Практическая протеомика. Протеомика - высокотехнологичная «рыбалка. Масс-спектрометрия и профилирование

В настоящее время на уровне академических центров различных НИИ России стран СНГ Западной Европы США и Канады развиваются и внедряются в клинику результаты работы научных технологических платформ для биомедицинских и фармацевтических исследований. Если геномная карта человека одинакова по сути дела для всех клеток человека это 23 хромосомы с одним и тем же набором генов – исключение составляют 14 половые клетки то в случае протеомной карты человека говорить об общности ее совершенно бессмысленно: каждая клетка каждая ткань каждая...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


ВВЕДЕНИЕ………………………………………………………………...3

1 ПОНЯТИЯ, ПРИНЦИПЫ И НАПРАВЛЕНИЯ ПРОТЕОМИКИ..5

2 ПРОТЕОМНОЕ КАРТИРОВАНИЕ………………………………….7

3 МЕЖДИСЦИПЛИНАРНЫЙ ПОДХОД В ИСПОЛЬЗОВАНИИ ИНОВАЦИОННЫХ ПРОТЕОМНЫХ ИССЛЕДОВАНИЙ………………12

ЗАКЛЮЧЕНИЕ………………………………………………………….15

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ……………………...17

ВВЕДЕНИЕ

В настоящее время происходит революция в представлениях об этиологии, патогенезе и терапии болезней человека, что связано с достижениями в области молекулярной биологии и генетики, молекулярной медицины и фармакологии .

Достигнуты серьезные успехи в понимании структуры и функции ДНК, РНК, белков, репликации и функционировании генома, обратной транскрипции, модификации, репарации и рекомбинации ДНК, транскрипции и трансляции мРНК в клетках про- и эукариот. Многочисленные исследования на основе новых биоаналитических методов прояснили основные пути регуляции экспрессии генов. Подробно изучены технологии рекомбинантных ДНК. Мощное развитие в настоящее время получило изучение физико-химических основ развития наследственных и социально-значимых болезней человека (атеросклероз, онкопатологии, сахарный диабет, внутриклеточные инфекции, нейродегенеративные болезни и т.д.).

В постгеномную эру остро встает вопрос о практической реализации фундаментальных разработок в области молекулярной биологии, медицины и фармакологии. При этом отражением функционирования генома являются постгеномные события, связанные с синтезом многочисленных белков, исследованию которых сейчас уделяется особое внимание в рамках отдельного научного направления – протеомики. Развитие протеомных исследований невозможно без построения алгоритмов и методов анализа, создания базы данных, позволяющих выяснять механизм функционирования биологических текстов и разрабатывать целенаправленные фармакологические воздействия (биотрансформатика).

Связанные проблемы геномики и протеомики, фармакогеномики и биотрансформатики реализуются на основе уникальных методологических решений и технологических платформ.

В настоящее время на уровне академических центров, различных НИИ России, стран СНГ, Западной Европы, США и Канады развиваются и внедряются в клинику результаты работы научных технологических платформ для биомедицинских и фармацевтических исследований.

Цель практики – изучить основы протеомики и протеомного картирования

Задача практики - закрепление и углубление теоретических знаний, полученных в процессе обучения; освоить методы работы со специальной литературой; собрать конкретные материалы в соответствии с рекомендованными вопросами; оформить результаты, полученные в ходе прохождение практики.

1 ПОНЯТИЯ, ПРИНЦИПЫ И НАПРАВЛЕНИЯ ПРОТЕОМИКИ

Начало XXI века ознаменовано началом эры протеомики. Термин этот происходит от двух других хорошо известных в биохимии понятий: «PROTEins» и «genОМe» и впервые был использован в 1995 г. .

Конечно, геномика не исчезнет, она будет развиваться с той же самой, а может даже большей скоростью, но ясно, что центр постгеномных исследований будет перенесен в область инвентеризации и выяснения протеомной карты человека. На первый взгляд, задача кажется совершенно не решаемой. Если геномная карта человека одинакова, по сути дела, для всех клеток человека (это 23 хромосомы с одним и тем же набором генов – исключение составляют 14 половые клетки), то в случае протеомной карты человека говорить об общности ее совершенно бессмысленно: каждая клетка, каждая ткань, каждая биологическая жидкость должна иметь собственную протеомную карту. Несмотря на то, что в каждой клетке может быть около 100 000 функционирующих генов, многочисленные реакции модификации могут увеличить число белков в клетке до 10 – 20 миллионов .

В этой связи в настоящее время существует два определения протеомики: узкое, которое можно назвать структурной протеомикой, и более широкое, которое включает и структурную, и функциональную части протеомики. В узком смысле этого слова протеомикой является наука, занимающаяся инвентаризацией белков с помощью комбинированного использования методов: двумерного электрофореза (2D-электрофорез), масс-спектрометрического (МС) анализа молекулярной массы и последовательности разделенных электрофорезом белков биологического материала с последующим анализом полученных результатов методами биоинформатики. По сути дела, структурная протеомика – это комбинация 2D-электрофореза, масс-спектрометрии и биоинформатики. И если разрешающие возможности двумерного электрофореза известны давно, с первой работы O’Farrell в 1975 г., то возможности МС анализа очень быстро определять молекулярную массу и последовательность полипептидных цепей стали ясны только в самое последнее время. Развивались они настолько быстро, что сейчас некоторыми фирмами созданы уже полностью автоматизированные системы для определения молекулярной массы и последовательности белков, работающие на фентомолярном и атомомолярном уровнях концентрации . С помощью комбинации этих методов можно создать протеомную карту любого биологического материала, которая представляет собой фенотипическое проявление генома клетки, ткани или даже целого органа. В более широком смысле термины протеомный анализ, или протеомика могут быть использованы не только для инвентаризации белков биологического объекта, но и для контроля обратимой посттрансляционной модификации (ПТМ) белков специфическими ферментами, как-то: фосфорилирование, гликозилирование, ацилирование, френилирование, сцльфирование и т.д. .

В настоящее время уже более 300 различных типов посттрансляционной модификации охарактеризовано с помощью протеомики .

Интенсивное развитие МС-анализа способствовало появлению за последние 5 – 7 лет целой группы направлений протеомных исследований (рис. 1), большая часть которых имеет биомедицинскую направленность, однако, фундаментальная основа на сегодняшний день, по-прежнему, сохраняется за структурной и функциональной протеомикой.

Политика большинства стран Евросоюза, России и стран СНГ в той или иной степени связана с естественным стремлением населения жить в соответствии с мировыми стандартами качества. Такие термины как «экологически чистый район» или «экологически чистый продукт», а также всевозможные слова с приставкой «евро-», прочно вошедшие в обиход, к сожалению, в большинстве случаев, не имеют фактического пополнения. Вместе с тем, желанные стандарты качества жизни, установленные во многих странах, являются результатом пр отекания сложных процессов, затрагивающих культурные, социальные и правовые аспекты развития этих государств.

Рисунок 1 - Современные направления протеомного анализа.

2 ПРОТЕОМНОЕ КАРТИРОВАНИЕ

«В мире не существует двух индивидуумов с абсолютно одинаковым метаболизмом. Индивидуальные различия активности ферментов в печени могут быть причиной различий в ответной реакции пациентов на лекарство" А Гаррод.

Важность этих слов, принадлежащих, сложно переоценить в свете последних достижений молекулярной медицины. Прочтение геномов ряда организмов, и прежде всего человека, ознаменовало начало эры постгеномных технологий. Существенное влияние они оказали на медицину, позволив систематически анализировать молекулярные механизмы зарождения и развития заболевания. Знание этих механизмов позволяет подойти к качественно новому пониманию вопросов, связанных с профилактикой, диагностикой и лечением заболеваний. Пожалуй, впервые за всю свою историю медицина получила шанс приблизиться к статусу точной науки, миновав описательную практику анализа патологических процессов, бытовавшую в течение столетий.

Протеомная карта заболевания – это понимание развития клинической картины заболевания в виде количественных и качественных нарушений на геномном, транскрипционном, трансляционном и посттрансялционном уровнях функционирования организма, т.е. на уровне нарушений в составе и взаимодействии генов в ДНК, РНК, белков, липидов, углеводов, а также на уровне образующихся в клетке и взаимодействующих между собой метаболитов.

Важно подчеркнуть, что наличие подобных нарушений часто указывает лишь на вероятность развития патологии, следовательно можно, повлияв на факторы внешней среды, снизить вероятность развития заболевания, если провести соответствующие индивидуальные профилактические мероприятия.

Большинство заболеваний, таких как псориаз, шизофрения, диабет, обусловлены комбинацией малоэффективных генных вариантов, другими словами, обусловлены не единичным нарушениями, а их набором, локализованным в различных генах. При наличии четкой взаимосвязи между дефектом одного гена и развитием патологии можно говорить о ее наследственном характере. Однако на долю наследственных приходится лишь 2-5% всех заболеваний, остальные связаны с нарушением целого ансамбля генов, а значит, зависят от индивидуального профиля многих однонуклеотидных замен и/или нарушения экспрессии группы генов.

Протеомная диагностическая карта: включает SNP, ассоциированные с заболеваниями и SNP, ответственные за фармакокинетику и фармакодинамику лекарств, она формируется на основе знаний геномики, протеомики, липидомики, метаболомики, селломики, интерактомики и с применением современных методов полимеразной цепной реакции, хромато-масс-спектрометрии, современных видов микроскопии, микрофлюидных и нанотехнологических решений для аналитических работ.

Подобно тому, как сейчас гражданский паспорт служит документом, удостоверяющим личность, протеомная диагностическая карта, кроме идентификации личности, может предназначаться и для выбора индивидуумом соответствующего образа жизни. На его основе можно определять персонифицированное лечение, воплощая в жизнь золотой стандарт современной медицины: каждому больному - свое лекарство в нужное время и в нужной дозе.

Молекулярная (протеомная) диагностика является достоверным инструментом диагностики ранних стадий онкологических заболеваний и конкретно диагностики "молчащих раков", не проявляющих себя до тех пор, пока лечить его не станет поздно. Традиционные методики верификации рака подразумевают проведение биопсии, то есть забора микропорции ткани. Однако с точки зрения диагностики подход абсолютно неприемлем, поскольку трудно предположить человека, который в рамках плановой диспансеризации соглашается на манипуляции, по сложности и болезненности приближающиеся к хирургической операции. Значит, единственным наиболее доступным для диагностики биологическим образцом была и будет протеомное исследование крови.

В глобальном масштабе протеомика занимается инвентаризацией всех белков организма. Медицинский аспект проблемы - установить корреляцию между набором белков и началом или развитием болезни. Задача сходна с геномикой, где определяется зависимость между болезнью и геномом, но на порядок сложнее. Дело в том, что белков намного больше, чем генов. Число последних оценивается в 30-40 тыс., однако каждый ген может считываться во множестве (до 200) альтернативных вариантов, а значит, белков может быть значительно больше - до 6-8 млн. в одной клетке. Причем конкретный белок может быть экспрессирован как в виде единичных молекулярных копий, так и в огромном количестве - налицо широкий диапазон концентраций белков в клетке и биологических жидкостях. Можно возразить, что похожая ситуация складывается и при анализе ДНК, но в отличие от ДНК белки невозможно наработать в ходе полимеразной цепной реакции (ПЦР). А ведь именно ПЦР - основа всех методов работы с генетическим материалом, поскольку позволяет избирательно поднять концентрацию определенной молекулы ДНК до уровня, который может быть зарегистрирован приборами. Следовательно, методической основой протеомики является подход, при котором чувствительность приборов позволяет регистрировать отдельны молекулы.

