Причинами гипераммониемии у подростков могут быть. Гипераммониемии. виды. причины. симптомы протекания заболевания. метод

Мыши-алкоголики помогут людям

Ученые из Института теоретической и экспериментальной биофизики Пущинского научного центра РАН открыли способ быстро и эффективно снизить уровень аммиака в крови при гипераммониемии - смертельно опасном недуге, от которого крайне редко вылечивают. Неужели достижение пущинских ученых не интересуют тех, кто выделяет деньги на исследования в нашей стране?

Елена Косенко со своей аспиранткой Людмилой Тихоновой.

«Ребенку 4 дня жизни, поставлен предварительный диагноз - гипераммониемия + аминоацидопатия + органическая ацидурия. Мальчик находится в отделении интенсивной терапии с первого дня. Он не усваивает белок, исключили грудное вскармливание. Ему вводят аминокислоты и глюкозу, промывают желудок и кишечник, но концентрация аммиака нарастает, идет потеря веса. Первые две беременности закончились нормальными родами, но смертью обоих мальчиков на 5-6-е сутки жизни от отека мозга. Генетические исследования в первых двух случаях не проводились. Каковы могут быть прогнозы по развитию малыша, если он останется жив? Заранее благодарю за ответ». Это сообщение Елена Косенко, доктор биологических наук, главный научный сотрудник лаборатории метаболического моделирования и биоинформатики ИТЭБ РАН, отыскала на форуме врачебных консультаций дискуссионного клуба русского медицинского сервера. В ответе говорилось, что «высоковероятен диагноз в вашем случае - недостаточность орнитинтранскарбамилазы, это одно из нарушений цикла мочевины. В Москве диагностикой этого заболевания занимаются в Медико-генетическом научном центре».

Спасти такого ребенка будет крайне сложно, если вообще возможно, считает Елена Косенко, потому что упущено время. Пока доедут до Москвы, проведут диагностику.

Гипераммониемией называют нарушение, при котором резко, в 2-3 раза, повышается уровень аммиака в крови. А это сильнейший нейротоксин, то есть он действует на мозг как яд, вызывая судороги, затем кому, отек мозга и гибель. Счет идет буквально на часы, если не предпринимать срочных мер.

В принципе, аммиак сам по себе в малой концентрации постоянно находится в организме человека, выполняя массу жизненно важных функций, а избыток его обезвреживается в цикле мочевины исключительно в печени. Остатки аммиака, которые не попали в цикл, удаляет особый фермент - глутаминсинтетаза. Если же печень больна, то аммиак накапливается в крови и отравляет организм. Гипераммониемия может возникать и после трансплантации органов, она случается у вегетарианцев при употреблении биодобавок, у бегунов на длинные дистанции, у стариков при плохом питании, у детей и взрослых от передозировки некоторых лекарств, к примеру, парацетамола. Каждый год в европейских странах от гипераммониемий умирают около пятисот тысяч человек. Но самый опасный случай - врожденный недостаток ферментов цикла мочевины. Из ста тысяч новорожденных на свет появляются 3-4 ребенка с этим заболеванием. Спасти удается немногих.

Высокая смертность связана с тем, что гипераммониемия возникает неожиданно. Ее сложно распознать. Любой случай излечения считается большой удачей и немедленно становится достоянием научной общественности. На западе существует экспресс-диагностика крови на содержание аммиака, но нет надежного препарата, способного прямо и длительно снижать яд в тканях и крови. У нас же пока биохимический анализ крови на содержание аммиака не делают. Нет ни диагностики заболевания, ни статистики. Распознать гипераммониемию и лечить от нее могут только в Москве.

Мыши не спиваются

То, что аммиак в большом количестве ядовит, доказал еще сто лет назад наш знаменитый соотечественник Иван Павлов. Он экспериментировал с собаками и выяснил, что белковая пища - а это мясо, рыба, яйца, молоко, если ее не обрабатывает печень, буквально отравляет организм. И ядовитым агентом служит аммиак, который образуется при разложении белков. Догадываетесь, почему к старости, когда печень уже барахлит, диетологи рекомендуют поменьше есть белковой пищи?

