Первичная почка (туловищная). Развитие мочевой системы и наружных половых органов

Мочевыделительная система

К органам мочевыделительной системы относятся почки, мочеточники, мочевой пузырь и мочеиспускательный канал. Среди них почки являются мочеобразующими органами, а остальные составляют мочевыводящие пути.

Развитие

В течение эмбрионального периода закладываются последовательно три парных выделительных органа:

Передняя почка (предпочка, pronephros);

Первичная почка (mesonephros);

Постоянная почка (окончательная, metanephros).

Предпочка образуется из передних 8-10 сегментных ножек (нефротомов) мезодермы. У зародыша человека предпочка не функционирует в качестве мочеобразующего органа и вскоре после закладки подвергается атрофии.

^ Первичная почка (мезонефрос) формируется из большого числа сегментных ножек (около 25), расположенных в области туловища зародыша. Сегментные ножки, или нефротомы, отшнуровываются от сомитов и спланхнотома и превращаются в канальцы первичной почки. Канальцы растут по направлению к мезонефральному протоку, образующемуся еще при развитии предпочки, и вступают с ним в сообщение. Навстречу им от аорты отходят сосуды, распадающиеся на капиллярные клубочки. Канальцы своим слепым концом обрастают эти клубочки, образуя их капсулы. Капиллярные клубочки и капсулы вместе формируют почечные тельца. Возникший еще при развитии предпочки мезонефральный проток открывается в заднюю кишку.

^ Окончательная почка (метанефрос) закладывается у зародыша на 2-м месяце, но развитие ее заканчивается лишь после рождения ребенка. Эта почка образуется из двух источников - мезонефрального (Вольфова) протока и нефрогенной ткани, представляющей собой не разделенные на сегментные ножки участки мезодермы в каудальной части зародыша. Мезонефральный проток дает начало мочеточнику, почечной лоханке, почечным чашкам, сосочковым каналам и собирательным трубкам. Из нефрогенной ткани дифференцируются почечные канальцы. На одном их конце образуются капсулы, охватывающие сосудистые клубочки; другим концом они соединяются с собирательными трубками. Образовавшись, окончательная почка начинает быстро расти и с 3-го месяца оказывается лежащей выше первичной почки, которая во второй половине беременности атрофируется. С этих пор окончательная почка берет на себя все функции мочеобразования в организме плода.

ПОЧКИ

Почка (ren) - это парный орган, в котором непрерывно образуется моча. Почки регулируют водно-солевой обмен между кровью и тканями, поддерживают кислотно-щелочное равновесие в организме, а также выполняют эндокринные функции (включая регуляцию артериального давления и регуляцию эритропоэза).

Строение

Почка покрыта соединительнотканной капсулой и, кроме того, спереди - серозной оболочкой. Вещество почки подразделяется на корковое и мозговое. Корковое вещество (cortex renis) образует сплошной слой под капсулой органа. В процессе развития почки ее корковое вещество, увеличиваясь в массе, проникает между основаниями пирамид в виде почечных колонок (столбы Бертена). Мозговое вещество (medulla renis) состоит из 10-18 конических мозговых пирамид, от основания которых в корковое вещество врастают мозговые лучи.

Пирамида с покрывающим ее участком коры образует почечную долю, а мозговой луч с окружающим его корковым веществом - почечную дольку.

Строму почки составляет рыхлая волокнистая соединительная ткань (интерстиций).

Паренхима почки представлена почечными тельцами и эпителиальными канальцами, которые при участии кровеносных сосудов образуют нефроны. В каждой почке их насчитывают около 1 млн.

^ Нефрон (nephronum) – это структурно-функциональная единица почки. Общая длина его канальцев достигает 5 см, а всех нефронов - около 100 км. Нефрон переходит в собирательную трубочку, которая продолжается в сосочковый канал, открывающийся на вершине пирамиды в полость почечной чашки.

Каждый нефрон включает: двустенную чашеобразную капсулу - капсулу Шумлянского-Боумена и отходящий от неё длинный эпителиальный каналец (с различными отделами). Концом нефрона считается место его впадения в одну из собирательных почечных трубочек. Капсула Шумлянского-Боумена почти со всех сторон окружает капиллярный клубочек (glomerulus). Соответственно, почечное тельце (тельце Мальпиги) включает капиллярный клубочек и окружающую его капсулу .

От капсулы клубочка отходит проксимальный извитой каналец, делающий несколько петель возле почечного тельца. Проксимальный извитой каналец продолжается в петлю нефрона (петлю Генле). Нисходящая часть петли Генле (тонкий каналец) спускается вниз - по направлению к мозговому веществу (чаще всего, входя в него); восходящая часть (дистальный прямой каналец), более широкая, вновь поднимается по направлению к почечному тельцу нефрона.

В районе почечного тельца петля Генле переходит в дистальный извитой каналец. Дистальный извитой каналец одной своей петлёй обязательно касается почечного тельца - между 2 сосудами (входящим и выходящим из клубочка на его вершине). Дистальный извитой каналец - последний отдел нефрона. Он впадает в собирательную почечную трубочку. Собирательные трубочки расположены почти перпендикулярно поверхности почки: вначале идут в составе мозговых лучей в корковом веществе, затем входят в мозговое вещество и у вершин пирамид впадают в сосочковые каналы, которые далее открываются в почечные чашки.

Схема строения нефрона (А), мальпигиева тельца(Б) и эпителия различных отделов канальца нефрона (В).

А: 1 - мальпигиево тельце; 2 - извитой каналец первого порядка (проксимальный); 3 - нисходящий отдел петли Генле; 4 - восходящий отдел петли Генле; 5 - извитой каналец второго порядка (дистальный); 6 - вставочный отдел нефрона; 7 - общая собирательная трубка.

Б: 1,2 - наружная и внутренняя стенки капсулы Шумлянского-Боумена; 3 - полость внутри капсулы; 4 - приносящая артериола; 5 - капиллярный клубочек; 6 - выносящая артериола; 7 - кубический эпителий проксимального канальца; 8 - микрореснички эпителиальных клеток; 9 - плоский эпителий петли Генле; 10 - эпителий дистального канальца.
Все почечные тельца лежат в корковом веществе. Извитые канальцы (проксимальный и дистальный) тоже находятся в коре, но положение петли Генле нефронов может существенно различаться. В связи с этим нефроны подразделяют на 3 типа :

1. Короткие корковые нефроны. Составляют не более 1% от всех нефронов. Имеют очень короткую петлю, не достигающую мозгового вещества. Поэтому нефрон целиком лежит в коре.

2. Промежуточные корковые нефроны. Преобладают по численности (~ 80% всех нефронов). Часть петли «спускается» в наружную зону мозгового вещества.

3. Длинные (юкстамедуллярные, околомозговые) нефроны. Составляют не более 20% всех нефронов. Почечные тельца их находятся в корковом веществе на границе с мозговым веществом. Петля Генле - очень длинная и почти целиком находится в мозговом веществе.

Таким образом, корковое и мозговое вещества почек образованы различными отделами трех разновидностей нефронов. Их топография в почках имеет определяющее значение для процессов мочеобразования, что в большой степени связано с особенностями кровоснабжения. В связи с наличием указанных типов нефронов в почке различают две системы кровообращения - кортикальную и юкстамедуллярную. Они совпадают в области крупных сосудов, но различаются ходом мелких сосудов.

Васкуляризация

Кровь поступает к почкам по почечным артериям, которые, войдя в почки, распадаются на междолевые артерии, идущие между мозговыми пирамидами. На границе между корковым и мозговым веществом они разветвляются на дуговые (аркуатные) артерии. От них в корковое вещество отходят междольковые артерии, от которых в стороны расходятся внутридольковые артерии. От этих артерий начинаются приносящие артериолы клубочков, причем от верхних внутридольковых артерий приносящие артериолы направляются к коротким и промежуточным нефронам (кортикальная система), от нижних - к юкстамедуллярным нефронам (юкстамедуллярная система).

^ Схема кровотока в кортикальной системе

Приносящая артериола входит в почечное тельце и распадается на 45-50 капиллярных петель (сосудистый клубочек, glomerulus), которые «распластываются» вблизи внутреннего листка капсулы и взаимодействуют с его клетками (см. ниже). Сформировав своими петлями «первичную» сеть, капилляры собираются в выносящую артериолу, которая покидает почечное тельце вплотную к месту вхождения приносящей артериолы (сосудистый полюс почечного тельца). Итак, на "входе" и на "выходе" из клубочка имеются две артериолы - приносящая (vas afferens) и выносящая (vas efferens), в результате чего «первичную» капиллярную сеть можно отнести к разряду rete mirabile (чудесных сетей). Важно подчеркнуть, что внутренний диаметр выносящей артериолы значительно уже, чем приносящей; благодаря этому создается своеобразный гемодинамический подпор крови в «первичной» сети и, как следствие, феноменально высокое давление крови в капиллярах - около 60 мм.рт.ст. Именно это высокое давление и является одним из главных условий основного процесса, происходящего в почечном тельце, - процесса фильтрации.