Существует международный проект "Протеом человека" (аналог проекта "Геном человека") который планирует конструирование протеомной карты всех белков человека. Первоочередные задачи проекта "Протеом человека" - составление протеомных карт плазмы крови, печени и мозга, а также проведение антигенного картирования генома. Кроме того, специальный комитет в составе проекта рассматривает новые технологические инициативы. Российский центр проекта принимает участие в разработке протеомной карты плазмы крови и печени, активно развивает новые подходы в области нанотехнологий.

Схема проведения протеомного анализа проста и основана на достижениях современной масс-спектрометрии. Образец, например плазма крови, отбирается у пациента в количестве чуть более 1 мл.. Очевидно, что в плазме крови присутствует множество различных белков. Разделение белков проводится методом двумерного электрофореза, и на двумерной электрофоре-грамме каждый белок предстает в виде отдельного пятна. Его интенсивность соответствует уровню экспрессии белка, то есть его количеству. Анализ гелей позволяет выявить индивидуальные вариации протеома, оценить статистические параметры для каждого пятна. Затем, сравнивая электрофореграмму с эталонными, удается выявить различия, связанные с заболеваниями. Различия заключаются в повышении или понижении экспрессии белка, некоторые белки появляются в плазме больных, тогда как другие могут исчезнуть. Однако на этапе анализа двумерных электрофореграмм речь на самом деле еще не идет о конкретных белках, а только об интенсивности пятен. Для того чтобы определить (идентифицировать) белок, пятно вырезают из геля, подвергают расщеплению, и массы фрагментов (пептидов) детектируют с помощью масс-спектрометрии.

Протеомный анализ сопряжен с проведением ряда трудоемких рутинных процедур, связанных с тем, что число анализируемых белков велико, а для статистической значимости результата требуется обработать большое количество образцов в соответствии со стандартным протоколом. Снятые масс-спектры передаются в программу идентификации белков. Профиль масс, полученный на масс-спектрометре, соответствующий пептидным фрагментам белка, позволяет однозначно его идентифицировать, проведя поиск соответствия с теоретическими профилями, построенными по белкам человеческого генома через специализированные компьютерные базы данных в сети Интернет в онлайн-режиме.

Постгеномная эра открывает широкие перспективы перед российскими учеными - в исследованиях по данному направлению сейчас участвует около десяти научно-исследовательских институтов РАН, РАМН, Минздрава России, Минпромнауки России и МГУ, которые располагают мощной аппаратной базой с квалифицированным техническим персоналом и значит есть потенциал для дальнейшего развития.

Для врача молекулярная карта заболевания – это ключ к точному диагнозу, прогнозу и целенаправленной терапии болезни.

Для исследователя молекулярная карта заболевания – базис для новых открытий.

Рисунок 2 – Молекулярная (протеомная) карта и терапия человека

3 МЕЖДИСЦИПЛИНАРНЫЙ ПОДХОД В ИСПОЛЬЗОВАНИИ ИНОВАЦИОННЫХ ПРОТЕОМНЫХ ИССЛЕДОВАНИЙ

Передовые методы медицинской диагностики, стоящие на стыке таких наук, как медицина, химия, физика и биология, требуют системного подхода к информационному обеспечению, которое в данном случае должно обеспечивать получение, хранение, обработку м анализ результатов исследований.

Междисциплинарная аналитическая лаборатория, имеющая уникальную базу высокотехнологичного медицинского диагностического оборудования, предполагает разработку новых подходов к еѐ информационному обеспечению.

Консультативно-диагностическая база междисциплинарной лаборатории (центра) включает 6 научных блоков:

Протеомные и фармакопротеомные исследования биологических жидкостей и тканей организма человека;

Исследование индивидуальной чувствительности к лекарственным средствам;

Исследование биоэквивалентности лекарственных средств;

Разработка и клинические испытания лекарственных средств (I фаза);

Информационные стандарты лекарственных средств;

Фармакоэпидемиологические исследования и регистрация ПЭ при применении лекарственных средств.

Консультативно-диагностическая база объединяет 6 подразделений лабораторных методов, оснащенных передовым, высокотехнологическим оборудованием:

Подразделение ВЭЖХ/МС;

Подразделение новых электрофоретических методов исследования; Подразделение ПЦР;

Подразделение спектрофотометрических методов исследования; Подразделение MALDI-TOF-MC;

Подразделение иммунохимических методов исследования.

Результаты работы всех вышеперечисленных научных блоков и подразделений лаборатории внедряются на уровне консультативного подразделения по клинической фармакологии .

Информационную платформу для биомедицинской лаборатории можно представить в виде схемы, объединяющей три блока: эпидемиология и фармакоэпидемиология, молекулярные исследования и базы данных.

Получая большое количество клинической информации и данные эпидемиологических исследований в медицине с помощью высокотехнологичных методов исследования, анализа и обработки их результатов, идентификации полученной информации, формируются базы данных, которые затем посредством информационных технологий применяются во всех областях медицинской деятельности и способствуют решению следующих задач:

Развитию генодиагностики и генотерапии;

Формированию медико-генетических методов исследования на этапе первичной медицинской помощи;

Развитию фармакогеномных принципов диагностики и терапии при назначении лекарств;

Развитию исследований фармацевтической эквивалентности и биоэквивалентности лекарственных средств; созданию банка данных генетических полиморфизмов и протеомных паттернов заболеваний у здоровых лиц и пациентов.

ЗАКЛЮЧЕНИЕ

В настоящее время прогресс в биомедицине обусловлен появлением новых электрофоретических методов исследования, методов ПЦР, ВЭЖХ и МС. Их эффективное применение связано с усовершенствованием способов первичной подготовки биологических образцов для исследования и развитием клеточных технологий. Соединение возможностей этих методов способствует созданию единых технологических платформ для реализации программ фундаментальных и прикладных исследований в области биомедицины, фармакологии и фармации.

Развитие новых технологических платформ для биомедицинских и фармацевтических исследований происходит на основе нанотехнологических решений.

Открытия в области расшифровки генома человека, геномов патогенных микроорганизмов, а также интересные результаты протеомных исследований биологических жидкостей и тканей организма человека способствуют появлению новых терапевтических агентов для лечения многих социально значимых заболеваний. Мощный потенциал открытий в области геномики, протеомики, метаболомики для разработки генотерапии и новых лекарственных препаратов можно реализовать в полной мере на основе новых технологических платформ и с учетом современных стандартов их проведения.

Важной задачей является создание полноценного биоинформационного ресурса, который станет мощной базой для планирования новых экспериментальных разработок, для интерпретации новых результатов геномных, протеомных исследований, а также для выполнения работ по предиктивной фармакологии. Будущее биоинформатики связано с развитием экспериментальной геномики для пациентов с разработкой типичного сценария развития организма человека, начиная с постнатального периода, что должно произвести революцию в медицине и здравоохранении.

Передовые методы биомедицинской диагностики, стоящие на стыке таких наук, как медицина, физика и биология, требуют системного подхода к информационному обеспечению, которое в данном случае должно способствовать получению, хранению, обработке, анализу и обмену результатами исследований в рамках выполнения многоцентровых программ.

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

1. Арчаков А.И. Биоинформатика, геномика и протеомика – науки о жизни XXI столетия//Вопр. мед. химии. 2000. № 1. С. 13 – 18.

2. Арчаков А.И. Что за геномика? – Протеомика//Вопр. мед. химии. 2000. № 1. С. 19 – 24.

3. Горбунова В.Н., Баранов В.С. Введение в молекулярную диагностику и генотерапию наследственных заболеваний. – СПб.: Спец. лит, 1997. – 287 с.

4. Горшкова Ю.В., Трегубов А.В. Информационные технологии в лаборатории прикладной фармакокинетики//Проблемы стандапртизации в здавоохранении. 2005. № 11. С. 129 – 132.

5. Ивахно С., Карнелюк А. Количественная протеомика и еѐ применение в системной биологии//Биохимия. 2006. Т. 71. № 10. С. 1312 – 1327.

6. Сарвилина И.В., Каркищенко В.Н., Горшкова Ю.В. Междисциплинарные исследования в медицине. – М.: Техносфера, 2007. – С. 15 – 56.

7. Blackstone N.B., Green D.R. The evolution of mechanism of cell suicid//Bioessays. 1999. Vol. 21. № 1. pp. 84 –88.

8. Fiser A. Protein Structure modeling in proteomics era// Expert Rev. Proteomics. 204. Vol. 1. № 1. pp. 97 – 110.

9. Gerber S.A., Rush J., Stemman O. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS//PNAS. USA. 2003. Vol. 100. № 12. pp. 6940 – 6945.

