Оптический телескоп предназначен для. Оптические телескопы. Изобретение телескопа Галилея. Что такое телескоп и зачем он нужен Что делать, если…

Строение телескопа

В XX веке астрономия сделала множество шагов в изучении нашей Вселенной, но эти шаги были бы невозможны без использования таких сложных приборов, как телескопы, история которых насчитывает не одну сотню лет. Эволюция телескопа происходила в несколько этапов, и именно о них я постараюсь рассказать.

С давних времен человечество тянуло узнать, что же находится там, на небе, за пределами Земли и невидимого человеческому глазу. Величайшие ученые древности, такие как Леонардо да Винчи, Галилео Галилей, предпринимали попытки создать прибор, позволяющий заглянуть в глубины космоса и приоткрыть завесу тайны Вселенной. С тех пор произошло множество открытий в области астрономии и астрофизики. Каждый человек знает, что такое телескоп, но не все знают, как давно и кем был изобретен первый телескоп, и как он был устроен.




Телескоп - прибор, предназначенный для наблюдения небесных тел.

В частности, под телескопом понимается оптическая телескопическая система, применяемая не обязательно для астрономических целей.

Существуют телескопы для всех диапазонов электромагнитного спектра:

ь оптические телескопы

ь радиотелескопы

ь рентгеновские телескопы

ь гамма-телескопы

Оптические телескопы

Телескоп представляет собой трубу (сплошную, каркасную или ферму), установленную на монтировке, снабжённой осями для наведения на объект наблюдения и слежения за ним. Визуальный телескоп имеет объектив и окуляр. Задняя фокальная плоскость объектива совмещена с передней фокальной плоскостью окуляра. В фокальную плоскость объектива вместо окуляра может помещаться фотоплёнка или матричный приёмник излучения. В таком случае объектив телескопа, с точки зрения оптики, является фотообъективом. Телескоп фокусируется при помощи фокусера (фокусированного устройства). телескоп космос астрономия

По своей оптической схеме большинство телескопов делятся на:

ь Линзовые (рефракторы или диоптрические) - в качестве объектива используется линза или система линз.

ь Зеркальные (рефлекторы или катоптрические) - в качестве объектива используется вогнутое зеркало.

ь Зеркально-линзовые телескопы (катадиоптрические) - в качестве объектива используется сферическое зеркало, а линза, система линз или мениск служит для компенсации аберраций.

Вы решили приобрести телескоп для своего ребенка, чтобы он смог познать мир и изучить тайны Вселенной. Или захотели попробовать себя в астрофотографии. Для каждой цели нужно выбирать специальный прибор, так как не существует идеального телескопа, который бы одновременно мог вам помочь в разных астрономических наблюдениях. Далее разберемся в разновидностях телескопов по их оптической схеме.

Принцип работы рефракторов

Передняя часть трубы такого прибора имеет линзу, выполняющую функции объектива. Если сравнивать рефрактор с другими системами, то он имеет большую длину. Цена на прибор обусловлена качеством линзы и ее возможностями к увеличению.

Минусом рефракторов считается наличие аберрации, оставляющей ореолы над предметами созерцания и искажая изображение. Для предотвращения отрицательного эффекта используют современные линзы, умное их соотношение, низкодисперсионное стекло. Такие телескопы идеально подходят для созерцания за разными планетами, звездами и даже Луной.

Есть три разных вида рефракторных телескопов – ED-рефракторы, апохроматы, ахроматы.

Объектив ахроматных приборов имеет в составе две линзы, которые состоят из флинта и крона. Разный состав и промежуток воздуха между линзами помогает предотвратить возникновение искажений.

Сегодня можно приобрести длиннофокусные (отверстие 1/10-1/12) и с коротким фокусом (1/5-1/6). Последние удобны в транспортировке благодаря компактному и легкому виду. Эти телескопы часто устанавливают на опору и созерцают кометы, туманности и Млечный путь.

ED-рефракторы и апохроматы представлены в дорогом сегменте. Они дают более детальное изображение объектов, которые находятся в далеком космосе.

ED-рефракторы одинаково построены с апохроматами, но вместо крона и флинта для изготовления линз используют другой материал – низкодисперсионное ED-стекло, которое помогает видеть планеты и звезды более качественно без искажений. Дороговизна такого телескопа оправдывается прочностью механических узлов и пригодностью к астрофотографированию.