Выносящие артериолы, пройдя короткий путь, вновь распадаются на капилляры, оплетающие канальцы нефрона и образующие перитубулярную капиллярную сеть. В этих «вторичных» капиллярах давление крови значительно ниже, чем в «первичных» - около 10-12 мм.рт.ст., что способствует второй фазе мочеобразования - процессу реабсорбции (обратного всасывания) части жидкости и веществ из мочи в кровь. Из капилляров кровь перитубулярной сети собирается в верхних отделах коркового вещества сначала в звездчатые вены, а затем - в междольковые, в средних отделах коркового вещества - непосредственно в междольковые вены. Последние впадают в дуговые вены, переходящие в междолевые, которые образуют почечные вены, выходящие из ворот почек.

Таким образом, нефроны в связи с особенностями кортикального кровообращения (высокое давление крови в капиллярах сосудистых клубочков и наличие перитубулярной сети капилляров с низким давлением крови) активно участвуют в мочеобразовании.

^ Схема кровотока в юкстамедуллярной системе

Приносящие и выносящие артериолы сосудистых клубочков околомозговых нефронов примерно одинакового диаметра или выносящие артериолы даже несколько шире. Поэтому давление крови в капиллярах этих клубочков ниже, чем в клубочках корковых нефронов. Выносящие клубочковые артериолы юкстамедуллярных нефронов идут в мозговое вещество, распадаясь на пучки тонкостенных сосудов, несколько более крупных, чем обычные капилляры, - т.н. прямые сосуды (vasa recta). В мозговом веществе как от выносящих артериол, так и от прямых сосудов отходят ветви для формирования мозговой перитубулярной капиллярной сети. Прямые сосуды образуют петли на различных уровнях мозгового вещества, поворачивая обратно. Нисходящие и восходящие части этих петель образуют особую противоточную систему сосудов, называемую сосудистым пучком (fasciculus vasculans). Капилляры мозгового вещества собираются в прямые вены, впадающие в дуговые вены.

Вследствие этих особенностей околомозговые нефроны участвуют в мочеобразовании менее активно. В то же время юкстамедуллярное кровообращение играет роль шунта, т.е. более короткого и легкого пути, по которому проходит часть крови через почки в условиях сильного кровенаполнения, например, при выполнении человеком тяжелой физической работы.

Фильтрация

Фильтрация (главный процесс мочеобразования) происходит благодаря высокому давлению крови в капиллярах клубочков (50-60 мм.рт.ст.). В фильтрат (т.е первичную мочу) попадают многие компоненты плазмы крови - вода, неорганические ионы (например, Na+, K+, Cl- и другие ионы плазмы), низкомолекулярные органические вещества (в т.ч. глюкоза и продукты метаболизма - мочевина, мочевая кислота, желчные пигменты и др.), не очень крупные (до 50 кД) белки плазмы (альбумины, некоторые глобулины), составляющие 60-70 % всех плазменных белков. За сутки через почки проходит примерно 1800 л крови; из них в состав фильтрата перемещается почти 10 % жидкости. В итоге, суточный объём первичной мочи - около 180 л. Это более чем в 100 раз больше суточного объёма конечной мочи (около 1,5 л). Следовательно, более 99 % воды, а также вся глюкоза, все белки, почти все прочие компоненты (кроме конечных продуктов обмена) должны возвращаться в кровь. Место, где разворачиваются все события процесса фильтрации - это почечное тельце.

Почечное тельце

Почечное тельце состоит из двух структурных компонентов - сосудистого клубочка и капсулы. Диаметр почечного тельца составляет в среднем 200 мкм. Сосудистый клубочек (glomerulus) состоит из 40-50 петель кровеносных капилляров. Их эндотелиальные клетки имеют многочисленные поры и фенестры (диаметром до 100 нм), которые занимают не менее 1/3 всей площади эндотелиальной выстилки капилляров. Эндотелиоциты располагаются на внутренней поверхности гломерулярной базальной мембраны. С наружной стороны на ней лежит эпителий внутреннего листка капсулы клубочка.

^ Капсула клубочка (capsula glomeruli) по форме напоминает двустенную чашу, образованную внутренним и наружным листками, между которыми расположена щелевидная полость - полость капсулы, переходящая в просвет проксимального канальца нефрона. Наружный листок капсулы - гладкий, внутренний - комплементарно повторяет контуры капиллярных петель, покрывая 80% площади поверхности капилляров. Внутренний листок образован крупными (до 30 мкм) неправильной формы эпителиальными клетками - подоцитами (podocyti - буквально: клетки с ногами, см. ниже).

^ Гломерулярная базальная мембрана , являющаяся общей для эндотелия кровеносных капилляров и подоцитов (и сформировавшаяся путем слияния эндотелиальной и эпителиальной базальных мембран), включает 3 слоя (пластинки): менее плотные (светлые) наружную и внутреннюю пластинки (laminae rara externa et interna) и более плотную (темную) промежуточную пластинку (lamina densa). Структурная основа темной пластинки представлена коллагеном IV типа, волокна которого формируют прочную решетку с размерами ячеек до 7 нм. Благодаря данной решетке темная пластинка играет роль механического сита, задерживающего частицы с большим диаметром. Светлые пластинки обогащены сульфатированными протеогликанами, которые поддерживают высокую гидрофильность мембраны и формируют ее отрицательный заряд, нарастающий и концентрирующийся от эндотелия и ее внутреннего слоя к наружному и к подоцитам. Данный заряд обеспечивает электрохимическое удерживание низкомолекулярных веществ, прошедших через эндотелиальный барьер. Помимо протеогликанов, светлые пластинки базальной мембраны содержат белок ламинин, обеспечивающий адгезию (прикрепление) к мембране ножек подоцитов и эндотелиоцитов капилляров.

Подоциты - клетки внутреннего листка капсулы - имеют характерную отросчатую форму: от центральной ядросодержащей части (тела) отходят несколько больших широких отростков 1-го порядка - цитотрабекул, от которых в свою очередь начинаются многочисленные мелкие отростки 2-го порядка - цитоподии, прикрепляющиеся к гломерулярной базальной мембране несколько утолщенными «подошвами» с помощью ламинина. Между цитоподиями располагаются узкие фильтрационные щели, сообщающиеся через промежутки между телами подоцитов с полостью капсулы. Фильтрационные щели шириной до 40 нм закрыты фильтрационными щелевыми диафрагмами. Каждая такая диафрагма - сеточка переплетающихся тончайших нитей из белка нефрина (ширина ячеек - от 4 нм до 7 нм), представляющая собой барьер для большинства альбуминов и других крупномолекулярных веществ. Кроме того, на поверхности подоцитов и их ножек имеется отрицательно заряженный слой гликокаликса, «усиливающий» отрицательный заряд базальной мембраны. Подоциты синтезируют компоненты гломерулярной базальной мембраны, образуют вещества, регулирующие кровоток в капиллярах и ингибирующие пролиферацию мезангиоцитов (см. ниже). На поверхности подоцитов есть рецепторы к белкам системы комплемента и антигенам, что свидетельствует об активном участии этих клеток в иммуновоспалительных реакциях.

^ Фильтрационный барьер

Все три названных компонента - эндотелий капилляров сосудистого клубочка, подоциты внутреннего листка капсулы и общую для них гломерулярную базальную мембрану - принято перечислять в составе фильтрационного барьера, через который из крови в полость капсулы фильтруются составные части плазмы крови, образующие первичную мочу. Если более внимательно проанализировать данную ситуацию, то к данному перечислению необходимо внести некоторые уточнения; в этом случае состав собственно фильтрационного барьера будет выглядеть следующим образом:

1. фенестры и щели эндотелия капилляров;

2. 3-слойная базальная мембрана;

3. щелевые диафрагмы подоцитов.

Примечание: избирательная проницаемость фильтрационного барьера может регулироваться некоторыми биологически активными веществами: например, повышению скорости фильтрации способствует предсердный натрийуретический фактор (пептид), а также ряд воздействий со стороны мезангиальных компонентов.

Мезангий

В сосудистых клубочках почечных телец в тех местах, куда между капиллярами не могут проникнуть цитоподии подоцитов (т.е. около 20% площади поверхности), находится мезангий - комплекс клеток (мезангиоцитов) и основного вещества (матрикса).

В большинстве руководств термин мезангий переводят как «межсосудистые клетки», хотя справедливости ради переведем правильно - брыжейка сосуда (в данном случае трофико-регуляторный компонент капиллярной петли сосудистого клубочка).

