной крови;

Регулируют ток межтканевой жидкости в венозном русле;

Влияют на общий кровоток через изменение местного тока жидкости и крови;

Участвуют в терморегуляции.

Микроциркуляция. Микроциркуляторной системой называется совокупность кровеносных сосудов, диаметр которых не превышает 2 мм. Процессы движения крови по сосудам этой системы называются микроциркуляцией. Микроциркуляция включает процессы, связанные с внутриорганным кровообращением, обеспечивающим тканевой метаболизм, перераспределение и депонирование крови.

В состав микроциркуляторной системы входят: терминальные артериолы и метартериолы, прекапиллярный сфинктер, собственно капилляр, посткапиллярная венула, венула, мелкие вены, артерио-венозные анастомозы.

Каждый компонент микроциркуляторной единицы выполняет определенные функции в процессе микроциркуляции. Так терминальные артериолы, метартериолы и прекапиллярный сфинктер по отношению к капиллярам выполняют транспортную функцию, они приносят кровь к капиллярам и называются приносящими сосудами. Кроме того, они, меняя величину просвета за счет сокращения или расслабления гладкомышечных элементов, регулируют скорость кровотока: увеличение сопротивления току крови (при уменьшении просвета сосуда) уменьшает скорость движения крови, уменьшение сопротивления току крови (при увеличении просвета сосуда) - увеличивает скорость кровотока. Вследствие этого меняется и давление крови в капиллярах.

Капилляры и посткапиллярные венулы называются обменными сосудами, так как в них осуществляются обменные процессы между кровью и интерстициальной жидкостью.

Венулы и вены - отводящие (емкостные) сосуды, они собирают и отводят кровь, протекающую через обменные сосуды. Сопротивление капиллярному кровотоку со стороны отводящих сосудов влияет на его скорость, величину давления в капиллярах и, следовательно, на интенсивность транссосудистого обмена.

Артерио-венозные анастомозы - с их помощью регулируется кровоток через обменные сосуды. При закрытых анастомозах кровоток через обменные сосуды увеличивается, в результате увеличения давления в артериолах и уменьшения в венуле. При открытых анастомозах кровоток уменьшается в результате уменьшения давления в артериоле и увеличения в венуле. Это сказывается на интенсивности транскапиллярного обмена.

Центральным звеном микроциркуляторной системы являются капилляры. Капилляры являются самыми тонкими и многочисленными сосудами, которые располагаются в межклеточных пространствах. Стенка капилляра состоит из трех слоев:

Слой эндотелиальных клеток;

Базальный слой, состоящий из перицитов и сплетенных между собой фибрилл;

Адвентициальный слой.

Ультраструктура стенки капилляра в различных органах имеет свою специфику (соотношение слоев между собой, характер эндотелиальных клеток и т. д.), что лежит в основе общей классификации капилляров. Выделяют три типа капилляров.

Первый тип - сплошные капилляры (соматические). Стенка капилляров этого типа образована сплошным слоем эвдотелиальных клеток, в мембране которых имеются мельчайшие поры. Стенка таких капилляров мало проницаема для крупных молекул белка, но легко пропускает воду и растворенные в ней минеральные вещества. Этот тип капилляров характерен для скелетной и гладкой мускулатуры, кожи, легких, центральной нервной системы, жировой и соединительной ткани.

Второй тип - окончатые (висцеральные). В стенке капилляров этого типа имеются "окна" (фенестры), которые могут занимать до 30% площади поверхности клетки. Такие капилляры характерны для органов, которые секретируют и всасывают большой количество воды и растворенных в ней веществ, или участвуют в быстром транспорте макромолекул: клубочки почки, слизистая оболочка кишечника, эндокринные железы.

Третий тип - межклеточно-окончатые, несплошные капилляры (синусоидные). Капилляры этого типа имеют прерывистую эндотелиальную оболочку, клетки эндотелия расположены далеко друг от друга, образуя большие межклеточные пространства. Через стенку таких капилляров легко проходят макромолекулы и форменные элементы крови. Такие капилляры встречаются в костном мозге, Печени,селезенке.

Механизм транскапиллярного обмена. Транскапиллярный (транссосудистый) обмен может осуществляться за счет пассивного транспорта (диффузия, фильтрация, абсорбция), за счет активного транспорта (работа транспортных систем) и микропиноцитоза.