Апохроматы по отзывам опытных астрономов выдают самое точное изображение космических объектов. Хроматическая аберрация телескопа исправляется в волнах спектра. Конструкция объективов апохроматических рефракторов может состоять из 3-5 разных линз, изготовленных с самого дорогого оптического стекла флюорита.

Внимание! Апохроматы отлично подходят для опытных астрофотографов и желающих наблюдать идеальное изображение звезд, спутников и планет. Поэтому стоят дорого.

Выбираем рефлектор

Объектив рефлекторов представляет собой вогнутое зеркало внизу трубы. Изготовить зеркала для производителей стало намного дешевле и проще, поэтому телескопы рефлекторного типа стоят меньше, чем рефракторы.

Тончайший слой отражения зеркал нуждается в внимательном обхождении с телескопом – не подвергать острой смене температур и хранить в чехле, чтобы влага не конденсировалась на поверхности зеркал.

Внимание! Диаметров объективов много – от 76 до 250 мм. Небольшая цена на прибор не означает, что он хуже работает, нежели другие. Он предназначен для созерцания далеких звездных скоплений, имеет хорошую светосилу.

Самыми известными и недорогими рефлекторными телескопами считаются приборы, работающие по системе Ньютона. В ней свет, попадая на сферическое зеркало, преломляется на вторичном плоском. Можно приобрести такие приборы с диаметром от 76 до 400 мм.

Существуют также рефлекторы, которые выполняют свои функции по системе Долла-Кэркема, Кассегрена, Ричи-Кретьена. Отличаются они вогнутостью зеркальных линз и их размещением в объективе. Такие приборы представлены в серийном изготовлении, однако подвержены аберрациям. Идеальны для астрофотографирования и оптических наблюдений за планетами.

Телескопы по системам Максутова-Кассегрена и Шмидта-Кассегрена

Катадиоптрики (общее название телескопов этой категории) воплотили в себе мечту всех астрономов-любителей – объединение преимуществ линзовых и зеркальных приборов для наблюдения за звездами и планетами.

Самыми популярными являются устройства системы Шмидта-Кассергена. Они нетяжелые, компактные, не требуют жесткого штатива и выдают высококачественное изображение.

Чтобы исправить возможность искажения видимости небесного объекта, в этих системах производители установили корректировочные пластины и линзы.

Выбираем правильную монтировку

Во время длительного наблюдения за звездами и планетами возникает необходимость в подставке для телескопа – руки устают и начинают дрожать, что приводит к искажению изображения.

Существует несколько видов подставок:

  • Экваториальная предназначена для точных наблюдений, астрофотографирования, позволяет наводить координаты;
  • Азимутальная – более удобна в использовании рефлекторов, детьми;
  • Система Добсона – отличается простотой, часто идет в комплекте с большими рефлекторами.

Опора для телескопа станет надежным помощником для вас и экономить на ней не нужно.

Идеальный прибор для ваших целей

В соответствии с пожеланиями начинающего астронома или опытного фотографа небесных объектов мы разделили телескопы на категории:

  • Первый. Не привередливому пользователю подойдет телескоп рефракторного типа 70-90 мм или рефлекторы Ньютона размером линзы в 120 мм.
  • Для ребенка. Выбирая телескоп на ребенку, можно не зацикливаться на характеристиках точности изображения и его высоком качестве. Для этой цели можно купить рефлектор или рефрактор из недорогого сегмента.
  • Универсальный. Изготовители предлагают такой вид телескопа для людей, которые желают наблюдать за объектами на Земле и в космосе. Приобретайте рефрактор 120 мм, рефлектор 140 мм, Максутов-Кассегрен 110 мм.
  • Для фотографии астрономических тел выбирайте телескопы с высоким показателем объектива. Также обязательно наличие монтировки экваториального типа с электроприводами.
  • Созерцание планет. Яркое изображение можно получить при использовании рефрактора 150 мм.
  • Для обследования объектов в далеком космосе подойдут рефлекторы 240 мм с экваториальной опорой или штативом по системе Добсона.
  • Для частых перемещений подойдут рефракторы с коротким фокусом и работающие по системе Максутова-Кассегрена. Они легкие и небольшие и не создадут неудобств во время транспортировки.

При покупке телескопа для начинающего наблюдателя за звездами и туманностями не нужно платить больших денег, даже самый простой прибор с минимальными показателями увеличения и с наличием аберрации станет для него подарком. А в близком будущем, когда он станет профессиональным астрономом, можно задуматься и о приобретении более дорогих моделей.