Выделяют три популяции мезангиоцитов: гладкомышечную, макрофагическую и транзиторную (моноциты из кровотока). Мезангиоциты гладкомышечного типа способны синтезировать все компоненты матрикса, а также сокращаться под влиянием ангиотензина, гистамина, вазопрессина и таким образом регулировать клубочковый кровоток, изменяя общую «геометрию» капиллярных петель. Мезангиоциты макрофагического типа несут на своей поверхности Fc-рецепторы и другие компоненты главного комплекса гистосовместимости 2-го типа, необходимые для фагоцитарной функции, а также la-антиген. Благодаря этому создается возможность для локальной реализации в клубочках иммуновоспалительной реакции (к сожалению, в некоторых случаях и аутоиммунной).

Основными компонентами матрикса являются адгезивный белок ламинин и коллаген, образующий тонкофибриллярную сеть. Вероятно, матрикс также участвует в фильтрации веществ из плазмы крови капилляров клубочка, хотя окончательно данный вопрос еще не решен.

Реабсорбция

Реабсорбция (обратный перенос веществ из первичной мочи в окружающий нефрон интерстиций и, в конечном итоге, в капилляры вторичной сосудистой сети) представляет собой весьма сложный каскад транспортных процессов, которые значительно различаются в разных отделах канальцевого аппарата нефрона. Различия в указанных процессах, естественно, обусловливают и различия в морфологии отделов нефрона. В функциональном отношении необходимо выделить по крайней мере 4 таких отдела: проксимальные извитые канальцы, петлю нефрона, дистальные извитые канальцы, и собирательные трубочки.

Проксимальные извитые канальцы

В проксимальных извитых канальцах происходит активная (т.е. за счёт специально расходуемой энергии) реабсорбция значительной части воды и ионов, практически всей глюкозы и всех белков. Данная реабсорбция не регулируется гормонами и поэтому называется облигатной.

Белки переносятся путём пиноцитоза (из просвета канальца в цитоплазму канальцевых эпителиоцитов на их апикальных полюсах), который последовательно сменяется экзоцитозом (из цитоплазмы эпителиоцитов на базальных полюсах через базальную мембрану в капилляры вторичной сети). При этом многочисленные пиноцитозные пузырьки насыщают всю цитоплазму эпителиоцитов и продвигаются по ней с помощью ориентированных микротрубочек (здесь уместно вспомнить о тубулин-кинезиновом хемо-механическом преобразователе - см. лекции по цитологии). Существует мнение (наиболее распространенное), что поступающие в цитоплазму эпителиоцитов белки расщепляются в цитоплазме под влиянием лизосомальных протеолитических ферментов до аминокислот, которые затем транспортируются в кровь перитубулярных капилляров. По всей видимости, все же не все белки расщепляются до аминокислот - часть их (возможно, большая) переносится в неизмененном состоянии - ведь количество пиноцитозных структур на базальном полюсе клеток почти такое же, как и на апикальном.

Глюкоза (как, впрочем, и некоторые другие моносахариды) всасывается путём симпорта (т.е. сопряжённого переноса) с ионами Na, поступающими в эпителиальную клетку по градиенту их концентрации через особые каналы. Эти каналы функционируют только при наличии в первичной моче одновременно и Na+, и определенного моносахарида. Другими словами, при отсутствии одного из компонентов (либо Na+, либо глюкозы) данный канал не срабатывает. Напомним, что указанные каналы работают по принципу облегченной диффузии, т.е. в соответствии с градиентом концентрации (в данном случае Na+) и без затрат энергии. Такая работа требует постоянного поддержания низкой внутриклеточной концентрации ионов Na+, а это обеспечивается за счёт деятельности Na+-насоса (уже энергозависимого) на базальной поверхности эпителиальных клеток.

Реабсорбируемая вода проходит непосредственно через цитоплазму эпителиальных клеток (а не через промежутки между ними) с помощью водных каналов (так называемых аквапоринов). Работа этих каналов также связана с градиентом напряжения воды в трех взаимосвязанных «отсеках» - просвете канальца, цитоплазме эпителиоцита и крови перитубулярной капиллярной сети.

В соответствии с функциональным профилем эпителиоцитов общая структура проксимальных извитых канальцев имеет характерный вид. В частности, канальцевый эпителий достигает максимальной высоты среди всех канальцев нефрона, что связано с высокой реабсорбционной активностью. Поверхность клеток покрыта щеточной каемкой, обусловленной протеканием начальных стадий пиноцитоза и необходимостью увеличения контактной поверхности мембран, насыщенных транспортными структурами (например, каналами). Цитоплазма клеток насыщена пиноцитозными пузырьками и лизосомами, что отражает активный перенос белков и придает клеткам «пенистый» вид, а всей цитоплазме - выраженную оксифилию. В своей базальной части клетки имеют исчерченность - базальный лабиринт, образованный внутренними складками цитолеммы (активный экзоцитоз белков) и расположенными между ними митохондриями (энергообеспечение Na+, К+, Са++ и других насосов). В прямой части проксимального канальца, кроме того, в его просвет секретируются некоторые органические продукты - креатинин и др.

Петля нефрона

Петля Генле состоит из тонкого канальца и прямого дистального канальца. В коротких и промежуточных нефронах тонкий каналец имеет только нисходящую часть, а в юкстамедуллярных нефронах - также длинную восходящую часть, которая переходит в прямой (толстый) дистальный каналец. Тонкий каналец имеет диаметр около 15 мкм. Стенка его образована плоскими эпителиоцитами. Такая морфология связана с функциональными особенностями данного отдела нефрона - здесь происходит пассивная реабсорбция воды. В нисходящих тонких канальцах цитоплазма эпителиоцитов светлая, бедная органеллами и ферментами. Реабсорбция воды реализуется на основе разности осмотического давления между мочой в канальцах и тканевой жидкостью интерстициальной ткани, в которой проходят сосуды мозгового вещества. Деятельность многочисленных водных каналов (аквапоринов) обеспечивает интенсивную реабсорбцию воды, которая, впрочем, не требует потребления энергии. Поэтому у клеток нет признаков высокой функциональной активности - щеточной каёмки, оксифилии цитоплазмы, высокого содержания митохондрий, складчатости базальной плазмолеммы.

Дистальный извитой каналец

Здесь происходят два процесса, регулируемые гормонами и называемые поэтому факультативными:

1) активная реабсорбция оставшихся электролитов и

2) пассивная реабсорбция воды.

В частности, работает Na+,К+-канал по принципу - обмен 3 ионов Na+ (внутрь цитоплазмы эпителиоцита) на 2 иона К+ и 1 ион Н+ (из цитоплазмы в мочу). Деятельность канала, не требующего энергии, основана на градиенте концентрации Na+; поддержание постоянной низкой концентрации Na+ в цитоплазме обеспечивается работой Na+ ,К +-насосов, активность которых регулируется гормоном альдостероном. Важно отметить, что указанные насосы расположены не на базальном полюсе канальцевых эпителиоцитов (как в проксимальных канальцах), а на их боковых поверхностях. При этом из цитоплазмы Na+ откачивается в исключительно узкое интерстициальное пространство между эпителиальными клетками, благодаря чему даже при незначительном количестве молекул Na+ в нем удается достигнуть резкого повышения интерстициального осмотического давления. Под действием этого высокого давления вода реабсорбируется в интерстициальные щели между эпителиоцитами и затем вместе с натриевыми ионами увлекается в перитубулярные гемокапилляры. Данная реабсорбция регулируется антидиуретическим гормоном (АДГ), который понижает полимерность гиалуроновой кислоты в составе гликозаминогликанов интерстиция, тем самым увеличивая его гидрофильность и интенсифицируя глубину реабсорбции воды. Соблюдается простая схема: чем больше АДГ, тем меньше мочи и тем выше ее концентрированность.

Характерная морфология дистального канальца: он выстлан низким цилиндрическим эпителием, клетки которого лишены щеточной каемки, но имеют базальный лабиринт с высоким содержанием митохондрий (для энергообеспечения Na+K+-нacocoв).

Собирательные трубочки

Собирательные трубочки в верхней (корковой) части выстланы однослойным кубическим эпителием, а в нижней (мозговой) части - однослойным низким цилиндрическим эпителием. В эпителии различают светлые и темные клетки. Светлые клетки бедны органеллами, их цитоплазма образует внутренние складки. Темные клетки по своей ультраструктуре напоминают париетальные клетки желез желудка, секретирующие соляную кислоту. Кроме ионов хлора, данные клетки секретируют в мочу аммиак. В собирательных трубочках с помощью светлых клеток завершается пассивное обратное всасывание из мочи в кровь части воды. Кроме того, происходит подкисление мочи, что, вероятно, связано с секреторной деятельностью темных эпителиоцитов, выделяющих в просвет трубочек ионы водорода и аммония.