10. Lander E.S. Array of Hope//Nature Genet. 1999. Vol. 21. pp. 3 – 4.

PAGE \* MERGEFORMAT 2

Другие похожие работы, которые могут вас заинтересовать.вшм>

11839. Всестороннее изучение и характеристика особенностей «дорожного картирования» 134.15 KB
Объект исследования: дорожные карты а предмет – создание и использование дорожных карт. Дорожные карты могут помочь сосредоточиться на долгосрочном планировании улучшить взаимо связи независимость проектов являясь базой для корпоративного научнотехнического планирования идентификации потребностей сильных и слабых сторон корпорации. Для каждой продуктовой линии дорожные карты согласуют рыночную стратегию с технологическими планами и планами по продуктам. ДДорожные карты помогают сконцентрировать внимание на долгосрочном планировании...
11932. 17.7 KB
Созданный метод электромагнитного картирования в высоких широтах с использованием разработанного мощного контролируемого источника экстремально низкочастотного диапазона включающий в себя методики решения прямых задач рекомендации к проведению экспериментов и современные методы интерпретации результатов таких экспериментов представляется особенно актуальным для исследования перспективных но в то же время труднодоступных для изучения высокоширотных регионов. Решение проблемы электромагнитного картирования в высоких широтах с использованием...
13544. Биомеханические основы ИВС 3.12 MB
При температуре 4град. Удельный вес дистиллированной воды при t 4град. Повышение или понижение t воды приводит к изменению удельного веса. Наличие в воде солей или других примесей также приводит к увеличению удельного веса.
10320. Основы менеджмента 86.1 KB
Организация – это открытая система взаимодействующих и управляемых частей подразделений людей и т. Управление – это процесс распределения и движения пяти видов ресурсов в организации с заранее заданной целью по заранее разработанному стратегическому плану с непрерывным контролем результатов работ. Адаптивное управление – это приспосабливающееся к новой обстановке окружающей среде управление с изменением планов и моделей в зависимости от складывающейся ситуации. Существуют так называемые уровни управления – это уровни в дереве иерархии.
17816. Основы Linux 45.52 KB
Войти в свой домашний каталог. Для этого нужно сделать команду cd Вы находитесь в своем рабочем каталоге. Здесь хранятся ваши пользовательские файлы и настройки программ, которые вы используете. Создать следующую структуру каталогов и файлов,в домашнем каталоге создать каталог inform...
6066. Основы термодинамики 40.26 KB
При расширении газа элементарная работа которую он совершает при перемещении поршня на бесконечно малое расстояние равна где сила действующая со стороны газа на поршень. Если давление газа а площадь поршня то и тогда. Произведение равно очевидно увеличению объема газа...
3779. Основы геоинформатики 31.41 KB
В учебно-методическом пособии изложены программа дисциплины, варианты контрольных заданий, темы практических занятий, вопросы к зачету, рекомендуемая литература, приведены примеры выполнения и требования к оформлению контрольных работ.
4449. Логические основы ЭВМ 40.08 KB
Основы математической логики; логические законы. Основные логические элементы; логические схемы. Полусумматор, сумматор. Триггер.
11759. Основы правовой статистики 1.34 MB
При этом правовые явления и процессы рассматриваются в динамике развитии; взаимосвязи что позволяет выявить причинно-следственные связи развития; сравнении и сопоставлении что позволяет установить специфику и типические черты изучаемого явления. В установлении и количественное выражение закономерностей и взаимозависимости массовых явлений статистическая наука опирается на закон больших чисел особенность которого состоит в том что правильности и закономерности массовых явлений могут отчетливо быть обнаружены только при их массовом...
14754. ОСНОВЫ ФИНАНСОВОГО ПРАВА 12.06 KB
Финансовая деятельность государства и финансовая система Республики Беларусь. Финансовый контроль в Республике Беларусь. Бюджетное право Республики Беларусь. Бюджетное устройство и бюджетная система Республики Беларусь.

Функциональная геномика тесно соприкасается и фактически перекрывается с новейшим направлением биологии, получившим название "протеомика " - наука о протеомах. Слово "протеом" образовано от слова "протеин" (белок) и окончания слова "геном", так что в самом названии как бы слиты воедино «белок» и «геном» (ДНК). Это подчеркивает их теснейшую взаимосвязь. Однако, между геномикой и протеомикой, между геномом и протеомом есть одно фундаментальное различие, которое вызывает к жизни совершенно новые ме- тоды исследования, новые стратегии.

Протеом - понятие динамическое, тогда как геном стабилен и постоянен, иначе было бы невозможно передать наследственные свойства от поколения к поколению, обеспечить сохранение видов и т.д. Изменчивость генома всегда происходит на фоне его высокой стабильности и ни в коей мере ее не отменяет. Протеом - набор белков данной клетки в данной фазе ее развития в данный момент времени, т.е. меньше генома по общему объему информации. В любой клетке человеческого организма никогда не функционируют все примерно 80 тыс. генов, работает лишь их часть - иногда меньшая, иногда большая. Хотя точные цифры привести пока трудно, но в обычной специализированной клетке, например, в клетке печени или легкого, одновременно присутствуют, вероятно, не более 10 тыс. белков, причем, в резко различных количествах - от нескольких молекул на клетку до нескольких процентов общего клеточного белка. Набор белков постоянно меняется в зависимости от фазы клеточного деления, тканевой специализации клетки, стадии ее дифференцировки, принадлежности к нормальным или злокачественным клеткам, состояния стресса или покоя, воздействия внеклеточных физиологически активных веществ и так до бесконечности. Поэтому белковый "портрет" клетки зависит от множества факторов и воздействий, подвержен практически непрерывным изменениям, что делает его изучение особенно трудным.

Существует «букет» протеомных технологий; каждая имеет свои достоинства и недостатки. Остановимся на двух, наиболее эффективных. Сложную смесь белков, экстрагированных из клетки, можно подвергнуть разделению на носителе (обычно это полиакриламидный гель) в двух направлениях: в одном-белки будут делиться по размерам (молекулярной массе), в другом - по электрическому заряду (изоэлектрической точке). В результате, получается двумерная, карта, содержащая многие сотни точек, каждая из которых соответствует одному или нескольким белкам.

Если исследователя интересует какая-то группа белков, можно ее выделить на «карте» и подвергнуть повторному разделению в несколько измененных условиях с более высоким разрешением. Сейчас в банках данных хранится информация о множестве разных типов клеток, белки которых были подвергнуты электрофоретическому разделению в двух направлениях. Компьютер умеет сравнивать такие двумерные «белковые карты» и вычленять то, что у этих типов клеток одинаково, а по каким белкам они различаются.

Метод «двумерных карт» непрерывно совершенствуется, и большинство индивидуальных белковых точек, которые видны на этих «картах», уже идентифицированы или находятся в процессе идентификации.

Наиболее современный метод идентификации белков состоит в том, что исследуемый белок подвергают расщеплению на фрагменты (пептиды) с помощью того или иного фермента (протеазы). Затем полученные пептиды разделяют, обычно с помощью хроматографии под высоким давлением, а потом каждый из индивидуальных пептидов помещают в масс-спектрометр и узнают его массу. Сравнение полученных результатов с имеющимися в базах данных по белкам позволяет надежно опознать белок, если его структура известна. Для неизвестного белка этот метод помогает найти "родственников", а следовательно, сформулировать предварительное представление о его возможной функции.

Изменчивость протеома связана не только с тем, что в данный момент времени работает одна часть генов, а в другой момент - иная. Набор белков сильно зависит от процессов, протекающих на пути от ДНК к матричной РНК (мРНК). Здесь большая часть первичных генных продуктов (РНК) подвергается так называемому «альтернативному сплайсингу», суть которого состоит в том, что до образования зрелой матричной РНК из нее удаляются разные части молекулы. В результате, один ген может породить множество белков, различающихся первичной структурой. Таким образом, стало очевидно, что одна из старых догм биохимии и молекулярной биологии - "Один ген - один фермент" - нуждается в модернизации. Для очень многих случаев справедлива формула: "Один ген - много белков".

В этой связи, необходимо отметить, что после синтеза, белки претерпевают множество химических изменений (модификаций), которые создают их огромное разнообразие, хотя исходно они кодированы одним геном. К числу таких модификаций относятся реакции фосфорилирования, ацетилирования, метилирования, гликозилирования и многие другие. Если учесть, что на большом белке есть множество мест, где эти модификации могут происходить, то легко себе представить, какое практически бесконечное разнообразие форм одной и той же белковой молекулы может возникнуть. Подавляющее большинство модификаций существенно сказывается на биологической активности данной молекулы белка, а также на ее способности взаимодействовать с другими белковыми молекулами. В итоге, мы приходим к заключению, что когда в клетке работает, скажем 10% всех генов – допустим, 8 тыс., - то количество разных белков может превысить эту величину в 10 раз. Исследователи и раньше догадывались, что такая ситуация возможна, однако, только теперь реально представляют ее истинные масштабы.

Крайне важным разделом протеомики, безусловно, следует считать изучение белок-белковых и белок-нуклеиновых взаимодействий. В течение жизни клетки практически каждый белок при своем функционировании взаимодействует с множеством макромолекул, а также низкомолекулярных лигандов.

Для изучения белок-белковых взаимодействий в последние годы получил широчайшее распространение метод так называемых «дрожжевых двойных гибридов». С помощью генной инженерии создается конструкция, которая состоит из участка ДНК, взаимодействующего с фактором транскрипции, и участка ДНК, кодирующего «ген-репортер», который в свою очередь кодирует белок-фермент, активность которого легко измерить. Фактор транскрипции состоит из двух доминантов и работает только в том случае, когда доминанты взаимодействуют друг с другом. Если надо узнать, взаимодействуют ли два исследуемых белка друг с другом, нужно отчленить фактор транскрипции и к каждому из доминантов присоединить по интересующему нас белку. При их взаимодействии фактор транскрипции восстановит свою активность, что позволит работать «гену-репортеру», и тогда вы обнаружите активность «репортерного белка». Если исследуемые белки не взаимодействуют, белок-фермент не образуется.

Применение двугибридной системы к белкам человека и других организмов позволило доказать, что существует огромное число белок-белковых контактов самого разного типа и, кроме того, обнаружить множество ранее неизвестных белок-белковых взаимодействий. Эта информация исключительно важна для идентификации компонентов сигнальных путей в клетке. Как правило, в передаче сигналов от поверхности клетки к ядру участвуют «белки-посредники», часто находящиеся в клетке в ничтожных концентрациях, поэтому анализ сигнальных путей для экспериментаторов сильно затруднен. Выявление белок-белковых взаимодействий резко изменило ситуацию.

При анализе белок-нуклеиновых взаимодействий широко используют методы «химической сшивки» этих компонентов (например, сотрудниками академика А.А. Богданова выявлены многие важные взаимодействия внутри рибосомных частиц, где осуществляется биосинтез белков в клетке).

Другой удобный метод - изменение электрофоретической подвижности при комплексообразовании, с помощью которого проанализировано множество ДНК-белковых и РНК-белковых контактов. Оригинальный вариант этого метода в сочетании с «химической сшивкой» разработан академиком А.Д. Мирзабековым и применен для раскрытия структуры нуклеосомы - элементарной структурной единицы, состоящей из ДНК и белков-гистонов, из которых построены все хромосомы.

) — наука, изучающая белковый состав биологических объектов, а также модификации и структурно-функциональные свойства белковых молекул.

Описание

Протеомный анализ направлен на одновременное изучение многих индивидуальных , совокупность которых составляет определенную систему, что характеризует исследуемый объект в целом. Предметом изучения протеомики являются синтез, модификация, декомпозиция и замена белков исследуемого объекта. После расшифровки человека и геномов многих других организмов появились исчерпывающие базы данных о структуре всех белков человека и многих других организмов, а также их протеолитических фрагментов, полученных в стандартных условиях, что позволяет идентифицировать белки по молекулярной массе их протеолитических фрагментов. Развитие протеомики обусловлено использованием высокотехнологичных методов, позволяющих определить количество того или иного белка в образце, идентифицировать белок, его первичную структуру и пост-трансляционные модификации. В настоящее время большая часть работ в протеомике выполняется с использованием метода 2-D PAGE (двумерного -электрофореза в полиакриламиде). Однако в последнее десятилетие получают все более широкое применение высокотехнологичные методы, обладающие большей эффективностью, информативностью и чувствительностью, такие, как микросеквенирование белков, высокоэффективная жидкостная хроматография, а также использование белковых чипов с различными типами детекции, таких, как SELDI Protein Chip. Белковые чипы основаны на связывании определенных белков со специфически взаимодействующими или связывающимися с ними молекулами. Взаимодействие может строиться по типу антиген– , –лиганд, белок–белок, –субстрат или белок– . Чипы считываются и идентифицируются с помощью . В настоящее время в медицине применение методов протеомного анализа позволяет выявить маркеры сердечно-сосудистых и онкологических заболеваний на ранней стадии заболевания (клиническая протеомика). Клиническая протеомика - это идентификация и количественное определение всех индивидуальных белков, которые содержатся в биологическом образце (сыворотка крови, спинномозговая жидкость, моча, ткань) и мониторинг изменения их концентраций. Методы протеомного анализа позволяют проанализировать до 10 000 индивидуальных белков в одном образце и зафиксировать изменения их концентраций, что позволяет проводить диагностику и мониторинг течения заболевания.