Как выбрать телескоп — видео

Есть такой механизм - телескоп. Нужен для чего он? Какие функции выполняет? В чем помогает?

Общая информация

Наблюдение за звёздами было увлекательным занятием ещё с давних времён. Это было не только приятное, но и полезное времяпрепровождение. Первоначально человек мог наблюдать за звёздами только своими глазами. В таких случаях звезды были всего лишь точками на небесном своде. Но в семнадцатом веке был изобретён телескоп. Нужен для чего он был и зачем сейчас применяется? В ясную погоду с его помощью можно наблюдать за тысячами звёзд, внимательно рассматривать месяц или просто наблюдать за глубинами космоса. Но, допустим, человека заинтересовала астрономия. Телескоп поможет ему наблюдать уже за десятками, сотнями тысяч или даже миллионами звёзд. В таком случае всё зависит от мощности используемого прибора. Так, любительские телескопы дают увеличение в несколько сотен раз. Если говорить о научных приборах, то они могут видеть в тысячи и миллионы раз лучше, чем мы.

Виды телескопов

Условно можно выделить две группы:

  1. Любительские приборы. Сюда относят телескопы, увеличительная способность которых составляет максимум несколько сотен раз. Хотя существуют и относительно слабые приборы. Так, для наблюдения за небом можно купить даже бюджетные модели со стократным увеличением. Если хотите купить себе такой прибор, то знайте про телескоп - цена на них начинается от 5 тысяч рублей. Поэтому позволить себе заниматься астрономией может практически каждый.
  2. Профессионально-научные приборы. Здесь присутствует деление на две подгруппы: оптические и радиолокационные телескопы. Увы, первые обладают определённым, довольно скромным запасом возможностей. К тому же при достижении порога в 250-кратное увеличение из-за атмосферы резко начинает падать качество картинки. В качестве примера можно привести известный телескоп "Хаббл". Он может передавать четкие картинки с увеличением в 5 тысяч раз. Если же пренебречь качеством, то он может улучшать видимость в 24 000! Но настоящее чудо - это радиолокационный телескоп. Нужен для чего он? Ученые с его помощью наблюдают за Галактикой и даже за Вселенной, узнавая про новые звёзды, созвездия, туманности и иные

Что даёт человеку телескоп?

Он является билетом в поистине фантастический мир неизведанных звездных глубин. Даже бюджетные любительские телескопы позволят совершать научные открытия (пускай даже и сделанные ранее одним из профессиональных астрономов). Хотя и обычный человек может многое сделать. Так, было ли известно читателю, что большинство комет открыли именно любители, а не профессионалы? Некоторые люди делают открытие даже не один раз, а много, называя найденные объекты так, как им захочется. Но даже если не удалось найти ничего нового, то каждый человек с телескопом может почувствовать себя значительно ближе к глубинам Вселенной. С его помощью можно любоваться красотами и других планет Солнечной системы.

Если говорить о нашем спутнике, то можно будет внимательно рассмотреть рельеф его поверхности, который будет более живой, объемный и детализированный. Кроме Луны, можно будет полюбоваться и Сатурна, полярной шапкой Марса, мечтая о том, как на нём будут расти яблони, красавицей-Венерой и выпаленным Солнцем Меркурием. Это поистине восхитительное зрелище! С более-менее мощным прибором можно будет наблюдать за переменными и двойными массивными огненными шарами, туманностями и даже ближайшими галактиками. Правда, для обнаружения последних всё же понадобятся определённые навыки. Поэтому нужно будет прикупить не только телескопы, но и учебную литературу.

Верный помощник телескопа

Кроме этого прибора, его владельцу полезен будет ещё один инструмент изучения космоса - карта звездного неба. Это надёжная и верная шпаргалка, помогающая и облегчающая поиск желаемых объектов. Ранее для этого использовались бумажные карты. Но сейчас их успешно заменили электронные варианты. Они значительно удобнее в использовании, нежели печатные карты. Более того, это направление активно развивается, поэтому значительную помощь владельцу телескопа сможет оказать даже… виртуальный планетарий. Благодаря им быстро будет представлено по первому запросу необходимое изображение. Среди дополнительных функций такого программного обеспечения - даже предоставление любой вспомогательной информации, что может быть полезна.

Вот мы и разобрались, что собой представляет телескоп, нужен для чего он и какие возможности предоставляет.