Фильтрационно-абсорбционный механизм обменамежду кровью и интерстициальной жидкостью. Этот механизм обеспечивается за счет действия следующих сил. В артериальном отделе капилляра большого круга кровообращения гидростатическое давление крови равно 40 мм рт. ст. Сила этого давления способствует выходу (фильтрации) воды и растворенных в ней веществ из сосуда в межклеточную жидкость. Онкотическое давление плазмы крови, равное 30 мм рт. ст., препятствует фильтрации, т. к. белки удерживают воду в сосудистом русле. Онкотическое давление межклеточной жидкости, равное 10 мм. рт. ст., способствует фильтрации - выходу воды из сосуда. Таким образом, результирующая всех сил, действующих в артериальном отделе капилляра, равна 20 мм. рт. ст. (40+10-30=20 мм рт. ст.) и направлена из капилляра. В венозном отделе капилляра (в посткапиллярной венуле) фильтрация будет осуществляться следующими силами: гидростатическое давление крови, равное 10 мм рт. ст., онкотическое давление плазмы крови, равное 30 мм рт. ст., онкотическое давление межклеточной жидкости, равное 10 мм рт. ст. Результирующая всех сил будет равна 10 мм рт. ст. (-10+30-10=10) и направлена в капилляр. Следовательно в венозном отделе капилляра происходит абсорбция воды и растворенных в ней веществ. В артериальном отделе капилляра жидкость выходит под воздействием силы в 2 раза большей, чем она входит в капилляр в его венозном отделе. Возникающий, таким образом, избыток жидкости из интерстициальных пространств оттекает через лимфатические капиляры в лимфатическую систму.

В капиллярах малого круга кровообращения транскапиллярный обмен осуществляется за счет действия следующих сил: гидростатическое давление крови в капиллярах, равное 20 мм рт. ст., онкотическое давление плазмы крови; равное 30 мм рт. ст., онкотическое давление межклеточной жидкости, равное 10 мм рт. ст. Результирующая всех сил будет равна нулю. Следовательно, в капиллярах малого круга кровообращения обмена жидкости не происходит.

Диффузионный механизм транскапиллярного обмена . Этот вид обмена осуществляется в результате разности концентраций веществ в капилляре и межклеточной жидкости. Это обеспечивает движение веществ по концентрационному градиенту. Такое движение возможно потому, что размеры молекул этих веществ меньше пор мембраны и межклеточных щелей. Жирорастворимые вещества проходят мембрану независимо от величины пор и щелей, растворяясь в ее липидном слое (например, эфиры, углекислый газ и др.).

Активный механизм обмена - осуществляется эндотелиальными клетками капилляров, которые при помощи транспортных систем их мембран переносят молекулярные вещества (гормоны, белки, биологически активные вещества) и ионы.

Пиноцитозный механизм обеспечивает транспорт через стенку капилляра крупных молекул и фрагментов частей клеток опосредованно через процессы эндо- и экзопиноцитоза.

Регуляция местного кровообращения. В области микроциркуляторного русла основной (базальный или периферический) тонус, который имеет миогенную природу, характерен, прежде всего, для артериол и прекапиллярных сфинктеров. Базальный тонус контролируется местными регуляторными механизмами, которые обеспечивают ауторегуляцию микроциркуляторного (органного) кровообращения, реализуемую за счет активности гладких мышц самих сосудов. Это обеспечивает относительную автономность органного (микроциркуляторного) кровообращения, т. к. местные регуляторные механизмы мало зависят от общей нейро-гуморальной регуляции.

Растяжение сосуда при возрастании внутрисосудистого давления приводит к усилению его базального тонуса, уменьшению просвета сосуда и уменьшению давления крови и, следовательно, кровотока в участке русла, расположенного за ним по ходу тока крови.

В этих условиях (уменьшения кровоснабжения тканей) продукты метаболизма (угольная и молочная кислоты, АМФ, ионы калия), накапливаясь в межклеточной среде, уменьшают сократительную способность мышечных волокон сосудистой стенки, что отражается в снижении тонуса. Вследствие этого увеличивается просвет сосуда, возрастает кровоток, продукты метаболизма удаляются, сосудистый тонус повышается, и кровоток снова уменьшается.