Реабсорбция воды в собирательных трубочках зависит от концентрации в крови антидиуретического гормона гипофиза. В его отсутствие стенка собирательных трубочек и конечных участков извитых дистальных канальцев непроницаема для воды, поэтому концентрация мочи не повышается, а ее количество не изменяется. В присутствии гормона стенки указанных канальцев становятся весьма проницаемыми для воды, которая выходит в гипертоническую среду интерстиция мозгового вещества (пассивно, путем осмоса по механизму, близкому к описанному в дистальных извитых канальцах) и затем в перитубулярные капилляры. В этом процессе важную роль играют прямые сосуды (сосудистые пучки), которые уносят воду, поступающую из собирательных трубочек. В результате по мере продвижения по собирательным трубочкам моча становится все более концентрированной и из организма выделяется гипертонической (вторичная моча).

Разнообразие морфологических типов эпителиоцитов в данном отделе почечных канальцев, а также увеличение объема цитоплазмы эпителиальных клеток отражает нарастание процессов третьей - секреторной - фазы мочеобразования.

Таким образом, расположенные в мозговом веществе канальцы нефронов (тонкие, прямые дистальные) и медуллярные отделы собирательных трубочек, участвующие в реабсорбции электролитов и воды в комплексе с гиперосмолярной интерстициальной тканью мозгового вещества и перитубулярными гемокапиллярами составляют противоточно-множительный аппарат почек. Именно этот аппарат обеспечивает концентрирование и уменьшение объема выделяемой мочи, что является механизмом для регуляции водно-солевого гомеостаза в организме.

Эндокринная система почек

Данная система участвует в регуляции кровообращения и мочеобразования в почках и оказывает влияние на общую гемодинамику и водно-солевой обмен в организме. Система включает 3 основных компонента: ренин-ангиотензин-альдостероновый, простагландиновый и калликреин-кининовый аппараты.

^ Ренин-ангиотензиновый аппарат

Он же - юкстагломерулярный аппарат (ЮГА), околоклубочковый. В ЮГА входят 3 компонента: плотное пятно, ЮГ клетки и ЮВ клетки Гурмагтига.

^ 1. Плотное пятно (macula densa) - тот участок стенки дистального извитого канальца, который прилегает к почечному тельцу. Границы между клетками почти не видны, у клеток нет базальной исчерченности, но хорошо различается скопление гиперхромных ядер, расположенных на близком расстоянии (отчего это место и выглядит в виде плотного базофильного пятна). Клетки плотного пятна утрачивают способность к реабсорбции (не имея возможности взаимодействовать с пери¬тубулярными капиллярами), но подобно «натриевому рецептору» улавливают изменения содержания натрия в моче и воздействует на юкстагломерулярные клетки, секретирующие ренин. Таким образом, плотное пятно выполнет функции осморецептора.

^ 2. Юкстагломерулярные клетки - находятся в стенке приносящей и выносящей артериол, образуя второй слой клеток, лежащий под эндотелием. Данные клетки по происхождению и локализации являются гладкими миоцитами, однако утрачивают функцию сокращения, перестраиваясь на секрецию гормона ренина. Являются крупными клетками овальной или полигональной формы, с крупными гранулами, содержащими ренин.

Секреция ренина стимулируется двумя факторами: 1) раздражением осморецептора (клеток плотного пятна) при нарастании концентрации Na+ и 2) раздражением барорецепторов в стенке приносящей и выносящей артериол (при снижении давления крови в их просвете).

^ 3. Юкставаскулярные клетки (клетки Гурмагтига) - это клетки, расположенные в треугольном пространстве между двумя артериолами (приносящей и выносящей) и плотным пятном. Клетки имеют длинные отростки, контактирующие с другими клетками мезангия. По происхождению и локализации клетки Гурмагтига относятся к мезангиальным клеткам, формируя особую популяцию в их составе. В обычных условиях данные клетки вырабатывают фермент ангиотензиназу, который обусловливает инактивацию ангиотензина (см. ниже) и таким образом «противоборствует» деятельности ренин-ангиотензин-альдостеронового аппарата (также см. ниже). При некоторых обстоятельствах (например, при стрессе, повышенной физической нагрузке, а также при истощении длительно функционирующих юкстагломерулярных клеток) клетки Гурмагтига утрачивают свою антагонистичность; боле того, они сами «переключаются» на синтез ренина.

Ренин - представляет собой полипептид с ферментативной активностью. В крови он воздействует на неактивный пептид (вырабатываемый печенью) - ангиотензиноген, который в две стадии превращается в свою активную форму - ангиотензин II. Этот продукт, во-первых, повышает тонус миоцитов мелких сосудов и тем самым повышает давление, а во-вторых, стимулирует выделение альдостерона в коре надпочечников. Последнее же может усиливать выработку антидиуретического гормона. Таким образом, избыточная продукция ренина приводит не только к спазму мелких сосудов, но и к усилению реабсорбирующей функции самих почек. Происходящее увеличение объёма плазмы крови в еще большей степени (наряду со спазмом сосудов) повышает давление крови.

^ Простагландиновый аппарат

По своему действию на почки простагландиновый аппарат является антагонистом ренин-ангиотензин-альдостеронового аппарата. Почки могут вырабатывать (из полиненасыщенных жирных кислот) гормоны простагландины - жирные кислоты, содержащие в своей структуре пятиуглеродный цикл. Группа этих веществ очень разнообразна - также как и вызываемые ими эффекты. Фракция «почечных» простагландинов оказывают сосудорасширяющее действие, увеличивают клубочковый кровоток, объем выделяемой мочи и экскрецию с ней ионов Na. Стимулами для выделения простагландинов в почках являются ишемия, повышение содержания ангиотензина, вазопрессина, кининов.

Синтез простагландинов в почках осуществляется двумя видами клеток мозгового вещества: светлыми клетками собирательных трубочек и интерстициальными клетками. Интерстициальные клетки находятся в строме мозговых пирамид. Своими отростками интерстициальные клетки оплетают с одной стороны - каналец петли Генле, а с другой стороны - кровеносный капилляр. В теле этих клеток находятся гранулы, содержащие простагландины.

^ Калликреин-кининовый аппарат

Данный аппарат обладает сильным сосудорасширяющим действием и повышает натрийурез и диурез путем угнетения реабсорбции Na и воды в канальцах нефронов. Кинины - это небольшие пептиды, которые образуются под влиянием ферментов калликреинов из белков-предшественников (кининогенов), содержащихся в плазме крови. В почках калликреины выявляются в клетках дистальных канальцев, и на их уровне происходит высвобождение кининов. Вероятно, свое действие кинины оказывают, стимулируя секрецию простагландинов.

Возрастные изменения

Возрастные особенности строения почек указывают на то, что выделительная система человека в постэмбриональном периоде продолжает свое развитие длительное время. Так, по толщине корковый слой у новорожденного составляет всего 4/5, а у взрослого - 1/3 мозгового вещества, однако при этом увеличение массы почечной ткани связано не с образованием новых, а с ростом и дифференцировкой уже существующих нефронов, которые в детском возрасте еще не полностью развиты. В почке ребенка обнаруживается большое число нефронов с мелкими нефункционирующими и слабодифференцированными клубочками. Толщина извитых канальцев нефронов у детей в среднем 18-36 мкм, тогда как у взрослого она достигает 40-60 мкм. Особенно резким изменениям с возрастом подвергается длина нефронов. Их рост продолжается вплоть до половой зрелости. Поэтому с возрастом, по мере того как увеличивается масса канальцев, количество клубочков на единицу поверхности почки уменьшается. Подсчитано, что у новорожденных на один и тот же объем почечной ткани приходится до 50 клубочков, у 8-10-месячных детей - 18-20 клубочков, а у взрослых - 4-6 клубочков.

^ МОЧЕВЫВОДЯЩИЕ ПУТИ

К мочевыводящим путям относятся почечные чашки (малые и большие), лоханки, мочеточники, мочевой пузырь и мочеиспускательный канал, который у мужчин одновременно выполняет функцию выведения из организма семенной жидкости и поэтому будет описан в лекции «Мужская половая система».

Строение стенок почечных чашек и лоханок, мочеточников и мочевого пузыря в общих чертах сходно. В них различают слизистую оболочку, состоящую из переходного эпителия и собственной пластинки, подслизистую основу, мышечную и наружную оболочки.

В стенке почечных чашек и почечных лоханок вслед за переходным эпителием располагается собственная пластинка слизистой оболочки, незаметно переходящая в соединительную ткань подслизистой основы. Мышечная оболочка состоит из тонких слоев спирально расположенных гладких миоцитов, однако вокруг сосочков почечных пирамид миоциты имеют циркулярное расположение. Наружная оболочка без резких границ переходит в соединительную ткань, окружающую крупные почечные сосуды.