Елена Косенко занялась темой токсичности аммиака давно, еще во время работы над кандидатской диссертацией. Тогда она проводила опыты на мышах: поила их спиртом и наблюдала, как они становятся алкоголиками. Затем, проверив результаты экспериментов, она заметила, что у мышей-алкоголиков уровень аммиака в крови высокий. Будучи лишены горячительного, мыши быстро приходили в норму, уровень аммиака в крови у них снижался. Животные не привыкали к алкоголю навсегда, в отличие от человека.

В последующие годы исследовательница вместе с коллегами изучила разные формы отравления мышей аммиаком. Они имитировали у мышей не только алкоголизм, но и состояние после трансплантации, когда уровень аммиака резко повышается, и организм гибнет в течение 15 минут. Повторяли опыты Павлова, запуская аммиак в ткани минуя печень. Моделировали хроническое отравление аммиаком как у больных вирусным гепатитом. Ученые установили причины гибели мозга при этих состояниях. Оказалось, что большое содержание аммиака препятствует образованию глюкозы в печени, а ведь глюкоза - это источник энергии для мозга. Недаром мы любим сладенькое, а перед экзаменами налегаем на шоколадки. Если нет глюкозы, то голодающему мозгу снова приходит на помощь печень. Она достает «энзэ» - кетоновые тела. Долго на них не протянуть, но хотя бы выиграть время. Вот только аммиак мешает печени синтезировать и кетоновые тела. Поэтому при острой гипераммониемии мозг быстро гибнет. То, что аммиак служит ядом для мозга, знали со времен Павлова, а то, что он отравляет еще и печень, открыли в наше время в ИТЭБ РАН.

Эритроциты-почтальоны

Первую статью по гипераммониемии Елена Косенко опубликовала в начале 2000-х. После этого ее сразу пригласили на работу в испанский исследовательский центр цитологии в Валенсии, построенный на частные средства принца, а теперь короля Филиппа VI. Там работала одна из научных групп, которая изучала токсичность аммиака. Этой проблемой занимались в Канаде и США. В России же гипераммониемию изучали только в Пущино. В то время предлагались различные варианты борьбы с заболеванием, но было ясно, что нужно средство, которое напрямую снижало бы уровень яда в крови.

У меня зрела мысль, что фермент глутаминсинтетазу, которая нейтрализует аммиак, нужно добавить в какую-то капсулу и запустить в кровь, - рассказывает Елена Александровна. - И тут на глаза попалась очень старая работа, где авторам удалось добавить какой-то фермент в эритроциты.

Эритроциты - это красные кровяные тельца, которые насыщают организм кислородом. А что если в них внедрить глутаминсинтетазу? Исследовательница принялась за опыты. Сначала она работала с образцами человеческой крови, но кровь человека плохо действует на мышей, которым ее вливали уже с ферментом, поэтому пришлось полностью перейти на кровь грызунов. Вскоре удалось внедрить фермент в эритроциты, но в крови такие клетки не удерживались. Их быстренько распознавали и уничтожали макрофаги - иммунные клетки, выполняющие работу дворников, они чистят кровь от всяких инородных тел. Целых три года Косенко искала способ обмануть макрофагов и удержать измененные эритроциты в кровеносном русле. В итоге ей это удалось. Все это время исследование поддерживал ИТЭБ, испанцы, куда исследовательница периодически приезжала работать, и гранты от зарубежных фондов. Последнюю научную работу с описанием открытия она опубликовала в 2008 году. Больше финансирование ей найти не удалось. В Испании начался кризис, институт в Валенсии оказался на грани закрытия. А в России эта тема не популярна.

Сейчас все увлеклись наночастицами, как средствами доставки лекарств. Но ведь они токсичны, - поясняет Елена Косенко.

В одной из свежих научных статей на эту тему сказано, что наночастицы находятся в тканях полгода. Как они взаимодействуют с организмом? К каким последствиям приводят? Никто не знает, все это требует тщательных исследований.

Эритроциты гораздо безопаснее, - уверяет исследовательница. Хотя и этот способ нуждается в проверке и многочисленных доклинических исследованиях. Не до конца ясно, как будут вести себя в крови эритроциты, наполненные ферментом, как отреагирует организм на такое лечение. Чтобы все это изучить, нужно переоборудовать лабораторию: создать стерильные условия, приобрести прибор для приготовления образцов крови и много чего еще, включая реактивы.