Местная (органная) регуляция сосудистого тонуса, а, следовательно, и кровотока, более выражена по сравнению с общими нейрогуморальными механизмами в условиях относительного покоя организма. В условиях же его выраженной деятельности местная регуляция играет вспомогательную роль, а ведущая принадлежит нервной и гуморальной регуляции.

Нервная регуляция микроциркуляторной системы. Эфферентные нервные волокна заканчиваются на гладких мышечных волокнах артериол и прекапиллярных сфинктеров, а в капиллярах - на перицитах (клетках Руже), которые передают возбуждение на эндотелиальные клетки. В ответ на это эндотелиальные клетки набухают и закрывают капилляр или уплощаются и открывают его. Набухание эндотелиальных клеток приводит к закрытию просвета капилляра в артериальном его отделе, в венозном отделе происходит только его сужение. Набухание (округление) наступает в результате накопления жидкости в клетках под влиянием нервного возбуждения, поступающего к эндотелиальной клетке через перициты. Уплощение эндотелиальной клетки происходит в результате потери ею жидкости также под влиянием перицитов. Кроме того, существует мнение, что перицит - сократительная клетка, способная, подобно мышечной, активно менять просвет капилляра.

Морфологические и функциональные особенности капиллярного кровообращения. Особенности капилляров большого круга кровообращения.

Различные ткани организма неодинаково насыщены капиллярами: минимально-насыщена костная ткань, максимально - мозг, почки, сердце, железы внутренней секреции.

Капилляры большого круга имеют большую общую поверхность.

Капилляры близко расположены к клеткам (не далее 50 мкм), а в тканях с высоким уровнем метаболизма (печень) - еще ближе (не далее 30 мкм).

Они оказывают высокое сопротивление току крови.

Линейная скорость кровотока в них низкая (0,3-0,5 мм/с).

Относительно большой перепад давления между артериальной и венозной частями капилляра.

Как правило, проницаемость стенки капилляра высокая.

В обычных условиях работает 1/3 всех капилляров, остальные 2/3 находятся в резерве - закон резервации.

Из работающих капилляров часть функционирует (дежурят), а часть - не функционируют - закон "дежурства" капилляров.

Особенности капилляров малого круга кровообращения:

Капилляры малого круга кровообращения короче и шире по сравнению с капиллярами большого круга.

В этих капиллярах меньше сопротивление току крови, поэтому правый желудочек во время систолы развивает меньшую силу.

Сила правого желудочка создает меньшее давление в легочных артериях и, следовательно, в капиллярах малого круга.

В капиллярах малого круга практически нет перепада давления между артериальной и венозной частями капилляра.

Интенсивность кровообращения зависит от фазы дыхательного цикла: уменьшение на выдохе и увеличение на вдохе.

В капиллярах малого круга не происходит обмена жидкости и растворенных в ней веществ с окружающими тканями.

В легочных капиллярах осуществляется только газообмен.

Особенности коронарного кровоснабжения:

Коронарные артерии отходят от аорты, практически сразу же за полулунными клапанами, поэтому в них очень высокое давление крови, что обеспечивает в сердце интенсивное кровообращение.

Густая капиллярная сеть миокарда: число капилляров приближается к числу мышечных волокон.

Кровоснабжение сердечной мышцы осуществляется в основном во время диастолы, т. к. во время систолы артериолы и капилляры пережимаются сокращающимся миокардом.

Сосуды сердца имеют двойную иннервацию - симпатическую и парасимпатическую, но их влияния на коронарные сосуды противоположны влияниям на другие сосуды: симпатические нервные влияния расширяют коронарные сосуды, а парасимпатические - суживают.

Особенности мозгового кровообращения:

Кровообращение головного мозга более интенсивно, чем в некоторых других органах и тканях организма.

Мозговые артерии имеют хорошо выраженную адренэргическую иннервацию. Это дает возможность мозговым артериям изменять свой просвет в широких пределах.

Между артериолами и венулами нет артерио-венозных анастомозов.

Количество капилляров зависит от интенсивности метаболизма, поэтому в сером веществе капилляров значительно больше, чем в белом.

Капилляры находятся в открытом состоянии.