Мочеточники обладают выраженной способностью к растяжению благодаря наличию в них глубоких продольных складок слизистой оболочки. В подслизистой основе нижней части мочеточников располагаются мелкие альвеолярно-трубчатые железы. Мышечная оболочка, образующая в верхней части мочеточников два, а в нижней части - три слоя, состоит из гладкомышечных пучков, охватывающих мочеточник в виде спиралей, идущих сверху вниз. Они являются продолжением мышечной оболочки почечных лоханок и внизу переходят в мышечную оболочку мочевого пузыря, имеющую также спиралевидное строение. Лишь в той части, где мочеточник проходит через стенку мочевого пузыря, пучки гладких мышечных клеток идут только в продольном направлении. Сокращаясь, они раскрывают отверстие мочеточника независимо от состояния гладких мышц мочевого пузыря.

Спиральная ориентация гладких миоцитов в мышечной оболочке соответствует представлению о порционном характере транспорта мочи из почечной лоханки по мочеточнику. Согласно этому представлению, мочеточник состоит из 3, реже из 2 или 4 секций - цистоидов, между которыми находятся сфинктеры. Роль сфинктеров выполняют расположенные в подслизистой и в мышечной оболочках кавернозноподобные образования из широких извивающихся сосудов. В зависимости от наполнения их кровью сфинктеры оказываются закрытыми или открытыми. Происходит это последовательно рефлекторным образом по мере наполнения секции мочой и повышения давления на рецепторы, находящиеся в стенке мочеточника. Благодаря этому моча поступает порциями из почечной лоханки в вышележащие, а из нее - в нижележащие секции мочеточника, затем в мочевой пузырь. Снаружи мочеточники покрыты соединительнотканной адвентициальной оболочкой.

Слизистая оболочка мочевого пузыря состоит из переходного эпителия и собственной пластинки. В ней мелкие кровеносные сосуды особенно близко подходят к эпителию. В спавшемся или умеренно растянутом состоянии слизистая оболочка мочевого пузыря имеет множество складок. Они отсутствуют в переднем отделе дна пузыря, где в него впадают мочеточники и выходит мочеиспускательный канал. Этот участок стенки мочевого пузыря, имеющий форму треугольника, лишен подслизистой основы, и его слизистая оболочка плотно сращена с мышечной оболочкой. Здесь в собственной пластинке слизистой оболочки заложены железы, подобные железам нижней части мочеточников.

Мышечная оболочка мочевого пузыря построена из трех нерезко отграниченных слоев, которые представляют собой систему спирально ориентированных и пересекающихся пучков гладкомышечных клеток. Гладкие миоциты часто напоминают по форме расщепленные на концах веретена. Прослойки соединительной ткани разделяют мышечную ткань в этой оболочке на отдельные крупные пучки. В шейке мочевого пузыря циркулярный слой формирует мышечный сфинктер.

Наружная оболочка на верхнезадней и боковых (отчасти) поверхностях мочевого пузыря образована типичной серозной оболочкой (висцеральной брюшиной); в остальных участках - типичной адвентициальной оболочкой.

Выделительная и половая системы в целом выполняют разные функции. Однако их рассматривают в едином комплексе в связи с единством эмбрионального развития и первичной функциональной связью со вторичной полостью тела - целомом. В эмбриогенезе закладка мочеполовой системы - нефрогонотом - формируется в области ножки сомита в непосредственном контакте с целомом. Половые железы у всех хордовых животных располагаются в целоме. Продукты диссимиляции у всех целоми-ческих животных, в том числе и низших хордовых, также поступают в целом. Наиболее простой путь выведения во внешнюю среду как половых клеток, так и продуктов диссимиляции - через общий канал, начинающийся воронкой в целоме и заканчивающийся выделительной порой на покровах. Таковы взаимоотношения половых желез и выделительных каналов у многих беспозвоночных и, вероятно, у древних предков хордовых.

Взаимоотношения целома (1 ), половой железы (2 ) и общего выделительного канала (3 )

Органами выделения позвоночных являются почки - парные компактные органы, структурная единица которых представлена нефроном. В наиболее примитивном виде это - воронка, открывающаяся в целом и соединенная с выделительным канальцем, который впадает в общий выводной проток - мочеточник. В филогенезе позвоночных почка прошла три этапа эволюции: предпочка - головная, или пронефрос; первичная почка-туловищная, или мезонефрос, и вторичная почка - тазовая, или метанефрос.

Предпочка полностью развивается и функционирует как самостоятельный орган у личинок рыб и земноводных. Она находится на переднем конце тела, состоит из 2-12 нефронов, воронки которых открыты в целом, а выводные канальцы впадают в пронефрический канал, который соединен с клоакой. Предпочка имеет сегментарное строение. Продукты диссимиляции фильтруются в целом из кровеносных сосудов, которые поблизости от нефронов формируют клубочки.

Эволюция нефрона. А- предпочка; Б, В- первичная почка; Г- вторичная почка:

1 -собирательная трубочка, 2- выделительный канадец, 3- нефростом, 4- целом, 5- капиллярный клубочек, 6- капсула, 7, 8- извитой канадец, 9- петля нефрона

У взрослых рыб и земноводных кзади от предпочек, в туловищных сегментах тела, формируются первичные почки, содержащие до нескольких сотен нефронов. В ходе онтогенеза нефроны увеличиваются в количестве за счет их почкования друг от друга с последующей дифференцировкой. Они вступают в связь с кровеносной системой, формируя капсулы почечных клубочков. Капсулы имеют вид двустенных чаш, в которых располагаются сосудистые клубочки, благодаря чему продукты диссимиляции могут поступать из крови непосредственно в нефрон. Некоторые нефроны первичной почки сохраняют связь с целомом через воронки, другие - утрачивают её.

Выделительные канальцы удлиняются и в них осуществляется обратное всасывание в кровь воды, глюкозы и других веществ, в связи с чем концентрация продуктов диссимиляции в моче повышается. Однако воды с мочой теряется много, поэтому животные, обладающие такой почкой, могут обитать только в водной или влажной среде. Первичная почка сохраняет признаки метамерного строения.

У пресмыкающихся и млекопитающих возникают вторичные почки. Они закладываются в тазовом отделе тела и содержат сотни тысяч нефронов наиболее совершенного строения. У новорожденного ребенка в почке их насчитывается около 1 млн. Они образуются за счет многократного ветвления развивающихся нефронов. Нефроны не имеют воронки и, таким образом, теряют полностью связь с целомом. Канадец нефрона удлиняется, теснее контактирует с кровеносной системой, а у млекопитающих дифференцируется на проксимальный и дистальный участки, между которыми появляется еще и так называемая петля Генле .

Такое строение нефрона обеспечивает не только полноценную фильтрацию плазмы крови в капсуле, но и, что более важно, эффективное обратное всасывание в кровь воды, глюкозы, гормонов, солей и других необходимых организму веществ. В результате концентрация продуктов диссимиляции в моче, выделяемой вторичными почками, велика, а само ее количество - мало. У человека, например, за сутки в капсулах нефронов обеих почек фильтруется около 150 л плазмы крови, а мочи выделяется около 2 л. Это позволяет животным, обладающим вторичными почками, быть более независимыми от водной среды и заселять засушливые участки земли. У пресмыкающихся вторичные почки на протяжении всей жизни сохраняются на месте их первоначальной закладки - в тазовой области. В них прослеживаются черты первичного метамерного строения.

Почки млекопитающих располагаются в поясничной области, и у большинства из них внешняя сегментация не выражена. В онтогенезе человека обнаруживается выраженная рекапитуляция в развитии почки: закладывание вначале про-, затем мезо-, а позже метанефроса. Последний развивается в тазовой области, а затем за счет различий в скоростях роста позвоночника, таза и органов брюшной полости перемещается в поясничную область. У пятинедельного зародыша можно обнаружить сосуществование предпочки, первичной, а также зачатков вторичной почки.

На начальных этапах развития почка человека сегментирована. Позже ее поверхность сглаживается и метамерность сохраняется лишь во внутреннем строении в виде почечных пирамид. Пороки развития почек у человека, основанные на их филогенезе, многообразны. Сохранение мезонефроса и одностороннее отсутствие вторичной почки описаны пока только у мышей, хотя в принципе такая аномалия возможна и у человека. Относительно часто встречается сегментированная вторичная почка, имеющая один или даже несколько мочеточников; возможно и полное ее удвоение. Часто наблюдается тазовое расположение почки, связанное с нарушением ее перемещения на 2-4-м месяцах зародышевого развития.