Авторы

  • Народицкий Борис Савельевич
  • Ширинский Владимир Павлович
  • Нестеренко Людмила Николаевна

Источники

  1. Арчаков А.И. Биоинформатика, геномика и протеомика - науки о жизни XXI столетия // Вопросы медицинской химии. 2000. №1. - http://medi.ru/pbmc/8800101.htm (дата обращения: 12.10.2009).
  2. Conrotto P., Souchelnytskyi S. Proteomic approaches in biological and medical sciences: principles and applications // Exp. Oncol. 2008. V. 30, №3. P. 171–180.
  3. Reddy G., Dalmasso E. A. SELDI ProteinChip® Array Technology: Protein-Based Predictive // Medicine and Drug Discovery Applications. Biomed Biotechnol. 2003. V. 4. P. 237–241.

Отечественному биологу, особенно, молекулярному, все реже и реже приходится писать на родном языке. Понятно, что бóльшая часть научных статей в нашей области создается на нынешнем языке научного общения - английском. Поэтому вместо вступления хочу поблагодарить главного редактора «Биомолекулы» - это он каким-то образом смог заставить меня написать этот текст, пробудив не то графоманский зуд, не то воспаленное эго, не то просто любовь к русскому языку. Но писать мне было легко: волею судеб я уже более пятнадцати лет занимаюсь одним и тем же - идентификацией и количественным анализом белков. То есть тем, что сегодня называется протеомикой . Практически всё, что я об этом знаю, по возможности доступно изложено в следующих строках.

Генеральный партнер цикла - компания : крупнейший поставщик оборудования, реагентов и расходных материалов для биологических исследований и производств.

Одна из главных миссий «Биомолекулы» - докопаться до самых корней. Мы не просто рассказываем, какие новые факты обнаружили исследователи - мы говорим о том, как они их обнаружили, стараемся объяснить принципы биологических методик. Как вытащить ген из одного организма и вставить в другой? Как проследить в огромной клетке за судьбой нескольких крошечных молекул? Как возбудить одну крохотную группу нейронов в огромном мозге?

И вот мы решили рассказать о лабораторных методах более системно, собрать воедино в одной рубрике самые главные, самые современные биологические методики. Чтоб было интереснее и нагляднее, мы густо проиллюстрировали статьи и даже кое-где добавили анимации. Мы хотим, чтобы статьи новой рубрики были интересны и понятны даже случайному прохожему. И с другой стороны - чтобы они были так подробны, что даже профессионал мог бы обнаружить в них что-то новое. Мы собрали методики в 12 больших групп и собираемся сделать на их основе биометодический календарь. Ждите обновлений!

Я был доволен, дней мне не хватало, и жизнь моя была полна смысла.
Братья Стругацкие. Понедельник начинается в субботу
- Десять лет, - со смехом проговорил он, жуя. - Вот через столько он что-нибудь напишет.
Джеймс Джойс. Улисс (пер. с англ. В. Хинкиса и С. Хоружего)

Часть 1. До генома. Идентифицировать можно только то, природу чего ты понимаешь

Физики шутят: «В вашем деле все пойдет на лад, когда биология станет химией, а химия - физикой ». История протеомики до ее современного состояния немного напоминает эту шутку. Физики создали могучую технику, а когда науки о жизни стали модной тенденцией, попробовали использовать ее для анализа белков. Вначале разработка физических инструментов стимулировала их использование в биологии и медицине, а результаты - демонстрационные - только намекали на какие-то реальные достижения. Сейчас тот самый момент, когда в этой области просматривается серьезный результат, в том числе для медицины. Я попробую здесь рассказать о развитии высокопроизводительного анализа белков - протеомики, - которое наблюдаю давно, и наблюдаю глазами биолога. Может быть, физики опять пошутят, а вот коллегам-биологам и врачам будет немного легче понять суть происходящего.

Рисунок 1. Главные протеомные вехи. 1950 г. - Группа шведа Пера Эдмана предложила химический метод секвенирования пептидов. 1951–1955 гг. - Под началом британца Фредерика Сэнгера определили структуру короткого белка инсулина и доказали, что отдельные белки не аморфны в плане состава, а обладают постоянной последовательностью аминокислотных остатков. 1959 г. - Американцы Розалин Ялоу и Соломон Берсон создали первый иммуноанализ, в том числе для определения белков. 1967 г. - Создали первый автоматический белковый секвенатор, работающий по методу Эдмана. 1970 г. - Швейцарец Ульрихом Лэммли предложил оптимальный метод гель-электрофореза белков в денатурирующих условиях - с использованием додецилсульфата натрия. 1975 г. - Американец Патрик О’Фарелл и немец Йоахим Клозе независимо изобрели 2D-электрофорез белков и получили первые протеомные карты. 1984 г. - Под руководством американца Джона Фенна разработали ионизацию молекул электрораспылением. Впоследствии она позволила осуществлять масс-спектрометрию макромолекул, включая белки, без их разрушения. 1985 г. - Коичи Танака из Японии предложил мягкую ионизацию макромолекул лазером для масс-спектрометрии. Немцы Франц Гилленкамп и Михаэль Карас применили сходный метод для белков и пептидов. Возник метод ионизации MALDI. 1993-1996 гг. - Несколько групп исследователей предложили идентифицировать белки при помощи масс-спектрометрии фрагментов протеолиза и поиска по предсказанной из генома последовательности. Возникла масс-спектрометрическая пептидная карта (пептидный фингерпринт, или дактилоскопия). 1994 г. - Термин «протеом» как белковое дополнение к геному ввел австралийский аспирант Марк Уилкинс. 1994–1999 гг. - Появились первые поисковые программы для идентификации белков масс-спектрометрией по геномным последовальностям. Протеомика стала доступна широкому кругу пользователей. 1999–2001 гг. - Скорострельная (shotgun ) протеомика. Несколько научных групп предложили применять для идентификации смеси пептидов совмещение высокоэффективной жидкостной хроматографии и тандемной масс-спектрометрии. Использовали ионизацию электрораспылением. 2000–2005 гг. - Российский физик Александр Макаров, работающий за рубежом, изобрел ионную ловушку нового типа - Orbitrap . Приборы на основе Orbitrap ввели в эксплуатацию. Масс-спектрометрия высокого разрешения демократизировалась и начала широко использоваться в протеомике. 2005 г. - Американцы Кристи Хантер и Ли Андерсон продемонстрировали использование масс-спектрометрического метода мониторинга множественных реакций (MRM ) для количественного анализа природных пептидов. Возникла направленная (таргетная) протеомика. 2007 г. - Под руководством американца Стивена Гиги предложили новый метод оценки уровня ложноположительных результатов скорострельной протеомики с использованием «фальшивых» последовательностей (анализ ). 2012–2014 гг. - Скорострельная протеомика достигла уровня идентификации около 10 тысяч белков человека в одном образце - примерно половины кодируемых в геноме. Под руководством немца Бернхарда Кустера и американца Ахилеша Пандея независимо были опубликованы работы, декларирующие черновые версии полного протеома человека.

Переместимся в то время, когда матричные процессы передачи информации в клетке уже были вчерне изучены (рис. 1). Было понятно, как in vivo синтезируются белки, из каких аминокислот они состоят. В то же время, в начале 1980-х годов, уже развилась молекулярная иммунология, возникла техника получения моноклональных антител . Начали развиваться методы получения рекомбинантных белков, подпитываемые изобретением полимеразной цепной реакции . Достигли совершенства методы разделения биомолекул - разные виды хроматографии и электрофореза .

Ферментативная активность - первые знания о белках

Чтобы поставить задачу «идентификации» белка в биологическом образце, уже было необходимо осознавать существование криковской «догмы» молекулярной биологии , в которой код нуклеиновой кислоты с информационными потерями конвертируется в аминокислотную последовательность. Идентификация некоторого соединения - это установление его структуры, в случае полипептида - полное или частичное определение его последовательности, иными словами, секвенирование . Следующей стадией будет не только идентификация (то есть, качественный анализ белка), но и определение его концентрации - количественный анализ. Интересно, что понятие об определении активности белка развилось еще до того, как установили его химическую природу. Примерно говоря, ферментативная активность свежего мясного фарша (то есть, гомогенизированной мышцы млекопитающего) могла быть установлена простыми спектрофотометрическими методами еще в начале XX века (рис. 2), когда химическая основа жизни оставалась неизвестной. Однако белковый катализатор, осуществляющий эту реакцию, можно было оценить количественно в условных единицах активности. И до сих пор в клинике многие биомаркеры определяют в таких условных единицах - например, аланиниаминотрансферазу и аспартатаминотрансферазу , несмотря на то, что современная техника способна определить их абсолютное количество. В случае многих ферментов определение активности и удобно, и правильно, поскольку часть молекул может не работать вследствие инактивации, при этом присутствуя в образцах.

Это внутриклеточные ферменты, организующие в клеточных митохондриях связь метаболизма углеводов и аминокислот. Их появление в крови свидетельствует о разрушении клеток печени.

Антитело как идентификатор от противного

Кроме оценки активности, с 1970-х годов у исследователей появилась еще одна возможность количественно измерять белки, не зная их структуры. Речь идет об использовании антител, особенно моноклональных , получение которых изобрели в 1975 г.; подробнее об этом рассказывает статья «12 методов в картинках: иммунологические технологии » . Антитела можно вырабатывать к очищенным компонентам, а можно и к целым тканям, клеткам или фракциям. Причем если они моноклональные, то система их получения и их аналитические характеристики сохраняются без изменений от одной партии к другой. Если мы знаем, против чего были антитела, то есть использовали очищенный и идентифицированный другим, «ортогональным» методом антиген, то полученное связывающее вещество - антитело - может широко использоваться для его повторной идентификации в сложных смесях. Интереснее с антителами, полученными к неизвестным антигенам. Не имея понятия о структуре антигена, такие антитела стали использовать для диагностики злокачественных опухолей. Некоторые из них связывали намного больше своего антигена у больных людей, чем у здоровых. Методику оценки стандартизовали и стали использовать такие моноклональные антитела для диагностики, точно не зная химической структуры антигена. Ярким примером такого подхода служит гликопротеин CA-125, открытый Робертом Бастом с соавторами в виде антитела к нему в далеком 1981 году . Лишь значительно позже идентифицировали ген этого продукта и сам белок - муцин 16 .

Выделение чистых белков и секвенирование по Эдману

Тем не менее к 1970-м годам биохимиков перестала удовлетворять работа вслепую, например, измерение активности ферментов и других соединений без представлений об их химической структуре. Появились способы очистки белков, которые сочетали принципы хроматографии, электрофореза, центрифугирования, некоторые из которых исчезли из обращения, а другие используют до сих пор . Отдельной задачей было подтвердить чистоту соединений во фракциях после очистки. Для этого использовали спектральные методы (от простых до сложных), а также визуализацию окрашенных полос при электрофорезе. Получение из биоматериала выделенного хотя бы до 90% чистоты белка без использования антител и других специфических связующих веществ и тогда, и сейчас - длительный трудоемкий процесс. 1970–1980-е годы - золотой век развития методов разделения белков, когда заливали огромные гели для электрофореза, конструировали метровые колонки для ручной и автоматической хроматографии.