Кровь, оттекающая от мозга, поступает в вены, которые образуют синусы в твердой мозговой оболочке.

Венозная система мозга, в отличие от других органов и тканей, не выполняет емкостной функции.

Регуляция тонуса сосудов. Регуляция сосудов - это регуляция сосудистого тонуса, который определяет величину их просвета. Просвет сосудов определяется функциональным состоянием их гладкой мускулатуры, а просвет капилляров зависит от состояния клеток эндотелия и гладкой мускулатуры прекапиллярного сфинктера.

Гуморальная регуляция сосудистого тонуса. Эта регуляция осуществляется за счет тех химических веществ, которые циркулируют в кровеносном русле и изменяют ширину просвета сосудов. Все гуморальные факторы, которые оказывают влияние на тонус сосудов, делят на сосудосуживающе (вазоконстрикторы) и сосудорасширяющие (вазодилятаторы).

К сосудосуживающим веществам относятся:

адреналин - гормон мозгового вещества надпочечников, суживает артериолы кожи, органов пищеварения и легких, в низких концентрациях расширяет сосуды мозга, сердца и скелетных мышц, обеспечивая тем самым адекватное перераспределение крови, необходимое для подготовки организма к реагированию в трудной ситуации;

норадреналин - гормон мозгового вещества надпочечников по своему действию близок к адреналину, но его действие более выражено и более продолжительно;

вазопрессин - гормон, образующийся в нейронах супраоптического ядра гипоталамуса, форму в клетках задней доли гипофиза, действует в основном на артериолы;

серотонин - вырабатывается клетками стенки кишки, в некоторых участках головного мозга, а также выделяется при распаде кровяных пластинок; .

ангиотензин-II - образуется из ангиотензина-I под влиянием фермента ренина, вырабатываемого в почках.

К сосудорасширяющим веществам относятся:

гистамин - образуется в стенке желудка, кишечника, других органах, расширяет артериолы;

ацетилхолин - медиатор парасимпатических нервов и симпатических холинергических вазодилятаторов, расширяет артерии и вены;

брадикинин - выделен из экстрактов органов (поджелудочной железы, подчелюстной слюнной железы, легких), образуется при расщеплении одного из глобулинов плазмы крови, расширяет сосуды скелетных мышц, сердца, спинного и головного мозга, слюнных и потовых желез;

простагландины - образуются во многих органах и тканях, оказывают местное сосудорасширяющее действие;

углекислота - расширяет сосуды мозга, кишечника, скелетной мускулатуры;

молочная и пировиноградная кислоты - оказывают местный вазодилятаторный эффект.

Нервная регуляция сосудистого тонуса. Нервная регуляция сосудистого тонуса осуществляется вегетативной нервной системой. Сосудосуживающий эффект преимущественно оказывают волокна симпатического отдела вегетативной (автономной) нервной системы, а сосудорасширяющее - парасимпатические и, частично, симпатические нервы. Сосудосуживающее действие симпатических нервов не

Приспособление деятельности сердца к изменяющимся потребностям организма происходит при помощи ряда регуляторных механизмов.

Изменение уровня физической и эмоциональной нагрузки организма фиксируется различными рецепторами (хеморецепторами, механорецепторами), расположенными в различных органах, а также в стенках кровеносных сосудов. Воспринимаемые ими изменения состояния рефлекторно вызывают ответную реакцию в виде изменения уровня сердечной деятельности.

Быстрое и точное приспособление кровообращения к конкретным потребностям организма достигаются благодаря совершенным и многообразным механизмам регуляции работы сердца. Эти механизмы можно подразделить на три уровня:

ВНУТРИСЕРДЕЧНАЯ РЕГУЛЯЦИЯ (САМОРЕГУЛЯЦИЯ ) связана с тем, что:

сами клетки миокарда способны изменять силу сокращения в зависимости от степени их растяжения накапливать конечные продукты обмена, вызывающие изменение работы сердца.

НЕРВНАЯ РЕГУЛЯЦИЯ осуществляется деятельностью автономной нервной системы - симпатической и парасимпатической биологически активные вещества, изменяющие силу их сокращений и т.д. Нервные импульсы, поступающие к сердцу по ветвям блуждающего нерва (парасимпатические импульсы) уменьшают силу и частоту сокращений. Импульсы, приходящие к сердцу по симпатическим нервам (их центры находятся в шейном отделе спинного мозга), повышают частоту и силу сердечных сокращений.