ОПТИЧЕСКИЙ ТЕЛЕСКОП - применяется для получения изображений и спектров космич. объектов в оптич. диапазоне. Излучение объектов регистрируется при помощи фотогр. или телевиз. камер, электронно-оптических преобразователей, приборов с зарядовой связью . Эффективность О. т. характеризуется предельной звёздной величиной , достижимой на данном телескопе при заданном отношении сигнала к шуму (точности). Для слабых точечных объектов, когда шум определяется фоном ночного неба, она зависит в осн. от отношения D/ , где D - размер апертуры О. т., - угл. диаметр даваемого им изображения (чем больше D/ , тем больше, при прочих равных условиях, предельная звёздная величина). Работающий в оптим. условиях О. т. с зеркалом диам. 3,6 м имеет предельную звёздную величину ок. 26 т при точности 30%. Принципиальных ограничений предельной звёздной величины наземных О. т. не существует.
Астр. О. т. изобретён Г. Галилеем (G. Galilei) в нач. 17 в. (хотя, возможно, у него были предшественники). Его О. т. имел рассеивающий (отрицательный) окуляр. Прибл. в это же время И. Кеплер (J. Kepler) предложил О. т. с положит. окуляром, позволяющим установить в нём крест нитей, что значительно повысило точность визирования. На протяжении 17 в. астрономы пользовались О. т. подобного типа с объективом, состоящим из одной плоско-выпуклой линзы. С помощью этих О. т. изучалась поверхность Солнца (пятна, факелы), картографировалась Луна, открыты спутники Юпитера, кольца и спутники Сатурна. Во 2-й пол. 17 в. И. Ньютон (I. Newton) предложил и изготовил О. т. с объективом в виде металлич. параболич. зеркала (рефлектор). С помощью подобного О. т. У. Гершелем (W. Herschel) открыт Уран. Прогресс стекловарения и теории оптич. систем позволил создать в нач. 19 в. ахроматич. объективы (см. Ахромат ).О. т. с их использованием (рефракторы) обладали сравнительно небольшой длиной и давали хорошее изображение. С помощью таких О. т. были измерены расстояния до ближайших звёзд. Подобные инструменты применяются и в наше время. Создание очень большого (с объективом диам. более 1 м) линзового рефрактора оказалось невозможным из-за деформации объектива под действием собств. веса. Поэтому в кон. 19 в. появились первые усовершенствованные рефлекторы, объектив к-рых представлял собой изготовленное из стекла вогнутое зеркало параболич. формы, покрытое отражающим свет слоем серебра. С помощью подобных О. т. в нач. 20 в. были измерены расстояния до ближайших галактик и открыто космологич. красное смещение .
Основой О. т. является его оптич. система. Гл. зеркало - вогнутое (сферич., параболич. или гиперболическое). Параболич. зеркало строит хорошее изображение только на оптич. оси, гиперболическое - вообще не строит его, поэтому применяются линзовые корректоры, увеличивающие поле зрения (рис., а) . Вариантом оптич. системы является кассегреновская система: пучок сходящихся лучей от гл. параболич. зеркала перехватывается до фокуса выпуклым гиперболич. зеркалом (рис., б) . Иногда этот фокус с помощью зеркал выносят в неподвижное помещение (фокус куде). Рабочее поле зрения, в пределах к-рого оптич. система совр. крупного О. т. строит неискажённые изображения, не превышает 1 - 1,5°. Более широкоугольные О. т. выполняют по схеме Шмидта или Максутова (зеркально-линзовые О. т.). У О. т. Шмидта коррекц. пластина имеет асферич. поверхность и помещается в центре кривизны сферич. зеркала. У систем Максутова аберрации (см. Аберрации оптических систем )гл. сферич. зеркала исправляются мениском со сферич. поверхностями. Диаметр гл. зеркала зеркально-линзовых О. т. не более 1,5 - 2 м, поле зрения до 6°. Материал, из к-рого изготовлены зеркала О. т., имеет малый термич. коэф. расширения (ТКР) для того, чтобы форма зеркал не менялась при изменении темп-ры в течение наблюдений.

Некоторые оптические схемы крупных современных рефлекторов: а - прямой фокус; б - кассегреновский фокус. А - главное зеркало, В - фокальная поверхность, стрелками показан ход лучей.