Если вам повезло, то после нескольких месяцев или лет кропотливой работы вы убедились, что в пробирке или в геле находится ваш «товар» - белок, функцию которого вы изучаете. Какие варианты его идентификации у вас есть, если вы пока в веке двадцатом? Во-первых, если у вас есть гипотеза по поводу того, что в вашей пробирке, вы можете использовать известные антитела, если они есть в продаже или любезно предоставлены владельцами. Конечно, если сегодня доступны антитела разных видов к большинству белков человека и модельных животных, в то время их ассортимент был гораздо более скромным. Поэтому шанс на окраску интересующей вас молекулы антителами очень мал. Но не отчаивайтесь! Еще в 1950-е годы шведский химик Пер Эдман разработал метод секвенирования пептидов (рис. 3).

Рисунок 3. Секвенирование белков по Эдману. Если обработать пептид изотиоцианатом фенила (ФИТЦ ), электрофильный атом углерода на изотиоцианатном радикале при умеренном подщелачивании взаимодействует с нуклеофильным азотом незаряженной аминогруппы. В итоге на N-конце пептида образуется фенилтиокарбомоильный радикал. Если умеренно закислить реакционную смесь, он отщепляется, увлекая с собой N-концевую аминокислоту, с образованием тиазолинона со специфичным радикалом, характеризующим эту аминокислоту. При этом остальная часть аминокислотной цепи остается неизмененной. Особое производное, которое будет отличаться по присущему аминокислоте радикалу, еще раз преобразуют в кислых условиях - для стабилизации - и анализируют хроматографически. Так можно отличить такие производные для всех аминокислот, поскольку из-за характерного радикала они будут характеризоваться своим временем выхода с обращенной фазы . Если белок или пептид, который мы анализируем, присоединен к твердофазному носителю, производное N-концевой аминокислоты можно смыть и анализировать отдельно, а цикл анализа повторить, выстраивая таким образом аминокислотную последовательность.

Метод Эдмана был по тем временам очень прогрессивен. Он с высокой точностью предоставлял последовательность до 30 аминокислотных остатков. Характеризовался достаточно высокой чувствительностью, будучи способным секвенировать пептиды в количестве менее 0,1 нмоль с 99% точностью. Более того, в конце 1960-х его автоматизировали в виде пептидного секвенатора, где робот-раскапыватель поочередно снимал N-концевые производные с полипептидов, закрепленных на специальной бумаге, направляя их затем в хроматограф. Но исследователям опять хотелось большего - их не устраивала необходимость в очистке пептидов и белков перед секвенированием, а также некоторые другие ограничения эдмановского метода, в частности, его неспособность секвенировать продукты с модифицированным N-концом.

Небольшой интерес к методу Эдмана существует до сих пор, в особенности, для белков и пептидов тех организмов, последовательность которых нельзя предсказать из данных секвенирования нуклеиновых кислот . В этом методе реализуется прямой анализ, где ошибки связаны с технической погрешностью. Последовавшие за ним способы анализа аминокислотной последовательности содержат элементы предсказания, поэтому к техническим ошибкам в них прибавляются алгоритмические (см. ниже).

Двумерный электрофорез - первая карта протеома

Как я уже упоминал выше, при подготовке к качественному и количественному анализу белков использовали обычные методы разделения молекул , в том числе электрофорез. В 1970 году в электрофорезе белков произошла методическая революция - швейцарец Ульрих Лэммли предложил оптимальный метод гель-электрофореза в денатурирующих условиях. Белки жестко денатурировали амфифильным веществом, вроде мыла - додецилсульфатом натрия , - за счет чего каждая молекула покрывалась слоем из этого детергента. Суммарный отрицательный заряд такого комплекса оказывался примерно пропорционален молекулярной массе белка. Это позволяло делить белки в полиакриламидном геле хотя и с помощью электрического поля, но по молекулярной массе. По справедливости отметим, что Лэммли не изобрел метод de novo , а лишь оптимизировал его по существующим в литературе предпосылкам. За это, кстати, его работа сейчас входит в пятерку самых цитируемых в мире научных статей . Разработки в этой области публиковали и ранее, в том числе в 1967 г. американец Арнольд Шапиро с соавторами .

Хорошо принятый метод Лэммли стал совершенствоваться и комбинироваться с другими видами разделения белков. В 1975 году американец Патрик О’Фарелл и немец Йоахим Клозе независимо предложили комбинировать денатурирующий электрофорез в геле с предварительной электрофокусировкой белков. Фокусировку проводят в относительно тонкой, толщиной с гель (1–2 мм) стеклянной трубке . Трубку заполняют гелем со специальными полимерами - амфолинами , - которые способны создавать в ней неподвижный градиент рН. Таким образом, при движении в электрическом поле нанесенные в эту трубку белки останавливаются в участке, где амфолинами был достигнут рН, равный изоэлектрической точке молекулы белка. Гель в виде тонкого тяжа выдавливают из трубки и приплавляют к готовой гелевой пластине для обычного денатурирующего фореза по Лэммли, после чего проводят разделение в другом направлении. Белки, вначале распределенные по изоэлектрической точке, теперь движутся в зависимости от их молекулярной массы. Полученный метод справедливо называется двумерным (2D ) электрофорезом (рис. 4). Как можно предполагать, каждый белок на итоговой пластине геля после окраски выглядит не как полоса (в отличие от обычного денатурирующего геля), а как сфокусированное, округлое пятно. Таким образом, О’Фарелл и Клозе впервые показали белковую карту, где каждое пятно на большой пластине геля (до 40×40 см) представляет одну изоформу белка, а его размер и интенсивность - более или менее пропорциональны его концентрации.

Искусные руки биохимиков прошлого многократно усовершенствовали метод двумерного электрофореза, который был ведущим в анализе белков до середины 2000-х годов. Вместо заливки трубок амфолины размещали на готовых полосках. Были предложены разные устройства для приготовления гелевых пластин, разных модификаций процесса электрофореза, причем для разных размеров и толщины геля в зависимости от задачи исследования. По чувствительности совершенствовали красители, в том числе, флуоресцентные. Более того, на волне популярности двумерных гелей, некоторые процессы их приготовления и окраски автоматизировали. Поскольку характеристики окрашенных пятен косвенно связаны с количеством белка в пробе, привлекательно сравнивать изображения гелей, полученные из одних и тех же образцов в различных условиях. Процесс обработки изображений гелей также автоматизировали, причем появилось много конкурирующих компьютерных программ, осуществляющих обработку и сравнение сканов двумерных гелей.

В зависимости от интервала концентраций находящихся в биоматериале белков, число отдельных пятен на двумерных гелях достигало 5 тысяч. С сегодняшней точки зрения очевидно, что это не означает, что на геле визуализированы продукты 5 тысяч генов. Изоформы одного генного продукта, которые отличаются по последовательности за счет гетерозиготности или протеолиза или по более тонкой структуре за счет модификаций остатков, будут, как правило, отражаться в виде отдельных пятен. Например, отщепление одного остатка аргинина от небольшого белка альфа-амилоида так существенно меняло изоэлектрическую точку, что на геле пятно перемещалось примерно на 10 см .

Тем не менее двумерная электрофореграмма с визуализированными тысячами белков может считаться первым протеомом - то есть, первым видом анализа, в котором определяется всё множество белков, присутствующих в биологическом образце, или существенная их доля. Отмечу, что этот метод был развит существенно задолго до появления термина «протеом», но об этом чуть позже.

Предположим, мы проанализировали путем двумерного электрофореза образцы опыта и контроля, например, клеточные линии после обработки лекарственным веществом и без такой обработки. Получили похожие карты-электрофореграммы, но десять пятен после обработки появились, пять исчезли полностью, и еще какое-то количество изменило свою интенсивность. Что нам можно сделать, если мы находимся в 1990 году? Всё, о чем мы говорили ранее. Применить метод Эдмана. Покрасить электрофореграмму антителами, которые есть в наличии, то есть осуществить вестерн-блоттинг . Для обоих вариантов белки с геля с использованием электрического поля переносят на бумажную или подобную ей мембрану, с которой уже осуществляют дальнейшие манипуляции. Ограничения использования антител понятны - они, хоть и чувствительны, видят только свои мишени. Ограничение эдмановского метода здесь - чувствительность. Он хорошо работает от десятков и сотен пмоль белка, а современные красители «видят» пятна, в которых содержатся 2,5–5 пмоль. Учитывая потери при переносе на мембрану и вероятную потребность в расщеплении белков на пептиды, осознаем, что метод Эдмана сможет справиться с меньшей частью из визуализированных на хорошем геле белковых пятен.

«Звездное небо» двумерного электрофореза - первый и последний способ увидеть протеом воочию. Более того, при качественной постановке методики человеческого глаза вполне хватает, чтобы обнаружить отличия между похожими пластинами с гелем. Последующие методы протеомики, рассказ о которых впереди, образуют «большие данные», невидимые, как божество. Это обстоятельство во многом сохраняет популярность «двумерника», который используют по сей день, хотя и не так часто, как раньше. Тем не менее в продаже до сих пор имеется оборудование и программное обеспечение для полного цикла выполнения этой методики.

По личным впечатлениям, двумерный электрофорез белков - одна из самых трудоемких и сложных для выполнения биохимических процедур, в которой используются десятки стадий, реагентов и несколько типов лабораторного оборудования. В лаборатории мы в шутку называли тех, кто ставит двумерный электрофорез, «протеомными художниками». И действительно, постановка метода длится два-три дня и требует существенной концентрации на всех ее этапах. Малейшая оплошность приводит к существенному искажению «картины» на геле. Метод не автоматизируется целиком, что и было одной из причин снижения его популярности. Однако он получил второе дыхание уже на рубеже веков, когда в науку ворвался полный геном, а в протеомику вслед за ним - масс-спектрометрия .

«Диаэм»: современное оборудование для протеомного анализа

Материал предоставлен партнёром - компанией «Диаэм»

Часть 2. Постгеном

Протеомика как постгеномная технология

Появление последовательностей геномов множества организмов, начиная с бактерий и завершая большими геномами растений и животных (в том числе человека ), уменьшило пространство поиска при идентификации белков. За исключением ситуации с секвенированием общей ДНК сложной смеси организмов (так называемого метагенома почвы, содержимого кишечника, океанских вод и т.д.), биохимики обычно представляют, какой организм они анализируют. И это значит, что белки в исследуемом образце синтезированы при помощи потока информации с кодирующих их генов этого организма. Собственно, так и появился термин «протеом » - в 1994 году Марк Уилкинс , австралийский аспирант, предложил его для обозначения белкового, или протеинового дополнения к геному . Геном - прочитанный геном - породил остальные «-омы» , а технологии, позволяющие их анализировать, в конце 1990-х годов почти гипотетические, составили группу постгеномных , или, как их теперь часто называют, омикс-технологий .