Пройдет время, и ученые поймут, что наночастицы не выводятся из организма. Делать с их помощью диагностику можно, но как средства доставки лекарств они не подойдут, - считает исследовательница.

Она верит, что изобретенный ею способ борьбы с гипераммониемией перспективен и найдет своих продолжателей.

Известны метаболические нарушения, обусловленные недостатком каждого из 5 ферментов, катализирующих в печени реакции синтеза мочевины (рис. 30.13). Лимитирующими скорость стадиями, вероятно, являются реакции, катализируемые карбамоилфосфатсинтазой (реакция 1), орнитин-карбамоилтрансферазой (реакция 2) и аргиназой (реакция 5). Поскольку в цикле мочевины аммиак превращается в нетоксичную мочевину, все нарушения синтеза мочевины вызывают аммиачное отравление. Последнее более сильно выражено при блокировании реакции 1 или 2, так как при синтезе цитрул-лина аммиак уже связан ковалентно с атомом углерода. Клиническими симптомами, общими для всех нарушений цикла мочевины, являются рвота (у детей), отвращение к богатым белками продуктам, нарушение координации движений, раздражительность, сонливость и умственная отсталость.

Клинические проявления и методы лечения всех рассмотренных ниже заболеваний весьма сходны. Значительное улучшение наблюдается при ограничении белка в диете, при этом могут быть предотвращены многие нарушения мозговой деятельности. Пищу следует принимать часто, небольшими порциями, для того чтобы избежать быстрого повышения уровня аммиака в крови.

Гипераммониемия типа I

Описан случай заболевания, связанного с недостатком карбамонлфосфатсннтазы (реакция 1, рис. 30.13). Вероятно, это заболевание является наследственным.

Гипераммониемия типа II

Зарегистрированы многочисленные случаи заболевания, связанного с недостатком орнитин-карбамоилтрансферазы (реакция 2, рис. 30.13). Это заболевание генетически связано с Х-хромосомой. У матери также наблюдается гипераммониемия и отвращение к богатым белком продуктам. Единственным постоянным лабораторно-клиническим показателем является повышение содержания глутамина в крови, спинномозговой жидкости и моче. Это, по-видимому, отражает повышение синтеза глутамина глутаминсинтазой (рис. 30.8), обусловленное возрастанием уровня аммиака в тканях.

Цитруллинемия

Это редкое заболевание наследуется, вероятно, по рецессивному типу. Для него характерна экскреция с мочой большого количества цитруллина (1-2 г-сут1); значительно повышено содержание цитруллина в плазме и спинномозговой жидкости. У одного из пациентов было зарегистрировано полное отсутствие активности аргининосукцинат-синтазы (реакция 3, рис. 30.13). У другого пациента была обнаружена модификация этого фермента. В культуре фибробластов этого больного активность аргининосукцинат-синтазы характеризовалась величиной для цитру ллина в 25 раз выше обычной. Вероятно, здесь имела место мутация, вызвавшая значительную, но не «летальную» модификацию структуры каталитического центра фермента.

Цитруллин (а также аргининосукцинат, см. ниже) может служить переносчиком «отработанного» азота, поскольку он содержит азот, «предназначенный» для синтеза мочевины. Потребление аргинина увеличивает экскрецию цитруллина у пациентов с рассматриваемым нарушением. Подобным же образом потребление бензоата «направляет» аммонийный азот в состав гиппурата (через глицин) (см. рис. 32.2).

Аргининосукцинатная ацидурия

Это редкое заболевание, наследуемое по рецессивному типу, характеризуется повышенным содержанием аргининосукцината в крови, спинномозговой жидкости и моче; оно часто сопровождается нарушением роста волос. Хотя известны случаи как раннего, так и позднего проявления болезни, обычно она развивается в возрасте около двух лет и приводит к фатальному исходу в раннем возрасте.