Элементы оптики О. т. закрепляются в трубе О. т. Для устранения децентровки оптики и предотвращения ухудшения качества изображения при деформациях трубы под действием веса частей О. т. применяются т. н. трубы компенсац. типа, не меняющие при деформациях направление оптич. оси.
Установка (монтировка) О. т. позволяет наводить его на избранный космич. объект и точно и плавно сопровождать этот объект в суточном движении по небу. Повсеместно распространена экваториальная монтировка: одна из осей вращения О. т. (полярная) направлена в полюс мира (см. Координаты астрономические ),а вторая перпендикулярна ей. В этом случае сопровождение объекта осуществляется одним движением - поворотом вокруг полярной оси. При азимутальной монтировке одна из осей вертикальна, другая - горизонтальна. Сопровождение объекта осуществляется тремя движениями одновременно (по программе, задаваемой ЭВМ) - поворотами по азимуту и высоте и вращением фотопластинки (приёмника) вокруг оптич. оси. Азимутальная монтировка позволяет уменьшить массу подвижных частей О. т., т. к. в этом случае труба поворачивается относительно вектора силы тяжести лишь в одном направлении. Подшипники монтировки О. т. обеспечивают малое трение покоя. Обычно применяются гидростатич. подшипники: оси вращения О. т. плавают на тонком слое масла, подаваемого под давлением.
О. т. устанавливают в спец. башнях. Башня должна находиться в тепловом равновесии с окружающей средой и с телескопом. О. т., предназначенные для наблюдений Солнца, устанавливают в высоких башнях - для уменьшения влияния турбулентности вблизи нагретой Солнцем почвы, заметно ухудшающей качество изображения. Подъём О. т., предназначенного для ночных наблюдений, на высоту 10 - 20 м не улучшает качество изображения (как это предполагалось ранее).
Совр. О. т. можно разделить на четыре поколения. К 1-му поколению относятся рефлекторы с главным стеклянным (ТКР7 х 10 -6) зеркалом параболич. формы с отношением толщины к диаметру (относит. толщиной) 1 / 8 . Фокусы - прямой, кассегреновский и куде. Труба - сплошная или решётчатая - выполнена но принципу макс. жёсткости. Подшипники обычно шариковые. Примеры: 1,5- и 2,5-метровые рефлекторы обсерватории Маунт-Вилсон (США, 1905 и 1917).
Для О. т. 2-го поколения также характерно параболич. гл. зеркало. Фокусы - прямой с корректором, кассегреновский и куде. Зеркало изготовлено из пирекса (стекла с ТКР, пониженным до 3 х 10 -6), относит. толщина 1 / 8 . Очень редко зеркало выполнялось облегчённым, т. е. имело пустоты с тыльной стороны. Труба решётчатая, осуществлён принцип компенсации. Подшипники шариковые или гидростатические. Примеры: 5-метровый рефлектор обсерватории Маунт-Паломар (США, 1947) и 2,6-метровый рефлектор Крымской астрофиз. обсерватории (СССР, 1961).
О. т. 3-го поколения начали создаваться в кон. 60-х гг. Для них характерна оптич. схема с гиперболич. гл. зеркалом (т. н. схема Ричи - Кретьена). Фокусы - прямой с корректором, кассегреновский, куде. Материал зеркала - кварц или ситалл (ТКР 5 х 10 -7 или1 х 10 -7), относит. толщина 1 / 8 . Труба компенсац. схемы. Подшипники гидростатические. Пример: 3,6-метровый рефлектор Европейской южной обсерватории (Чили, 1975).
О. т. 4-го поколения - инструменты с зеркалом диам. 7 - 10 м; вход в строй их ожидается в 90-х гг. В них предполагается использование группы новшеств, направленных на значит. уменьшение массы инструмента. Зеркала - из кварца, ситалла и, возможно, из пирекса (облегчённые). Относит. толщина меньше 1 / 10 . Труба компенсационная. Монтировка азимутальная. Подшипники гидростатические. Оптич. схема - Ричи - Кретьена.
Крупнейшим в мире О. т. является 6-метровый телескоп, установленный в Спец. астрофиз. обсерватории (САО) АН СССР на Северном Кавказе. Телескоп имеет прямой фокус, два фокуса Нэсмита и фокус куде. Монтировка азимутальная.
Известная перспектива имеется у О. т., состоящих из неск. зеркал, свет от к-рых собирается в общем фокусе. Один из таких О. т. действует в США. Он состоит из шести 1,8-метровых параболич. зеркал и по собирающей площади эквивалентен 4,5-метровому О. т. Монтировка азимутальная.
Для солнечных О. т. характерны очень большие размеры спектральной аппаратуры, поэтому зеркала и спектрограф обычно делают неподвижными, а свет Солнца подаётся на них системой зеркал, называемой целостатом. Диаметр совр. солнечных О. т. обычно составляет 50 - 100 см. Небольшие узкоспециализиров. солнечные инструменты выполняются в виде рефракторов обычного типа. Предполагается создание солнечного О. т. диам. 2,5 м.
Астрометрич. О. т. (предназначенные для определения положений космич. объектов) обычно имеют небольшие размеры и повыш. механич. стабильность. О. т. для фотогр. астрометрии имеют спец. линзовые объективы и экваториальную монтировку. Пассажный инструмент, меридианный круг, фотогр. зенитная труба и ряд др. астрометрич. О. т. не предназначены для слежения за суточным движением объектов. Их аппаратура регистрирует прохождение объекта через оптич. ось инструмента, положение к-рой относительно меридиана и вертикали известно.
Для исключения влияния атмосферы предполагается установка О. т. на космич. аппараты.