Real talk, think about it , господа аспиранты.

Строго говоря, истинные омиксы - это анализ продуктов передачи геномной информации, то есть кодирующих и некодирующих РНК и белков. Остальные омиксы, по сути, косвенные. Они не связаны с генетическим кодом прямым потоком информации и объединяются в группы по химической природе анализируемых соединений. Примечательно, что омикс-технологии производят одновременный анализ тысяч соединений, например, метаболитов, липидов, гликанов и т.д., и называются, соответственно, метаболомикой, липидомикой (частично они перекрываются), гликомикой и т.д. Энтузиасты последнего десятилетия - эпохи слоганов и мемов - придумали невероятное количество «омик», в том числе достаточно комичные. Число разных употреблений суффикса «омика» или «омикс» к 2010 году превзошло две сотни, что позволило пошутить на эту тему даже «гражданскому» Wall Street Journal , обозвавшему процесс «инкризингомикой» .

Явление масс-спектрометрии белковому народу

Точное измерение молекулярной массы химического соединения - желанная цель аналитической технологии. Действительно, это знание решает многие проблемы, а иногда, при наличии дополнительной информации, обеспечивает идентификацию искомого вещества. Масс-спектрометрия - набор методов, направленных на измерение молекулярной массы соединений. Этот подход развивался еще с конца 19 века, когда сэру Джозефу Джону Томсону удалось создать масс-спектрограф, состоящий из газоразрядной трубки, разделяющей по траекториям движения заряженные частицы с разной молекулярной массой. Затем Артур Дэмпстер разработал... Но стоп! В этой статье невозможно охватить всю историю масс-спектрометрии, да в этом и нет необходимости, поскольку это много раз делалось профессионалами . Мне, биохимику по специальности, уместно будет предложить обзор этой увлекательной области в биологическом контексте, чтобы навести мосты между сложной физической техникой и ее биомедицинским применением.

Нам, биологам, придется поверить, что нет никакого другого способа измерить молекулярную массу, кроме как заставить молекулы двигаться. И сразу же после этого поверим в то, что заставить молекулы двигаться можно только в заряженном виде, то есть обратив их в ионы. Так что первый этап масс-спектрометрического анализа (рис. 5) - это ионизация. Первые методы ионизации были жесткими, так что макромолекулы в них не сохранялись. Успехи масс-спектрометрии в биологии, как будет ясно из дальнейшего, связаны с возможностью ионизировать биомолекулы, не разрушая их. После ионизации анализируемые соединения под воздействием электрического поля надо переместить в детектор, который поставит особенности движения молекул в электромагнитном поле в соответствие их молекулярной массе, а точнее, отношению молекулярной массы и заряда. Проще говоря, если две разные молекулы несут одинаковый заряд, но отличаются по массе, приложение к ним одинакового электрического поля заставит их летать по-разному. Если обучить, то есть откалибровать детектор с использованием стандартов с заведомо известными массами, можно, оценивая движение неизвестных ионов, определять их отношение массы к заряду. Если заряд равен единице (то есть мы имеем дело с однозарядными ионами), отношение численно равно молекулярной массе.

Масс-спектрометрия сегодня - гигантская область, активно используемая почти во всех областях промышленности, в химии, биологии, медицине, охране окружающей среды. Более того, в Манхэттенском проекте и, вероятно, в советских ядерных проектах при помощи масс-спектрометра обогащали радиоактивный уран, разделяя его на изотопы. На самом крупном форуме по масс-спектрометрии - конференции Американского масс-спектрометрического общества - ежегодно собирается до 15 тысяч участников. Доля биомедицинских методов в масс-спектрометрии продолжает расти вместе с вложениями в биотехнологии в целом.

Проклятие изотопного распределения

Создание масс-спектрометров совпало по времени с обнаружением у химических элементов разных изотопов . Решая химические задачи в школе или проводя различные биологические эксперименты, мы зачастую не задумываемся, что важные элементы, составляющие органические вещества (C, O, N, S), содержат значимую долю стабильных изотопов, отличающихся по массе от номинальных, указанных в таблице Менделеева. Биологи сталкиваются с радиоактивными изотопами, которые еще недавно использовались для мечения биомолекул. Проблему стабильных и радиоактивных изотопов хорошо знают археологи и палеонтологи - с помощью них они датируют свои находки . Но в большинстве молекулярно-биологических экспериментов помнить об этих примесях нет нужды.

Отношение стабильных изотопов для каждого элемента - это некоторое свойство материалов. Интересно, что такие отношения стабильных изотопов различны в разных средах, например, в пресной и морской воде, в горных породах, а также в разные периоды существования Земли и других небесных тел. Поэтому измерение этого параметра в разных условиях вызывает серьезный интерес в разных областях естественных наук . Но для изучения точных масс белков и пептидов в протеомике существование стабильных изотопов - это своего рода проклятие.

Для упрощения предположим, что в составе измеряемого нами соединения имеется примесь только стабильного изотопа углерода - 13 С. Его доля в массе общего углерода на планете равна примерно 1%. Таким образом, если в нашей молекуле 10 углеродных атомов, а ее номинальная, по таблице Менделеева, молекулярная масса, скажем, равна 152 атомных единицы массы, лишь каждая десятая молекула будет содержать «тяжелый» атом С. И наша молекула будет иметь молекулярную массу не 152, а около 153 Да. Таким образом, масс-спектрометр от одного соединения зарегистрирует не один пик, а несколько. Первый будет содержать номинальную массу, деленную на заряд (m/z) - при единичном заряде - 152, второй - в 10 раз ниже по интенсивности, которая просто отражает относительное число молекул такой массы, с m/z = 153 Да . Поскольку по статистике будут существовать молекулы с двумя и более «тяжелыми» атомами, их пики также могут находиться в спектре, но из-за малой интенсивности могут не преодолеть чувствительности детектора.

Современные масс-спектрометры способны разрешить пики с разностью молекулярных масс намного меньше 1 Да.

Теперь представим похожее соединение, но оно уже будет включать 100 углеродных атомов. Пусть его номинальная молекулярная масса будет равна 1502 Да. Легко понять, что число молекул, содержащих хотя бы один «тяжелый» атом, в этом случае будет превышать таковое с номинальной молекулярной массой. Из нескольких пиков, которые будут соответствовать разному числу атомов изотопа 13 С, самым высоким в этом случае будет уже второй пик, с m/z примерно равным 1503 Да. А что будет, если мы будем снимать масс-спектр соединения размером с небольшой белок, с массой свыше 10 000 Да? Значительное число одинаковых в химическом плане , но разных по изотопному составу молекул образуют целый лес пиков в масс-спектре, причем самый интенсивный из них будет находиться далеко в середине этого набора пиков, а по молекулярной массе он будет значительно отличаться от номинальной, так называемой моноизотопной молекулярной массы соединения (рис. 6). Например, моноизотопная масса сывороточного альбумина крупного рогатого скота, столь любимого биохимиками белкового стандарта, равна 66 389,86 Да, тогда как «средняя» (average) масса, соответствующая самому интенсивному пику на масс-спектре, составляет примерно на 43 Да больше!

Накапливаются сведения о разном поведении стабильных изотопов одного и того же элемента в химических и биологических процессах . Однако в большинстве случаев работает допущение, что свойства соединений одного строения с разным изотопным составом одинаковы.

Рисунок 6. Схемы изотопного распределения молекул от низкомолекулярных метаболитов до белка. Чем тяжелее ион, тем ниже интенсивность самого высокого пика. Красной отметкой показана моноизотопная масса - она рассчитывается, как будто в веществе присутствует только основной изотоп.

Число ионов каждого вещества, перенесенного в детектор масс-спектрометра, очевидно, составляет сумму интенсивностей всех изотопных пиков, относящихся к соединению. Также это количество можно выразить в виде площади под касательной, проходящей по вершинам этих пиков. Представим, что в детектор поступили несколько тысяч ионов аминокислоты массой 150 Да и столько же - белка массой 15 000 Да. Аминокислота даст 2–3 основных, очень высоких пика, причем первый будет самым интенсивным, а белок - несколько десятков, но гораздо более низких, с вершиной этой пологой горки где-то посередине. Ясно, что высокую скалу, стоящую посреди ровной степи, заметить гораздо проще, чем маленький холмик, края которого еще и сливаются с высокой травой - техническим шумом, сопровождающим запись масс-спектра.

Итак, чувствительность масс-спектрометра характеризуется обратной зависимостью от молекулярной массы анализируемого соединения . Чем выше эта масса, тем менее интенсивен максимальный пик среди всех изотопных вариантов соединения. Кроме того, огромное количество этих пиков затрудняет интерпретацию масс-спектра. Вот почему в современной протеомике белки перед анализом чаще всего разлагают на пептиды молекулярной массой 500–2500 Да, обозначая такой подход «протеомикой снизу вверх» (bottom-up ). Именно такие пептиды удобно анализировать в масс-спектрометре. Расщепление белков обычно проводят наиболее специфичной из протеаз - трипсином , который с высокой специфичностью осуществляет протеолиз по пептидной связи правее остатков лизина и аргинина. Потребность в расщеплении белков я называю проклятием, поскольку при этом происходит потеря информации. В современных протеомных конвейерах, где такое расщепление производится без предварительного разделения, белки после анализа приходится собирать заново, разумеется, небезошибочно. Ситуация напоминает сборку нуклеотидных последовательностей после секвенирования нового поколения , но у последней есть преимущество, поскольку там фрагменты гораздо чаще перекрываются друг с другом.

Несмотря на огромную путаницу в масс-спектрах больших белков, многие исследователи продолжают работу с ними без расщепления. Такой подход называют протеомикой «сверху вниз» (top-down ). Для получения качественных масс-спектров целых белков используют мощные детекторы сверхвысокого разрешения. Тем не менее пока не удалось создать метод top-down , надежно и воспроизводимо анализирующий белки в масштабах целого протеома.

Масс-спектрометрия MALDI-TOF и пептидная дактилоскопия

В 1980-е годы в масс-спектрометрии стал развиваться подход к ионизации молекул лазером при их сокристаллизации со светочувствительным органическим веществом - так называемой матрицей. Матрица окружает молекулы анализируемого вещества, а при освещении лазером определенной длины волны она поглощает его энергию, ионизируется сама и способна - по не вполне ясному до сих пор механизму - эффективно ионизировать соседние молекулы вещества. Оказалось, что при некоторых условиях такой вид ионизации - опосредованная матрицей лазерная десорбция-ионизация (matrix-assisted laser desorption ionisation , MALDI ) - обеспечивает ионизацию биомолекул без их распада. Как только это стало ясно, метод ворвался в биологию, а одному из его авторов, который первым показал MALDI для белков, - японцу Коити Танаке - в 2002 году присудили Нобелевскую премию по химии . Ионизацию MALDI совместили с простым масс-спектрометрическим детектором - времяпролетным (time-of-flight , TOF ), в котором ионы летят в вакуумной трубе, достигая детектора в виде чувствительной к ионам пластины (фотоэлектронного умножителя) (рис. 7). Время, за которое ионы одного заряда преодолеют длину трубки, будет обратно пропорционально их молекулярной массе.