Данное заболевание связано с отсутствием аргининосукциназы (реакция 4, рис. 30.13). В культуре фибробластов кожи здорового человека можно зарегистрировать активность этого фермента, а у пациентов с аргининосукцинатной ацидурией он отсутствует. У больных аргининосукциназа отсутствует также в мозге, печени, почках и эритроцитах. Диагноз устанавливается достаточно легко: мочу больного исследуют методом двумерной хроматографии на бумаге, при этом обнаруживается аргининосукцинат. Если анализировать мочу не сразу, а через некоторое время, на хроматограмме появляются дополнительные пятна, принадлежащие циклическим ангидридам, которые образуются из аргининосукцината. Для подтверждения диагноза измеряют содержание аргининосукциназы в эритроцитах. Для раннею диагноза можно анализировать кровь, взятую из пупочного канатика. Поскольку аргининосукциназа содержится также в клетках амниотической жидкости, диагноз может быть сделан путем амниоцентеза (пункции плодного пузыря). По тем же причинам, которые приводились при рассмотрении цитруллинемии, при потреблении аргинина и бензоата у рассматриваемых больных увеличивается экскреция азотсодержащих метаболитов.

Гипераргининемия

Это нарушение синтеза мочевины характеризуется повышенным содержанием аргинина в крови и спинномозговой жидкости, низким содержанием в эритроцитах аргиназы (реакция 5, рис. 30.13) и повышением содержания ряда аминокислот в моче, как это имеет место при лизин-цистинурии. Возможно, это отражает конкуренцию между аргинином, с одной стороны, и лизином и цистином, с другой, в процессе реабсорбции в почечных канальцах. Если больного перевести на малобелковую диету, наблюдается понижение уровня аммиака в плазме крови и содержания ряда аминокислот в моче.

ЛИТЕРАТУРА

Adams Е., Frank L. Metabolism of proline and the hydroxypro-lines, Annu. Rev. Biochem., 1980, 49, 1005.

Batshaw M. L. et al Treatment of inborn errors of urea synthesis. Activation of alternative pathways of waste nitrogen synthesis and expression, N. Engl. J. Med., 1982, 306, 1387. Felig P. Amino acid metabolism in man, Annu. Rev. Biochem., 1975, 44, 933.

Msall M. et al. Neurologic outcome in children with inborn errors of urea synthesis. Outcome of urea-cycle enzymopathies, N. Engl. J. Med., 1984, 310, 1500.

Nyhan W. L. Heritable Disorders of Amino Acid Metabolism. Patterns of Clinical Expression and Genetic Variation, Wiley, 1974.

Ratner S. Enzymes of arginine and urea synthesis, Adv. Enzy-mol., 1973, 39, 1.

Ratner S. A long view of nitrogen metabolism, Annu. Rev.

Biochem., 1977, 46, 1.

Rosenberg L. E., Scriver C. R. Disorders of amino acid metabolism, Chapter 11. In: Metabolic Control and Disease, Bon-dy P. K., Rosenberg L. E. (eds), Saunders, 1980.

Stanbury J. B. et al. The Metaboli Basis of Inherited Disease, 5th ed., McGraw-Hill, 1983.

Torchinsky Y. M. Transamination: Its discovery, biological and clinical aspects (1937-1987), Irends Biochem. Sci., 1987, 12, 115.

Tyler B. Regulation of the assimilation of nitrogen compounds, Annu. Rev. Biochem., 1978, 47, 1127.

Wellner D., Weister A. A survey of inborn errors of amino acid metabolism and transport in man, Annu. Rev. Biochem., 1981, 50, 911.

Гипераммониемия - это заболевание обмена веществ, проявляющееся в недостаточности цикла ферментов мочевины, приводящее к отравлению организма аммиаком.
Аммиак является токсичным соединением, находящимся в крови в относительно небольших концентрациях (11,0-32,0 мкмоль/л). Симптомы аммиачного отравления проявляются при превышении этих пределов всего в 2-3 раза. Предельно допустимый уровень аммиака в крови 60 мкмоль/л. При повышении концентрации аммиака (гипераммониемия) до предельных величин может наступить кома и смерть. При хронической гипераммониемии развивается умственная отсталость.
виды: врожденная и приобретенная