Пятинедельный зародыш человека с тремя поколениями почек: Онтофилогенетически обусловленные пороки развития почек:

1 -предпочка, 2- первичная почка, 3- вторичная почка 1 -удвоение почки, 2- удвоенный мочеточник,

3- тазовая эктопия почки, 4- надпочечники

В эмбриогенезе всех позвоночных при развитии предпочки вдоль тела, от головного конца к клоаке, закладывается канал, по которому продукты диссимиляции из нефронов поступают во внешнюю среду. Это пронефрический канал. При развитии первичной почки этот канал либо расщепляется на два канала, идущих параллельно, либо второй канал образуется в продольном утолщении стенки первого. Один из них - вольфов - вступает в связь с нефронами первичной почки. Другой - мюллеров - срастается передним концом с одним из нефронов предпочки и образует яйцевод, открывающийся передним концом в целом широкой воронкой, а задним - впадающий в клоаку.

Вне зависимости от пола у всех позвоночных обязательно формируются как вольфов, так и мюллеров каналы, однако судьба их различна как у разных полов, так и у представителей разных классов. У самок рыб и земноводных вольфов канал всегда выполняет функцию мочеточника, а мюллеров - яйцевода. У самцов мюллеров канал редуцируется и обе функции - половую и выделительную - выполняет вольфов канал. Семенные канальцы при этом впадают в почку, а сперматозоиды при оплодотворении поступают в воду вместе с мочой.

У пресмыкающихся и млекопитающих большая часть вольфова канала не принимает участия в выведении мочи и только его наиболее каудальная часть в области впадения в клоаку образует выпячивание, становящееся мочеточником вторичной почки. Сам же вольфов канал у самцов выполняет функцию семяизвергательного канала. Мюллеров канал у них подвергается редукции. У самок вольфов канал редуцируется (за исключением его каудальной части, формирующей мочеточник), а мюллеров - становится яйцеводом. У плацентарных млекопитающих мюллеров канал дифференцируется на собственно яйцевод, матку и влагалище. Будучи парным образованием, как и все элементы половой системы, мюллеров канал сохраняет парность строения у яйцекладущих и частично у сумчатых млекопитающих, у которых имеется два влагалища, две матки и два яйцевода. В дальнейшей эволюции происходит срастание мюллеровых каналов с образованием одного влагалища и матки, которая может быть либо двойной, как у многих грызунов, либо двураздельной, как у хищных; либо двурогой, как у насекомоядных и китообразных, либо простой, как у приматов и человека.

Соответственно дифференцировкам мюллерова канала самок у самцов пресмыкающихся и млекопитающих развиваются копулятивные органы. У большинства пресмыкающихся, а также у сумчатых млекопитающих они парные. У плацентарных с одним влагалищем копулятивный орган непарный, но в его развитии обнаруживается срастание парных зачатков.

Эволюция почки и мочеполовых каналов.

А - нейтральное зародышевое состояние; Б - анамнии; В - амниоты:

I -самки, II -самцы; 1 -предпочка, 2- первичная почка, 3- канал предпочки, 4- половая железа, 5- мюллеров канал, 6-вольфов канал, 7-мочевой пузырь, 8- клоака, 9- вторичная почка, 10 -матка, 11 -мочеполовой синус, 12- задняя кишка, 13- половой член, 14 -мочеточник вторичной почки, 15- мужская «маточка»

В эмбриогенезе человека закладываются парные вольфовы и мюллеровы каналы. Позже в зависимости от пола происходит их редукция. Рудимент мюллерова канала у мужчин располагается в предстательной железе и называется мужской маточкой - utriculus masculinus. Канальцы передней части первичной почки у них вступают в связь с семенниками и преобразуются в придаток семенника - эпидидимис. У плодов женского пола возможно нарушение редукции вольфовых каналов, которые располагаются по бокам от влагалища. Эта аномалия опасна возможностью образования кист и злокачественного перерождения. Распространенными пороками развития являются также различные формы удвоения матки (1 случай на 1000 перинатальных вскрытии). Они развиваются как результат нарушения срастания мюллеровых каналов. Нарушение срастания парных зачатков полового члена в эмбриогенезе человека может привести к формированию такого порока развития, как его удвоение .

Аномалии матки и полового члена у человека. А -Д -различные формы удвоения матки и влагалища; Е- удвоение полового члена.

30-34 нефронов. Продукты выделения собир в Вольфов проток или мочеточник. Усложнение нефрона: воронка открыв в целом, образ-ся почечное тельце (капсула Боумена-Шумлянского и мальпигиево тело)+извитой каналец, следоват, продукты выдел сначала попадают в капиллярн клубок, отфильтровываются в полость капсулы, потом в извитой каналец, мочеточник, моч пузырь, потом попадают в клоаку или моч отверстие.

Начин процесс обратного всасывания. В течение всей жизни сохр у рыб, до момента пол созревания у амфибий и рептилий.

Вторичная почка

Более 1 млн нефронов. Продукты выдел в метанефрич протоки или мочеточники. Нефрон состоит из почечного тельца, выделит канала. У рептилий петля Генле недоразвита и образ промежуточ отдел. Продукты выдел идут в нефрон двумя путями:

1) фильтрация крови в полость капсулы (образ первичная моча)

2) фильтрация в полость извитых канальцев (в них реабсорбция и образ вторичная моча)

Вторич почка функционир у птиц и млекопит, а у рептилий с момента пол созревания.

Вольфов канал превращается в семяпровод; ниж часть первич почки в придаток семенника.

Последоват смена в развитии почки как органа выделения – пример субституции.

Связь выдел и пол систем:

Зачатки пол желез формир на мезонефральных протоках, но первичные пол клетки отсутствуют. Они появляются только в желточном мешке и мигрируют к пол валикам.

Самки низших позвоночных – предпочка редуцир, воронка нефрона увеличив и вместе с Мюллеровым протоком обр. яйцевод.

У самцов – редуцир предпочка и Мюллеров проток, между первич почкой и семенником образ семявыводящие канальцы, по кот сперматозоиды проник в почку и по мочеточнику выводятся наружу, следовт образ мочеполовой кровоток.

У самцов высших позвоночных из первич почки формир придаток семенника, остальная часть редуцир; Вольфов проток превращ-ся в семяпровод.

Первичная почка и ее мочеточник у взрослых самок редуцируется, лишь часть канальцев первичной почки сохр-ся в виде незначительных рудиментов epoophoron и paraophoron. Эти рудименты склонны к злокачественному перерождению.

У человека встречаются различные аномалии матки и влагалища. Они связаны с ненормальным срастанием парамезонефральных протоков. Часто встречается двурогая матка, иногда двойная.

Основные направления фило- и онтогенеза зубочелюстного аппарата. ВПР этого аппарата

Жевательный аппарат прошел эволюционный путь развития от хрящевых рыб до человека. Он проходит в 2 стадии:

1) первичная – эта сис-ма присуща всем хрящ рыбам. Она состоит из 2 висцеральных дуг: челюстной и подъязычной, состоящих из отдельных хрящей. Челюстного сустава нет

2) вторичная – костистые рыбы, амфибии, рептилии имеют вторичный жевательный аппарат, представлен покровными костям, налегающими на первичные хрящи. Есть первичный сустав, образующийся двумя костями – квадратной и сочленованной

В ходе эволюции идет усиленная редукция первичного жевательного аппарата и первичного сустава. У млекопитающих появл новый жев аппарат – межчелюст кости срастаются с челюстными, ТВ небо образуется за счет челюстных, межчел и небных костей. Ниж челюсть – одна зубная кость

Зубы у рыб, амфибий и рептилий однотипны и имеют коническую форму (служат для удержания добычи).

Зубы у млекопит дифференцируются на отдельн группы, расположен на челюстях в ячейках.

Дифференциация жевательного аппарата:

1) вертикальн движ н.ч. у хищников характериз-ся шарнирным суставом и трехбугорковыми острыми зубами

2) сагиттальные движ н.ч. у грызунов – желобовидным суставом и преимуществен развитием режущих зубов

ВНЧС

У приматов:

· Дисковый

· В процессе эволюции чел утрачивает свое значение задний суставной отросток и большое значение имеет суставной бугорок

· Сустав приобретает св-ва инконгруентности, следовательно слож движ н.ч., следовател измен строения и взаимоотношения зубных дуг

Редукция зубочел аппарата

1) редукция клыка и резцов. У гоминид большие клыки и диастема. У чел редукция клыка. Перед. отдел зуб. сис-мы сократился, следовательно уменьш. резмеры резцов и клыков

2) редукц моляров и премоляров. Ключ роль у первого моляра (синантропы). У неандертальцев – редукция всех зубов.