Обычно матрицы представляют собой низкомолекулярные органические кислоты, производные коричной, бензойной и других кислот.

Совместно с Джоном Фенном, применившим для биомолекул ионизацию электрораспылением, и Куртом Вютрихом (вообще за ЯМР). Примечательно, что исследование К. Танаки было обнародовано в виде патента, а его основная статья опубликована в скромном специализированном журнале Rapid Communications of Mass Spectrometry . Сам он - инженер-исследователь в частной компании - не имел ученой степени. Как и во многих других случаях, в присуждении премии Танаке было противоречие. Одновременно большой вклад в применения MALDI для белков внесли немцы Франц Гилленкамп и Михаэль Карас.

В 1990-е и в начале 2000-х простой и надежный MALDI-TOF-масс-спектрометр стал одной из рабочих лошадок протеомики. Как было сказано выше, основным методом разделения белков в масштабах протеома в то время был двумерный электрофорез. Если вырезать из геля пятно с белком некоторой степени очистки и расщепить связанный с гелем денатурированный белок трипсином, совокупность пептидов этого изолированного белка составит более или менее уникальный набор молекулярных масс - по крайней мере, в пределах отдельно взятого протеома. Это происходит, в первую очередь, из-за высокой специфичности трипсина и уникального распределения лизина и аргинина, по которым происходит расщепление, в разных последовательностях. Набор масс пептидов каждого белка напомнил исследователям об использовании для идентификации личности отпечатков пальцев, поэтому новый подход получил название масс-спектрометрического пептидного картирования , пептидного фингерпринта , или, как лучше сказать по-русски, пептидной дактилоскопии (рис. 8) .

Идея пептидной карты белка пришла к масс-спектрометрии через развившуюся к тому времени высокоэффективную жидкостную хроматографию . Очищенные белки могли расщепляться протеазой на пептиды, а их анализ на хроматографе давал уникальную пептидную карту. Если определить стандартизированное время выхода каждого из пептидов с хроматографической колонки, по такой хроматографической пептидной карте можно идентифицировать белок . Теперь такой параметр, как время выхода, решено было заменить на более точный и легко формализуемый показатель - определяемое в масс-спектрометре отношения массы к заряду пептидного иона.

Как же формально оценить соответствие наблюдаемого масс-спектра и теоретических представлений о последовательностях белков? Вначале необходимо «расщепить» все белки трипсином виртуально и составить из них базу данных для сравнения со спектрами. Вот тут протеомика и становится постгеномной - ведь без теоретических последовательностей комбинаций станет слишком много, и прогнозирование совпадения перестанет быть возможным. Далее необходим метод оценки вероятности того, что наблюдаемый набор пептидов относится к конкретному белку. В первом воплощении для решения этой задачи использовали подсчет вероятности того, что набор пиков не случаен. Если кто-то помнит из курса статистики, похожие вероятности высчитывают при изъятии из мешка вслепую шаров разных цветов. В нашем случае нужно ответить на вопрос, случайным ли образом насыпались в наш спектр из большого мешка всех возможностей шары-пептиды определенных масс? Если совпадение сильно не случайное, система присваивает нашему спектру высокий вероятностный коэффициент (score ).

Одним из первых алгоритмов для пептидной дактилоскопии стал MOWSE , который лег в основу широко известной специалистам программы Mascot . Хочу обратить внимание на важный момент в развитии протеомного анализа. С момента введения в обращение метода пептидной дактилоскопии идентификация белков и пептидов превратилась из измерения в предсказание. Таким образом, каждый идентифицированный таким методом белок характеризуется расчетным параметром вероятности того, что это действительно он. Когда мы красим гель антителами, наличие пятнышек на вестерн-блоте ничего подобного нам не скажет. Так протеомика вступила в эпоху «поисковых машин» - программ, которые сравнивают взятые из генома теоретические последовательности с наблюдаемыми масс-спектрами и возвращают вероятность того, что эти спектры получены из соответствующих белков и пептидов.

Пептидная дактилоскопия представляет собой метод анализа расщепленных белков. Параллельно MALDI-TOF стали использовать для исследования целых белков в сложных смесях - в анализе «сверху вниз». Белковые профили крови пациентов с разными заболеваниями, различные бактериальные и эукариотические клетки анализировали целиком и сравнивали полученные масс-спектры в разных группах для целей клинической диагностики и идентификации различных состояний. Масс-спектр использовали как образ, обучая алгоритмы известным случаям, и эффективно распознавая новые случаи. Если применение такого подхода для анализа белков крови в диагностике злокачественных опухолей оказалось недостаточно надежным для внедрения, метод анализа целых бактериальных клеток стал более успешным и сейчас используется в клиниках . Способы, реализуемые на очень простом масс-спектрометре, и прилагаемые к нему специально обученные алгоритмы способны идентифицировать до видов и родов патогенные микроорганизмы, причем анализ MALDI-TOF применяется к целым клеткам бактерий. Их наносят на металлическую мишень масс-спектрометра, покрывают матрицей и облучают лазером для получения специфичных профилей, распознаваемых алгоритмом по характерным массам.

Тандемные масс-спектры и протеомный поиск

Вытаскивание разноцветных шариков из пыльного мешка продолжилось, когда масс-спектрометры научились в мягких условиях фрагментировать пептиды. Внутри некоторых детекторов ионы пептидов и других соединений подвергаются специальным воздействиям, например, столкновению с незаряженными молекулами инертных газов, в результате чего эти ионы диссоциируют, образуя набор фрагментов (подробнее см. на рис. 9). После диссоциации массы фрагментов также можно измерить. Теперь, когда мы научились осуществлять тандемный анализ , или MS-MS , каждый пептид характеризуется массой иона-предшественника, который иногда называют «родительским» ионом, и набором масс ионов-фрагментов («дочерних» ионов).

Рисунок 9. Тандемная масс-спектрометрия. Схема метода - вверху . Основные типы фрагментов, которые образуются при диссоциации пептидов внутри масс-спектрометра - внизу . Поскольку пептиды имеют однотипную структуру, при подобранных условиях столкновительной диссоциации они разрушаются по определенным связям, в предсказуемой манере. Пептидная цепь может распадаться по связи между первым и вторым (альфа) атомами углерода в аминокислоте, образуя a- и x-ионы справа и слева от разорванной связи. Аналогично, при разрыве пептидной связи возникают b- и y-ионы, а при разрыве связи между атомом азота и α-атомом углерода - соответственно, с- и z-ионы.

Итак, из последовательности пептида можно предположить молекулярные массы образующихся из него при диссоциации в масс-спектрометре фрагментов основных типов. Подобно тому, как при пептидной дактилоскопии последовательность белка делится на пептиды, и массы теоретических пептидов сопоставляются с наблюдаемыми в спектре, здесь можно сопоставить теоретические фрагменты каждого виртуального пептида с наблюдаемыми пиками тандемного масс-спектра. Иначе говоря, весь кодирующий геном in silico делится на пептиды с помощью, например, трипсина, для каждого из них по известным эмпирическим правилам строится теоретический спектр фрагментации. Теперь такие теоретические масс-спектры можно сопоставить с настоящими и рассчитать каким-либо образом вероятность того, что это именно тот пептид. Единицей предсказания последовательностей из масс-спектров теперь становится пара теоретический пептид - настоящий спектр (peptide-spectrum match , PSM ). Очевидно, что многие спектры, особенно в случае большого протеома (например человеческого), могут образовывать пары с несколькими теоретическими пептидами, из которых надо выбрать лучшие.

Создание поисковых машин для тандемной масс-спектрометрии - огромная область, и таких инструментов разработаны десятки. Среди них, к счастью, есть программы с открытым кодом, и я сторонник использования в науке именно такого софта . Разбираться в тонкостях отсева правильных PSM в этой статье мы вряд ли сможем. Скажу только, что существенным достижением протеомного поиска по тандемным масс-спектрам стало изобретение в 2007 году подхода (рис. 10) , в котором к настоящим, геномным теоретическим пептидам (целевые - target ) при интерпретации масс-спектров стали добавлять равное количество специально образованных бессмысленных, поддельных пептидов (фальшивые - decoy ). Когда среди лучших PSM алгоритм начинает выдавать совпадение с заведомо несуществующими пептидами, мы можем остановить процесс и определить уровень ложноположительных результатов (FDR) в наших протеомных данных. То есть в наших предсказаниях всегда есть небольшая примесь вранья, что неизбежно при протеомных поисках такого типа. Нормально то, что мы хотя бы можем оценить долю ложных идентификаций.

Не хотелось бы очернять чей-то бизнес, но использовать в науке дорогой инструмент, не зная, как он работает, на мой взгляд, противоречит самой идее развития научной мысли.

Рисунок 10. Принцип подтверждения результатов протеомного поиска . Проверка гипотез о совпадении настоящего спектра с теоретическим приводит к образованию пар спектр-пептид (PSM). Алгоритм поиска приписывает каждому реальному спектру лучший, по его мнению, пептид. Но авторы метода схитрили - они добавили к теоретическим спектрам настоящих пептидов (target ) фальшивые, заведомо неподходящие (decoy ). И вот когда спектрам начинают соответствовать decoy-пептиды, это явные ошибки, то есть ложноположительные результаты. Мы ждем, когда доля PSM с этими decoy - так называемый уровень ложноположительных результатов (FDR) - достигает определенной величины (обычно, это 1%), и поиск прекращаем. Теперь мы примерно знаем, сколько ошибок у нас среди «правильных» идентификаций PSM, ведь вероятность ошибиться в сторону target равно таковой в сторону decoy.

Изобретение приемлемого MS/MS пептидов и появление способов обработки таких данных дала возможность для доставки в масс-спектрометр смесей пептидов без разделения целых белков. То есть появилась возможность расщепить все белки в образце протеазой и оперировать уже совокупностью пептидов, а не белков. Появилась протеомика-«дробовик» (shotgun proteomics ), которую для благозвучия, в ущерб точности, переводят на русский язык как скорострельную или панорамную .

Ионизация электрораспылением и скорострельная протеомика

Одним из обладателей «нобелевки» 2002 года, о которой я упоминал выше, стал американский химик Джон Фенн . Ранее он предложил использовать в масс-спектрометрии метод ионизации электрораспылением , или, как его еще называют, электроспреем (electrospray ionisation , ESI ). При приложении высокого напряжения к выходящей из конического капилляра жидкости она превращается в аэрозоль, а при испарении жидкости из частиц аэрозоля (например, в потоке инертного газа) электрический заряд может переходить на растворенные в этом аэрозоле биомолекулы. Так обеспечивается мягкая ионизация при атмосферном давлении, которая почти не фрагментирует высокомолекулярные соединения, в отличие от многих бытовавших ранее способов ионизации. Не лишенный британского чувства юмора Фенн в своих статьях и лекциях аллегорически сравнивал биомолекулы, которые он заставил воспарить с помощью своего метода, с летающими слонами (рис. 11).