Симптомы Транзиторной гипераммониемией называется также пограничное состояние, присущее новорожденным детям в период адаптации к внеутробной жизни, проявляющееся обычно на вторые – трети сутки жизни. Этот вид гипераммониемии встречается чаще всего у недоношенных детей с задержкой внутриутробного развития, с частотой до пятидесяти процентов рождений, однако иногда регистрируется и у доношенных малышей. Часть детей не проявляет симптоматики клинической картины гипераммониемии: признаки угнетения центральной нервной системы (вялость, понижение мышечного тонуса, приступы апноэ, ослабленная реакция зрачков на свет, отказ от еды, ступор и кома), а также расстройства дыхательной функции, желтуха,судороги и обезвоживание. Причиной вызывающей гипераммониемию называют кислородное голодание, или гипоксию, во время беременности и в процессе родов.
причины: 1. Связывание аммиака при синтезе глутамата вызывает отток α-кетоглутарата из цикла трикарбоновых кислот, при этом понижается образование энергии АТФ и ухудшается деятельность клеток.
2. Ионы аммония NH4+ вызывают защелачивание плазмы крови. При этом повышается сродство гемоглобина к кислороду (эффект Бора), гемоглобин не отдает кислород в капиллярах, в результате наступает гипоксия клеток.
3. Накопление свободного иона NH4+ в цитозоле влияет на мембранный потенциал и работу внутриклеточных ферментов – он конкурирует с ионными насосами для Na+ и K+.
4. Продукт связывания аммиака с глутаминовой кислотой – глутамин – является осмотически активным веществом. Это приводит к задержке воды в клетках и их набуханию, что вызывает отек тканей. В случае нервной ткани это может вызвать отек мозга, кому и смерть.
5. Использование α-кетоглутарата и глутамата для нейтрализации аммиака вызывает снижение синтеза γ-аминомасляной кислоты (ГАМК), тормозного медиатора нервной системы.



МЕТОД КОЛ-В ОПРЕДЕЛЕНИЯ МОЧЕВИНЫ В СЫВОРОТКЕ КРОВИ

В биологических жидкостях М. определяют с помощью газометрических методов, прямых фотометрических методов, основанных на реакции М. с различными веществами с образованием эквимолекулярных количеств окрашенных продуктов, а также ферментативных методов с использованием главным образом фермента уреазы. Газометрические методы основаны на окислении М. гипобромитом натрия в щелочной среде NH 2 -СО-NH 2 + 3NaBrO → N 2 + CO 2 + 3NaBr + 2H 2 O. Объем газообразного азота измеряют с помощью специального аппарата, чаще всего аппарата Бородина. Однако этот метод обладает низкой специфичностью и точностью. Из фотометрических наиболее распространены методы, основанные на реакции М. с диацетилмонооксимом (реакция Ферона).

Для определения мочевины в сыворотке крови и моче используют унифицированный метод, основанный на реакции М. с диацетилмонооксимом в присутствии тиосемикарбазида и солей железа в кислой среде. Другим унифицированным методом определения М. является уреазный метод: NH 2 -СО-NH 2 → уреаза NH 3 +CO 2 . Выделившийся аммиак образует с гипохлоритом натрия и фенолом индофенол, имеющий синий цвет. Интенсивность окраски пропорциональна содержанию М. в исследуемой пробе. Уреазная реакция высокоспецифична, для исследования берут лишь 20 мкл сыворотки крови, разведенной в соотношении 1: 9 раствором NaCI (0,154 М). Иногда вместо фенола используют салицилат натрия; сыворотку крови разводят следующим образом: к 10 мкл сыворотки крови добавляют 0,1 мл воды или NaCI (0,154 М). Ферментативная реакция в обоих случаях протекает при 37° в течение 15 и 3-3 1 / 2 мин соответственно.

Производные М., в молекуле которой атомы водорода замещены кислотными радикалами, носят название уреидов. Многие уреиды и некоторые их галогензамещенные производные в медицине используют в качестве лекарственных средств. К уреидам относятся, например, соли барбитуровой кислоты (малонилмочевины), аллоксан (мезоксалилмочевина); гетероциклическим уреидом является Мочевая кислота.

ГИПЕРАММОНИЕМИЯ (hyperammoniaemia ; греч, hyper- + аммониемия) - повышенное содержание свободных ионов аммония (NH 4 +) в крови, являющееся следствием некоторых патол, состояний. Нерекомендуемый син. - аммониемия. У здорового человека концентрация свободных ионов аммония в крови обычно не превышает 0,05 мг%, в эритроцитах их в 3 раза больше, чем в плазме.