ГУМОРАЛЬНАЯ РЕГУЛЯЦИЯ связана с изменением деятельности сердца под влиянием биологически активных веществ и некоторых ионов. Например, адреналин, норадреналин (гормоны коры надпочечников), глюкагон (гормон поджелудочной железы), серотонин (вырабатывается железами слизистой кишечника), тироксин (гормон щитовидной железы) и др., а также ионы кальция усиливают сердечную деятельность. Ацетилхолин, ионы калия уменьшают работу сердца.

Сердце - это мощный насос, перекачивающий по кровеносным сосудам около 10 т крови в сутки. Организм испытывает на себе за свою жизнь все невзгоды окружающей среды, и чтобы помочь ему адаптироваться к новым условиям, сердце также должно перестроить свою работу. Это достигается за счет деятельности ряда регуляторных механизмов.

РЕГУЛЯЦИЯ ТОНУСА СОСУДОВ.

Механизмы, регулирующие сосудистый тонус, можно условно разделить: 1) на местные, периферические, регулирующие кровоток в отдельном органе или участке ткани независимо от центральной регуляции,

2) центральные, поддерживающие уровень АД и системное кровообращение.

МЕСТНЫЕ РЕГУЛЯТОРНЫЕ МЕХАНИЗМЫ

Они реализуются уже на уровне эндотелия сосудов, который обладает способностью вырабатывать и выделять биологически активные вещества, способные расслаблять или сокращать гладкие мышцы сосудов в ответ на повышение АД. Эндотелий сосуда рассматривается как эндокринная железа, способная выделять свой секрет, который затем действует на гладкую мышцу сосуда и изменяет ее тонус.

Увеличение АД растягивает клеточную мембрану, что увеличивает спонтанную активность гладких мышц и приводит к повышению их тонуса.

ЦЕНТРАЛЬНЫЕ МЕХАНИЗМЫ РЕГУЛЯЦИИ

Эти механизмы обеспечиваются волокнами, иннервирующими сосудистую стенку, а также влияниями центральной нервной системы.

Вазоконстрикторный эффект симпатических нервов был показан Клодом Бернаром (1851 г.), перерезавшим на шее у кролика с одной стороны симпатический нерв. В результате сосуды уха на стороне перерезки нерва расширились, а ухо стало красным и горячим. Раздражение периферического конца перерезанного симпатического нерва привело к резкому сужению сосудов, а ухо стало бледным и холодным.

Для сосудов брюшной полости главный вазоконстриктор - это нерв, в составе которого проходят симпатические волокна. Значит, симпатический нерв - основной вазоконстриктор, поддерживающий тонус сосудов на том или ином уровне в зависимости от количества импульсов, поступающих по его волокнам к сосуду. Свое влияние на сосуды симпатический нерв оказывает через норадреналин, в результате происходит сужение сосуда.

Вазодилататорный эффект был получен при раздражении других парасимпатических нервов: языкоглоточного, расширяющего сосуды миндалин, околоушной железы, задней трети языка; верхнегортанного нерва - веточки блуждающего нерва, расширяющего сосуды слизистой гортани и щитовидной железы; тазового нерва, расширяющего сосуды органов малого таза.

ВЕНТИЛЯЦИЯ ЛЕГКИХ.

ВЕНТИЛЯЦИЯ ЛЁГКИХ - это управляемый процесс, представляющий собой активный транспорт газовых смесей во время дыхательных движений в лёгкие и из лёгких. При вдохе кислород с вдыхаемой газовой смесью (вдыхаемым воздухом) переносится через дыхательные пути в лёгочные ацинусы, а двуокись углерода при выдохе с выдыхаемой газовой смесью переносится из лёгочных ацинусов наружу, в среду организма. Таким образом, вентиляция лёгких состоит из двух процессов: вентиляции дыхательных путей и вентиляции лёгочных ацинусов.

Главная ЦЕЛЬ ВЕНТИЛЯЦИИ ЛЁГКИХ - обеспечение устойчивой непрерывной доставки в лёгочные альвеолы кислорода и устойчивого непрерывного выведения из организма двуокиси углерода.