Дальнейшая редукция – врожденное отсутствие третьих моляров, уменьшение зубов, редукция бугров

3) причины редукции:

· Общие изменения черепа (из-за эволюции гол мозга)

· Изменение структуры пищи, «леность» жеват аппарата

· Распространение кариеса

Эмбриогенез зубов:

Лицо эмбриона образуется из семи отростков жаберной дуги: одного лобного, двух носовых, двух верхнечелюстных и двух нижнечелюстных.

На втором месяце вдоль края челюстных отростков образ-ся утолщение эпителия, кот постепенно делится на 2 пластинки: наружную, из кот формир щеки и губы, и внутреннюю, из кот – зубы

Верхняя челюсть образ-ся из 6 костных ядер. 5 из них с 6 месяца сливаются вместе, образуя большую часть альвеолярного отростка. Из 6 ядра развивается самостоятельная межчел кость, в кот закладываются резцы. Каждая из небных костей развив из одного центра окостенения.

На третьем месяце начинается отделение рот полости от носовой, на девятой неделе уже образуется ТВ небо, а на 12 – мягкое.

При нарушениях процессов развития в эти периоды могут возникать ВПР в виде:

· Расщелины верхней губы

· Расщелины альвеолярного отростка

· Расщелины тв и мягкого неба

Особое значение при этом имеет процесс развития и минерализации межчел кости. В зародышевой жизни она начинает срастаться с небными и альвеолярными отростками.

Закладка и развитие жев аппарата теснейшим образом связаны с формированием верхних дых. путей.

Ниж челюсть развивается из обызвествляющейся мезенхимы, расположенной вокруг меккелева хряща. Развивается она как парная кость: 2 половины потом срастаются на первом году жизни ребенка.

Перед. часть меккелева хряща окостеневает и срастается с покровной костью. Хрящевые участки образуются также у проксимального отдела ниж челюсти. Путем их окостенения и срастания с покровной костью формируются суставной и венечный отростки.

58. Филогенетические и биотические связи между организмами в природе. Типы биотических связей, их примеры.

Биотические связи харак-ся большой сложностью и разнообразием, но в основе их лежат прежде всего пространственные и пищевые отношения. Такие типы связей объединяют между собой различные компоненты биогеоценозов и антропобиогеоценозов.

Виды биотических связей:

1)нейтрализм (белка и лось)

2) симбиоз:

А) мутуализм (сожительство чел с микрофлорой его кишечника)

Б) синойкия (квартиранство) – использование одного вида другим в качестве места обитания (самки москитов используют норки грызунов для откладки яиц)

В) комменсализм (нахлебничество) – один вид использ другой в качестве питания без вреда

По решаемым задачам она делится:

Частная делится:

1. протозоологию (Простейшие)

3. арахноэнтомологию (членистоногие)

Классификация по Павловскому

1. по образу жизни:

Б) ложный – случайное попадание свободно живущих видов той или иной стадии развития

2. по временным связям с хозяином:

А) временный - проводят большую часть во внеш среде (клопы, комары, блохи)

Б) стационарный – почти постоянно в организме хозяина (лярвальный и имагинальный)

3. по пространственным связям:

А) вкожный (чесоточный клещ)

1) внутриклеточный (токсоплазма)

2) тканевой (эхинококк)

3) полостной (аскарида, острица)

Скрябин Константин Иванович (1878-1972).

2.Описал более 200 новых видов гельминтов.

3. Первым поставил вопрос о их патогенной роли и ликвидации.

4. Разработал основные методы борьбы с ними (принцип дегельминтизации и девастации).

Павловский Евгений Никанорович (1884-1965)

2. Создал школу ученых – арахноэнтомологов.

3. Его труды легли в основу профилактики многих болезней.

Догель Валентин Александрович (1888-1955)

Среда обитания - это часть природы, окружающая живые организмы и оказывающая на них прямое или косвенное воздействие. Из среды организмы получают всё необходимое для жизни и в неё же выделяют продукты обмена веществ.

Жизненный цикл с использованием одного хозяина на одной стадии развития называется моноксенным (дизентерийная амеба).

Жизненный цикл с использованием различных видов хозяев на различных стадиях развития называется гетероксенный: облигатным и факультативным (токсоплазма).

Дополнительный хозяин–второй промежуточный хозяин.

Морфофизиологические:

1. регрессивные– утрата или недоразвитие органов или систем, свойственных видам того же уровня организации (утрата органов и органелл передвижения, низкая двигательная активность, утрата органов пищеварения, редукция дыхательной и кровеносной систем).

1. органы фиксации,

2.репродуктивная система,

3. высокая плодовитость как компенсация за сложные жизненные циклы,

4. высокая интенсивность полового размножения дополняется размножением личиночных стадий,

5. шизогония,

6. растяжимые покровы,

7. наличие специальных защитных покровов, препятствующих перевариванию в теле хозяина,

8. антиферментные системы, которые ингибируют ферменты, интрамолекулярное дыхание – способность жить в анаэробных условиях среды,

9. адаптации для поиска хозяина – хемо- и терморецепторы и др. органы чувств).

Биологические: это адаптации в жизн цикле

· Дополнительные стадии развития (циста)

4)Патогенное действие некоторых гельминтов связано с МИГРАЦИЕЙ личиночных форм по организму хозяина. В процессе миграции личинки разрушают ткани,вызывают восполительные процессы,способствуют проникновению инфекции,оказывают токсическое действие.

  • первичная почка образуется из сегментных ножек (10-35 сегменты) туловищной части зародыша и является выделительным органом до 2-ого месяца развития зародыша человека,
  • первичная почка развивается из сегментных ножек; сегментные ножки сначала отделяются от сомитов с образованием слепого конца, который растет, становится извитым, дорастает до Вольфова канала и открывается в него,
  • затем сегментные ножки отделяются и от спланхнотома,
  • такие канальцы первичной почки называются метанефридиями,
  • к канальцам первичной почки от аорты подходят сосуды, образующие капиллярный клубок,
  • канальцы первичной почки как бы обрастают этот капиллярный клубок,
  • в результате - образуется почечное тельце, состоящее из капиллярного клубочка и капсулы из канальца первичной почки,
  • в таком почечном тельце из крови в полость капсулы фильтруются продукты обмена, которые далее попадают в полость самого канальца, потом - в Вольфов проток, и наконец - в заднюю кишку.

Механизм образования мочи

Первая фаза - фильтрационная . Протекает почечных тельцах нефрона и заключается в образовании первичной мочи, которая фильтруется из капилляров клубочка в полость капсулы. Для того чтобы была возможна фильтрация, необходима значительная разность давления в сосудах и капсуле. Она в клубочке обеспечивается тем, что почечные артерии отходят от брюшной аорты и кровь поступает в эти сосуды под большим давлением (больше 50мм.рт.ст.). Так как через стенки сосудов не могут пройти форменные элементы крови и белок, находящийся в ней, то первичная моча представляет собой плазму крови без белков. Конечная же моча по своему составу резко отличается от первичной: в ней уже нет сахара, аминокислот и других солей, но резко повышена концентрация вредных для организма веществ, например мочевины. Этим изменениям моча подвергается во второй фазе, когда происходит всасывание воды и некоторых составных частей первичной мочи из извитых канальцев обратно в кровь. Это фаза реабсорбции . По мере протекания мочи через извитые канальцы первого и второго порядка клетки, выстилающие стенки этих канальцев, активно всасывают обратно воду, сахар, аминокислоты и некоторые соли. Отсюда усвоенные из первичной мочи вещества переходят в венозную часть капилляров, оплетающих извитые канальцы. Мочевина, креатин, сульфаты обратно не всасываются. Помимо обратного всасывания, в канальцах и собирательной трубочке происходит секретирование (третья фаза), то есть выделение в просвет канальцев определенного рода веществ и моча становится слабокислой. Конечная моча из лоханки по мочеточникам поступает в мочевой пузырь и затем удаляется из организма. В течение дня у человека образуется 1,5-2 л конечной мочи, и более 100 л первичной мочи.

Почки – парный орган, которые напоминают по своей форме бобы. Почки имеют закругленные верхние и нижние полюса, переднюю и заднюю поверхности. Внутренняя вогнутая часть почки образует ворота. Через них проходят вены, артерии, нервы и мочеточник, который берет свое начало из лоханки и переходит пузырным (дистальным ) концом в мочевой пузырь. В норме почки расположены приблизительно на уровне 12- того ребра с двух сторон от позвоночного столба в забрюшинном пространстве. Левая почка находится немного выше правой. Сверху они покрыты плотной фиброзной оболочкой. Вес каждой почки приблизительно равен 150-200 г.