Аммонийные соединения образуются из аммиака, основными источниками к-рого в организме являются процессы дезаминирования, происходящие во всех тканях, но преимущественно в мышцах, мозге, печени и почках. Кроме того, источником аммиака являются всасывающиеся из кишечника аммонийные соли, образующиеся при распаде белков и их катаболитов под влиянием кишечной флоры. Образовавшийся аммиак быстро выводится из организма или утилизируется тремя путями: 1) вступает во взаимодействие e аминокислотами (глутаминовой, аспарагиновой и др.); 2) выделяется почками; 3) превращается в мочевину.

Г. может наблюдаться во время припадков эклампсии (см.) за счет повышенного образования ионов аммония в мышцах и при декомпенсации сердечной деятельности (недостаточное выведение ионов аммония почками). Она бывает также при наследственных нарушениях обмена-аргинин-янтарной аминоацидурии (см.), цитруллинурии, семейной Г. Однако наиболее частой причиной Г. являются заболевания печени, особенно циррозы. Г. возникает либо от понижения способности к мочевинообразованию, либо из-за наличия порто-кавального шунтирования крови. Содержание свободных ионов аммония в этих условиях может увеличиться в 5-10 раз. Заметно нарастает количество аммония у больных циррозом печени (см.) после кровотечений из жел.-киш. тракта. Это может быть использовано для установления причины кровотечения: отсутствие Г. указывает на малую вероятность связи кровотечения с циррозом.

Диагностическое значение имеет также проба с провоцированной Г. путем приема внутрь 5 г уксуснокислого или 1 г хлористого аммония; при этом у здоровых людей содержание в крови свободных ионов аммония не изменяется, а у больных циррозом печени значительно повышается, причем в артериальной крови больше, чем в венозной. Высокая Г. отмечается при значительной печеночной недостаточности и играет патогенетическую роль в развитии печеночной комы (см. Гепатаргия , Кома).

Методы определения гипераммониемии сводятся к отделению аммиака и определению его количества (см. Аммиак). Исследование нужно производить сразу после взятия крови, т. к. при ее стоянии содержание аммиака быстро нарастает (вдвое за 2 часа).

Терапевтические мероприятия при Г. сводятся к ограничению поступления аммиака из кишечника (назначением бедной белками пищи, уменьшением гнилостных процессов в кишечнике путем регулярного очищения его и применения антибиотиков) и к связыванию аммиака крови (назначение глутаминовой к-ты, аргинина, яблочной к-ты). Рекомендуется также введение гипертонического р-ра глюкозы с инсулином.

Гипераммониемия семейная - наследственное заболевание, передаваемое по аутосомно-рецессивному типу, связанное с дефектом в цикле Кребса-Гензелейта вследствие снижения активности орнитин-транскарбамилазы печени, к-рая ответственна за образование цитруллина из орнитина и карбамилфосфата. Характеризуется стойким увеличением содержания в крови аммиака. Описано в 1962 г. Расселом (A. Russel). Основные клин, симптомы связаны чаще всего с поражением ц. н. с. При этом отмечается высокая степень умственной отсталости, обусловленной токсическим действием повышенной концентрации в крови аммиака. Заболевание проявляется в первые недели жизни рвотой, развитием обезвоживания, ацидоза и в дальнейшем комы. Болезнь может проявиться и позже (имеются наблюдения над 3- и 9-летними детьми). Временное ограничение белка приводит к улучшению состояния, но рвота периодически возобновляется. Повышение концентрации в крови аммиака тяжелее всего сказывается в раннем детстве, в период становления функций головного мозга. В крови резко снижен азот мочевины.

Дифференциальный диагноз проводят с ацетонемической рвотой (см. Ацетонемии) и различными наследственными нарушениями синтеза мочевины.

Лечение : применяют внутривенные капельные вливания р-ров глюкозы, бикарбоната натрия и хлористого натрия, глутаминовую к-ту, а также L-кетоглутаровую и лимонную к-ты.

Прогноз неблагоприятный.

Библиография: Бадалян Л. О., Таболин В. А. и Вельтищ ев Ю. Е. Наследственные болезни у детей, М., 1971; Маккьюсик В. А. Наследственные признаки человека, пер. с англ., с. 1970, М., 1976; Харрис Г. Основы биохимической генетики человека, пер. с англ., М., 1973, библиогр.

Н. Д. Михайлова; О. К. Ботвиньев (пед.).



Понравилась статья? Поделитесь ей
Наверх