Вентиляция лёгких является результатом дыхательных движений. Дыхательные движения аппарата внешнего дыхания обеспечиваются ритмическими сокращениями дыхательных мышц.

Величина легочной вентиляции определяется глубиной дыхания и частотой дыхательных движений. Количественной характеристикой легочной вентиляции служит МИНУТНЫЙ ОБЪЕМ ДЫХАНИЯ (МОД) - объем воздуха, проходящий через легкие за 1 минуту. МОД, который у человека в покое составляет в среднем 8 л/мин. МАКСИМАЛЬНАЯ ВЕНТИЛЯЦИЯ ЛЕГКИХ (МВЛ) - объем воздуха, который проходит через легкие за 1 минуту во время максимальных по частоте и глубине дыхательных движений, Максимальная вентиляция возникает во время интенсивной работы, при недостатке содержания 0 2 (гипоксия) и избытке СО 2 (гиперкапния) во вдыхаемом воздухе.

Для оценки вентиляционной функции легких, состояния дыхательных путей, изучения дыхания применяются различные методы исследования: ПНЕВМОГРАФИЯ, СПИРОМЕТРИЯ, СПИРОГРАФИЯ, ПНЕВМОСКРИН . С помощью спирографа можно определить и записать величины легочных объемов воздуха, проходящих через воздухоносные пути человека. При спокойном вдохе и выдохе через легкие проходит сравнительно небольшой объем воздуха. Это ДЫХАТЕЛЬНЫЙ ОБЪЕМ (ДО), который у взрослого человека составляет примерно 500 мл. При глубоком вдохе человек может дополнительно вдохнуть еще определенный объем воздуха. Этот РЕЗЕРВНЫЙ ОБЪЕМ ВДОХА (РОвд) - максимальный объем воздуха, который способен вдохнуть человек после спокойного вдоха. Величина резервного объема вдоха составляет у взрослого человека примерно 1,8-2,0 л. После спокойного выдоха человек может при глубоком выдохе дополнительно выдохнуть еще определенный объем воздуха. Это РЕЗЕРВНЫЙ ОБЪЕМ ВЫДОХА (РОВЫД), величина которого составляет в среднем 1,2 - 1,4 л. Объем воздуха, который остается в легких после максимального выдоха и в легких мертвого человека, - ОСТАТОЧНЫЙ ОБЪЕМ ЛЕГКИХ (00). Величина остаточного объема составляет 1,2 -1,5 л.

ЕМКОСТИ ЛЕГКИХ:

ОБЩАЯ ЕМКОСТЬ ЛЕГКИХ (ОЕЛ) - объем воздуха, находящегося в легких после максимального вдоха;

ЖИЗНЕННАЯ ЕМКОСТЬ ЛЕГКИХ (ЖЕЛ) включает в себя дыхательный объем, резервный объем вдоха, резервный объем выдоха. ЖЕЛ - это объем воздуха, выдохнутого из легких после максимального вдоха при максимальном выдохе.

ЕМКОСТЬ ВДОХА (ЕД.) равна сумме дыхательного объема и резервного объема вдоха, составляет в среднем 2,0 - 2,5 л;

Воздух, находящийся в воздухоносных путях (полость рта, носа, глотки, трахеи, бронхов и бронхиол), не участвует в газообмене, и поэтому пространство воздухоносных путей называют ВРЕДНЫМ ИЛИ МЕРТВЫМ ДЫХАТЕЛЬНЫМ ПРОСТРАНСТВОМ. Во время спокойного вдоха объемом 500 мл в альвеолы поступает только 350 мл вдыхаемого атмосферного воздуха. Остальные 150 мл задерживаются в анатомическом мертвом пространстве. Составляя в среднем треть дыхательного объема, мертвое пространство снижает на эту величину эффективность альвеолярной вентиляции при спокойном дыхании.

Вентиляцией легких обозначают процесс обмена воздуха между легкими и атмосферой. Количественным показателем вентиляции легких служит МИНУТНЫЙ ОБЪЕМ ДЫХАНИЯ. В покое у человека минутный объем дыхания составляет 6-8 л/мин.


Похожая информация.




Понравилась статья? Поделитесь ей
Наверх