Если вы решили купить телескоп, то вам сначала нужно понять, что он собой представляет, какие виды их бывают, и какой вариант лучше выбрать. В этом мы и попытаемся помочь вам разобраться.

Если вы решили купить телескоп, то вам сначала нужно понять, что он собой представляет, какие виды их бывают, и какой вариант лучше выбрать. В этом мы и попытаемся помочь вам разобраться.

Что такое телескоп и зачем он нужен
Телескоп - это прибор, который позволяет наблюдать за разными небесными объектами, которые сильно удалены от точки наблюдения. Наиболее часто они применяются для наблюдения именно за небесными телами, но иногда с их помощью рассматриваются и земные объекты. Ранее они были очень дорогими, и позволить их себе могли только астрономы и уфологии. Сегодня приборы такого рода гораздо доступнее, и позволить их себе могут и обычные люди. Например, купить их может помочь магазин «Звездочет».

Оптические телескопы
Разные телескопы могут работать в разных диапазонах электромагнитных спектров. Наиболее распространен оптический телескоп. Практически все любительские телескопы сегодня являются оптическими. Такие приборы работают со светом. Также бывают радиотелескопы, нейтринные, гравитационные, рентгеновские и гамма телескопы. Однако это все относится к научному оборудованию, которое в быту не применяется.

Виды телескопов
Оптические телескопы, как профессиональные, так и любительские, подразделяются на три типа. Главный критерий тут – объектив телескопа, вернее принцип, по которому он работает. Различные виды телескопов вы можете найти на сайте www.astronom.ru .

Линзовый телескоп
Линзовыми называются рефракторами, и они появились на свет самыми первыми. Создателем их стал Галилео Галилей. Преимущество таких телескопов в том, что им почти не нужно специальное обслуживание, они гарантируют хорошую цветопередачу, четкое изображение. Такие варианты хорошо подходят для изучения Луны, планет, а также двойных звезд. Стоит отметить, что эти устройства максимально подходят для профессионалов, так как они не так уж просты в использовании, а кроме того имеют достаточно большие размеры и высокую стоимость.

Зеркальный телескоп

Зеркальными называются рефлекторами. Их объективы состоят только их зеркал. Как и выпуклая линза, зеркало вогнутого типа собирает свет в определенной точке. Если в этой точке будет помещен окуляр, то можно увидеть изображение. Среди достоинств такого телескопа выделяется минимальная цена на единицу диаметра устройства, так как большие зеркала изготовлять значительно выгоднее, чем большие линзы. Также они компактны и легки в транспортировке, при этом дают яркие картинки с небольшими искажениями. Конечно, у зеркальных есть и свои недостатки. Это дополнительное время на термостабилизацию, отсутствие защиты от пыли и воздуха, которые могут портить изображение.

Зеркально-линзовые телескопы
Они называются катадиоптрическими, и в них могут применяться как линзы, так и зеркала. Плюс такого телескопа - универсальность, так как с их помощью можно наблюдать и планеты с Луной, и объекты дальнего космоса. Также они весьма компактны и выгодны. Единственный момент – это сложность конструкции, что усложняет самостоятельную юстировку устройства.



Понравилась статья? Поделитесь ей
Наверх