Ионизация электрораспылением оказалась необычайно удобной для совмещения двух важных методов аналитической биохимии - высокоэффективной жидкостной хроматографии и масс-спектрометрии . Теперь поток хроматографической фазы с аналитической колонки можно было направить в конус для электрораспыления, или организовать такой конус на конце колонки, и применять масс-спектрометр как анализатор разделяемых в колонке молекул. Возможность осуществлять тандемную масс-спектрометрию вместе с развитием протеомного поиска с середины 2000-х сделали комбинацию методов под многоэтажной аббревиатурой HPLC-ESI-MS/MS , или просто LC-MS/MS , предпочтительным способом исследования протеома. Это и есть та самая скорострельная протеомика (рис. 12). Небольшое огорчение доставило то, что для ее осуществления, как правило, приходится расщеплять целый протеом или его фракции на трипсиновые пептиды с потерей при этом информации о целостных белках. Однако бонусов от введения этого подхода оказалось намного больше.

Большим подспорьем для роста информативности скорострельной протеомики оказалась «демократизация» масс-спектрометров с высоким разрешением. Ранее для особо высокого разрешения и точности определения требовалось построение приборов ионно-циклотронного резонанса с преобразованием Фурье, в которых использовали могучие сверхпроводящие магниты с индукцией магнитного поля свыше 7 Тесла. В последнее десятилетие детекторы других типов достигли сопоставимых показателей. Примерами таких приборов служат гибридные детекторы разных производителей, например, квадрупольно-времяпролетные масс-спектрометры (Q-TOF ). Главенствующее положение среди доступных масс-спектрометров занимает появившаяся на рынке в 2005 году ионная ловушка особого типа - Orbitrap (рис. 13). Приятную гордость пробуждает тот факт, что создатель этой ловушки - российский физик, работающий в компании Thermo, выпускник МИФИ Александр Макаров .

Действие патента на Orbitrap, принадлежащего компании Thermo, в ближайшее время истечет, так что мы можем ожидать дальнейшего снижения цены на детекторы этого типа.

Точность определения молекулярной массы в запусках рутинного протеомного анализа достигла показателя 5 частей на миллион (то есть 0,0005%) и ниже. Это привело к значительному прогрессу в числе идентифицируемых таким образом белков протеома. Сегодня лучшие научные группы сообщают об идентификации методом скорострельной протеомики в клеточных линиях и тканях человека белковых продуктов 9–10 тысяч генов, то есть почти половину всего кодирующего генома . Справедливо указать, что эти цифры достигаются на уровне 1% ложноположительных результатов.

Количественный анализ и изотопные метки

Просто идентифицировать белки протеомным методом в большинстве случаев явно недостаточно. Для познания механизмов биологических процессов необходимы количественные данные, обеспечивающие сравнение протеомов клеток и тканей в разных состояниях. Проще всего проанализировать некоторые показатели получившихся в ходе запусков системы LC-MS/MS хроматограмм, снабженных спектральными данными. Такой подход называется безметковым (label-free quantitation , LFQ ), поскольку не требует специальных модификаций метода пробоподготовки. Например, в контрольном образце от всех пептидов некоторого белка зарегистрировано 200 спектров, а в опытном - 400. Можно предположить, что число записанных спектров пропорционально концентрации белка в образце. Для сравнения используют и другие параметры спектров, например, нормированные значения интенсивности сигнала. Безметковый количественный анализ по протеомным данным привлекателен своей простотой, и для него выработано большое количество программных решений, в том числе бесплатных программ с открытым доступом, среди которых сегодня наиболее популярен разработанный группой Матиаса Манна из Германии пакет MaxQuant . Безметковые методы неточны и полуколичественны, а находки, сделанные с их помощью, требуется проверять другим способом, например, с использованием вестерн-блоттинга .

Иное дело, когда один из анализируемых образцов или все они подвергаются мечению с помощью тех же стабильных изотопов, о которых уже шла речь выше. Тогда в масс-спектре пики одной и той же химической природы, но содержащие разное количество стабильных изотопов, будут стоять в спектрах рядом, разделенные расстоянием по оси m/z в зависимости от использованной метки. Мы можем сравнить интенсивность стоящих рядом пиков опыта и контроля и точно рассчитать отношение концентраций соответствующих пептидов и белков.

Разработано большое количество технических решений, позволяющих проводить изотопное мечение. В случае, когда возможно культивирование клеток в искусственных средах, можно пометить все клетки одной группы анализа, используя изотопно меченные среды. В ряде случаев метки вводят при расщеплении трипсином. Существуют метки, проявляющие себя на ионах-предшественниках, а также на ионах фрагментов. Последние зачастую позволяют проводить количественный анализ в мультиплексном режиме, например, набор TMT-меток от компании Thermo предоставляет одновременную обработку разными метками 11 образцов! Использование изотопных меток существенно повышает аналитическую точность количественного анализа, который в ряде случаев может стать абсолютным, то есть определять точные концентрации анализируемых соединений. Однако существенный недостаток в этом случае - цена анализа .

Стоимость набора для мечения нескольких образцов может примерно составлять средний размер гранта РФФИ (!) - для тех, кто знает.

Направленный анализ пептидов - мониторинг множественных реакций

Наконец стоит упомянуть о методе протеомного анализа, который по своей функции составляет конкуренцию методам определения белков при помощи антител. Когда мы знаем, какой пептид, характеризующий целый белок, хотим измерить, можно настроить масс-спектрометр так, чтобы он видел, по сути, только этот пептид. Таким образом, работу проводят в направленном (таргетном) режиме. Для этого используют прибор с детектором типа тройного квадруполя. По сути, это три одинаковых масс-спектрометра, стоящих друг за другом и передающих друг другу ионы. В первом отфильтровывается нужный ион-предшественник, то есть интересующий нас пептид, во втором - куда попал только наш «товар» - он проходит фрагментацию, а третий регистрирует 3–5 выбранных нами заранее фрагментов. По интенсивности фрагментов осуществляется количественный анализ.

Подход известен из анализа низкомолекулярных соединений и начал широко использоваться для пептидов в середине 2000-х под названием «мониторинг множественных реакций » (multiple reaction monitoring , MRM ), или «мониторинг выбранных реакций » (selected reaction monitoring , SRM ) (рис. 14) . Такой метод не подходит для обнаружения новых явлений в протеоме, но зато обеспечивает надежный количественный анализ, особенно с использованием синтетических изотопно меченных стандартов для интересующих пептидов. MRM позволяет осуществлять анализ нескольких пептидов за один запуск LC-MS/MS. Он позиционируется как «масс-спектрометрический иммунный анализ» и в настоящее время ищет свое место не только в науке, но и в клинической и биотехнологической практике.

Протеомика с помощью антител и других связующих молекул

С совершенствованием точного нанесения жидкости на подложку, иными словами, печати микрочипов различных типов, иммунные тесты на белки смогли стать миниатюрными. Одновременно с чипами для гибридизации нуклеиновых кислот возникло множество технических решений размещения на твердых подложках сотен и более антител к различным белкам. Такое умножение известных иммунных тестов в сочетании с различными остроумными методами визуализации связывания белка-мишени перевело известный до этого анализ в режим протеомного. Детектирование белков в множественном режиме с помощью специфичных связывающих молекул (например, антител и их фрагментов) к настоящему моменту приобрело столь разнообразные формы, что для их описания, наверное, требуется создать отдельный материал. Я не специалист в области белковых микрочипов, поэтому предоставлю сделать это кому-нибудь еще.

Следует упомянуть несколько технических решений в этой области. В нашей стране группа под руководством А.Д. Мирзабекова около 20 лет назад создала микрочипы на основе гидрогеля, в том числе для анализа белков , причем эта технология до сих пор развивается в Институте молекулярной биологии РАН. Альтернативой антителам для мультиплексного анализа белков служат аптамеры - связующие олигонуклеотиды. На основе химически модифицированных аптамеров американская компания Somalogic создала микрочипы для анализа более тысячи белков человека. Такие чипы всё чаще используют для поиска биомаркеров, как альтернатива масс-спектрометрической протеомике.

Если говорить об антителах для анализа белков в масштабе целого генома, то нельзя не упомянуть мощный по объему шведский проект под руководством Матиаса Улена - «Атлас белков человека ». В ходе этого проекта к большинству человеческих белков получили антипептидные поликлональные антитела, которыми затем покрасили большое количество тканей и клеток. Ценой существенных усилий создали большую базу данных, содержащую диаграммы и изображения, иллюстрирующие синтез большинства белков генома в различных органах и тканях

При взаимодействии анализируемых молекул с биосенсором происходит изменение преломления светового пучка внутри биосенсора, которое регистрируется прибором и отображается на мониторе компьютера в виде кривых ассоциации-диссоциации.

Что дальше?

В конце полагается очертить перспективы того направления, о котором пишешь. Сивилла из меня не очень - что будет дальше, на самом деле, я не знаю. Но скажу. Все омиксы ждет демократизация - техника станет работать еще лучше, а стоимость анализа будет снижаться . Конечно, с масс-спектрометрией дело не дойдет до решений, похожих на секвенатор нуклеиновых кислот на основе нанопоры , который уже стоит совсем небольших денег. Все-таки там требуется вакуум, который создают насосом. Ну и прочая электроника.

Пробы будут подвергаться сразу нескольким видам омиксного анализа. Даже сегодня в некоторых областях, например при молекулярной характеристике опухолей, образцы стремятся обследовать всесторонне , в режиме так называемой протеогеномики . Это нужно для улучшенной классификации образцов, которая может обеспечить более эффективное управление заболеванием.

Снятие молекулярных показателей с гомогенизированных тканей, содержащих миллионы или, как минимум, тысячи клеток, напоминает оценку средней температуры по больнице. Если среди тысяч клеток десятки содержат уникальные белки, важные мишени для лекарств, биомаркеры или другой функционал, при таком анализе сигнал от них просто потеряется. Поэтому должна развиваться протеомика единичных клеток . Надо отметить, что ей гораздо сложнее это сделать, чем, например, транскриптомике, поскольку сигнал от белков нельзя амплифицировать, как нуклеиновые кислоты в полимеразных цепных реакциях.

Что ещё важно: уже сейчас данные, которые получает масс-спектрометр, очень велики - это, похоже, Big Data. И они явно недостаточно интерпретированы. Тенденция ближайшего времени - повышение информационного содержания протеомных данных. В немного переосмысленном виде будет действовать пословица: «Двое с сошкой (люди, проводящие эксперименты и получающие данные), семеро с ложкой (компьютерщики, которые эти данные обрабатывают)». А первых двоих лучше вообще убрать, пусть за них работают роботы. Айтишники будут лежать на пляже с ноутбуками (они это любят) и посылать мне обработанные данные, а я - сидеть на завалинке где-нибудь в русской деревне (это уже люблю я) и писать о протеомах.

И последнее. Исследователи - народ строгий. Потому ожидаю некоторые критические замечания к этому тексту, который ни в коем случае не всеобъемлющ. Возможно, в статье также притаились фактические и технические ошибки. Прошу всех высказывать свое мнение в комментариях и лично, мы открыты к сотрудничеству и обязательно поправим текст в случае обоснованной критики.

Календарь



Понравилась статья? Поделитесь ей
Наверх