В почке различают два слоя:
Корковое вещество темного цвета состоит из почечных телец и канальцев нефронов. В них осуществляется фильтрация (очищение ) крови;
Мозговое вещество более светлого цвета состоит из 15-20 почечных пирамид конусовидной формы, которые продольно исчерчены канальцами. Вершины пирамид выступают в пазуху почки, где сливаясь, образуют почечные сосочки. Сосочки плавно переходят в малые, а затем в большие почечные чашки в количестве от 2 до 4. Большие почечные чашки представляют собой протоки, соединяющие малые почечные чашки с почечной лоханкой.

Нефрон – это функциональная единица почки, имеющий сложное строение. В нем различают тельце и каналец. Структуры нефрона функционально связаны с сосудами. Всего насчитывается от 1 до 2 миллионов нефронов. Почти 80% нефронов расположено в корковом веществе почки.

Функции почек

Образование мочи.
Процесс мочеобразование состоит из: 1) клубочковой фильтрации; 2) канальцевой реабсорбции; 3) осмотической концентрации мочи. Через фильтрующую поверхность почек за сутки проходит от 100 до 150 литров крови, из которой образуется всего 1,5 -2,5 литров вторичной мочи. Почки фильтруют кровь, возвращая в нее полезны вещества: белок, сахар, ферменты, витамины и др.;
Регуляция артериального давления.
В толще коркового слоя почки между артериальными и венозными капиллярами расположены клетки, которые синтезируют гормон – ренин. Под его влиянием осуществляется регуляция тонкого и сложного механизма, обеспечивающего постоянство тонуса сосудов, артериального давления;
Функция кроветворения.
Кроме ренина, почками вырабатывается эритропоэтин, который дает команду вовремя пополнять кровяное русло свежими эритроцитами;
Регуляция постоянства внутренней среды.
Почками регулируется содержание в крови различных белков (онкотическое давление ) и кислотно – щелочное равновесие. Баланс между щелочами и кислотами осуществляется благодаря выведению из организма то кислых, то щелочных продуктов.

Развитие почки в эмбриональный период и у ребенка

Развитие почки осуществляется в три стадии:
1) предпочка (пронефрос ); 2) первичная почка (мезонефрос ); 3) окончательная почка (метанефрос ).
Окончательная почка начинает формироваться с 7 недели развития эмбриона, постепенно перемещаясь в брюшную часть из таза. У новорожденных детей почечные канальцы уже и короче, чем у взрослых. До 2-х летнего возраста нефрон плохо дифференцирован. Только к 5-ти годам строение и функционирование почек ребенка имеет сходство с почками взрослого человека.

Заболевания почек

Пиелонефрит – воспаление с последующей деформацией чашечно – лоханочной системы и вовлечением в патологический процесс паренхимы почек. Причина заболевания часто связана с инфекцией, которая может попасть в почки гематогенным или восходящим путем. Способствует попаданию инфекции из уретры или мочевого пузыря восходящим путем переохлаждение. Почки легко можно застудить, если в прохладное время года носить не по сезону вещи и обувь. Очень часто пиелонефритом страдают лица с сахарным диабетом и беременные женщины. При пиелонефрите, как правило, болит поясница. Поначалу эту боль можно спутать с миозитом или остеохондрозом. Кроме боли возможны отеки, снижение аппетита, повышение температуры тела, изменение в анализах крови и мочи (повышение СОЭ, лейкоцитов и др. );
Киста почки представляет собой аномальное, доброкачественное изменение структуры ткани почки. Стенки кисты состоят из тонкой соединительнотканной оболочки. Полость кисты заполнено жидкостью лимонно – желтого цвета. Они могут быть единичными и множественными и возникать в любом возрасте. Размеры кисты от 1-го до 10-ти см. Как правило, маленькие кисты не нарушают работу почки и часто никак себя не проявляют;
Поликистоз почек – заболевание, при котором еще в период внутриутробного развития в ткани почек ребенка образуются множественные кисты. Причины поликистоза связаны с некоторыми вирусными заболеваниями, которые женщина могла перенести во время беременности. Заболевание, в большинстве случаев, протекает без симптомов. В том случае, когда опухоль занимает большую площадь паренхимы почек и нарушает их функционирование, возможны следующие симптомы: тупые боли в области поясницы, полиурия (большое выделение мочи ), нарушение аппетита, жажда и др.;
Рак почек – заболевание со злокачественным течением, причины которого до конца не известны. Зато хорошо изучены предрасполагающие факторы, к которым относятся: курение, облучение, хронические заболевания почек в терминальной стадии, частое употребление некоторых лекарственных средств, контакт с кадмием и др. Больные в первой стадии рака не замечают никаких признаков болезни. Когда опухоль начинает расти и давать метастазы, пациенты отмечают: утомляемость, боль в пояснице, гематурию (выделение крови с мочой ), анемию, артериальную гипертензию и др.;
Гидронефроз – нарушение оттока мочи из чашечно - лоханочной системы почек, с последующим ее расширением (пиелоэктазия ) и повышением гидростатического давления в ней, атрофией паренхимы почки и ухудшением основных ее функций. К причинам приобретенного гидронефроза относятся: воспалительные изменение в мочевой системе (пиелонефрит ), почечнокаменная болезнь, травматические сужения, опухоли, повреждения спинного мозга, которые приводят к нарушению иннервации органов мочевыделения и оттоку мочи. Гидронефроз опасен своими осложнениями. Одно из них – разрыв лоханки или чашечки. При этом скопившееся моча изливается в забрюшинное пространство.

Диагностика заболеваний почек

#1. Лабораторные методы:
Общий анализ крови позволяет определить воспаление (повышено СОЭ, лейкоциты );
К распространенным исследованиям мочи при заболевании почек относятся общий анализ и проба Зимницкого. По измененному общему анализу мочи можно судить о многих заболеваниях не только почек, но и других органов. Повышенное содержание белка и гематурия свидетельствует о воспалении, которое бывает при пиелонефрите, гломерулонефрите и др. Глюкозурия (повышенное количество сахара в моче ) свидетельствует о сахарном диабете и др. Проба Зимницкого помогает определить концентрационную функцию почек.

#2. Инструментальные методы:
Недорогим, общедоступным, информативным методом исследования почек является УЗИ. С его помощью можно определить форму, размер, местоположение, почек. Успешно распознаются различные патологические образования: камни, песок, опухоли, опущение почек (нефроптоз ) и др.;
Уточнить причину болезни почек помогут современные методы: МРТ и ангиография;
Экскреторная урография – радиографическое исследование почек, позволяющее судить о проходимости мочевыводящих путей. Метод также информативен при недостаточности почек.

Лечение и профилактика заболеваний почек

Консервативное лечение в виде назначения различных лекарственных средств эффективно при пиелонефрите, гломерулонефрите, мочекаменной болезни и др. В комплексе с традиционной терапией достаточно эффективно народное лечение. Такие травы, как: толокнянка, брусничный лист, хвощ полевой и др. активно назначаются терапевтами для купирования симптомов воспаления. Хорошо помогает справиться с различными заболеваниями почек специально разработанные диеты №7, №7а, №7б.

Оперативному удалению подлежат различные доброкачественные и злокачественные опухоли. Как правило, при злокачественной опухоли осуществляется удаление не только почки (нефрэктомия ), но и окружающих ее тканей. Кроме операции назначается химиотерапия и лучевая терапия.

Одним из распространенных заболеваний почек является почечнокаменная болезнь. Ее лечением занимается терапевт и хирург. В зависимости от размера, числа и расположения камней врач решает вопрос о методе, с помощью которого он будет удален. Раньше делали открытые полостные операции, которые отличались длительным восстановлением и различными осложнениями. Современные хирургические методы отличаются быстрым восстановлением. К ним относятся: эндоскопический метод, разрушение камня через прокол в области поясницы, дробление камней методом ударно – волновой литотрипсии, удаление камней через мочевыводящие пути и др.

Трансплантация почек

В том случае, когда почки не выполняют свою функцию или требуется ее удаление, в качестве заместительной терапии может быть выполнена пересадка здоровой донорской почки. Важные требования к донору и реципиенту: соответствие по группе крови и резусу – фактору, возрасту, полу и весу. Лучше приживается почка от живого донора. Почку пересаживают не сразу, а только после специальной подготовки. Она обрабатывается, и храниться до 72 часов в специальном растворе. Обычно свои почки реципиенту не удаляют. Донорскую почку помещают в подвздошную ямку, чаще правую. Пересадка почек осуществляется во всех развитых странах. Цена почки в РФ составляет от 10 000 до 100 000 долларов.

Профилактика заболеваний почек сводится к соблюдению общих правил здорового образа жизни. Важно, чтобы в организме не было очагов хронической инфекции (кариозные зубы, воспаленные миндалины и др. ), которые являются источником инфекции, поступающей в почки гематогенным путем и вызывающей различные заболевания.



Понравилась статья? Поделитесь ей
Наверх