Нервно гуморальная регуляция дыхания кратко. Гуморальная регуляция дыхания

Дыхание - актуально принципиальный процесс в нашем организме. Дыхательная система обеспечивает обмен СО2 и О2 меж организмом и наружной окружающей средой. Эту важную актуальную функцию регулируют бессчетные нейроны ЦНС, которые размещены в нескольких отделах мозга и объединены в обобщённое понятие "дыхательный центр". На него действуют нервные и гуморальные стимулы, при всем этом происходит приспособление функции фактически дыхания к условиям наружной среды, которые повсевременно изменяются.

Нервная регуляция дыхания

Структуры, которые просто нужны для появления дыхательных ритмов, были в первый раз найдены в продолговатом мозге. Его разрушение ведет к остановке дыхания. Кора мозга воспринимает конкретное роль в регуляции дыхания. Вот поэтому дыхательный центр находится в неизменной активности. В нём появляются ритмические импульсы возбуждения и регится ритмическая активность. Дальше импульсы из центра с помощью центробежных нейронов передаются к дыхательным мускулам и диафрагме. Таким макаром осуществляется чередование выдоха и вдоха в нашем организме. При болевом раздражении, раздражении рецепторов кровеносных сосудов либо раздражении органов, находящихся в брюшной полости, изменение дыхания происходит совсем рефлекторно.

Так, если вдохнуть пары аммиака, то будут раздражаться сенсоры слизистой носоглотки, это может привести к рефлекторной задержке дыхательного процесса. Это защита организма, которая срабатывает для предотвращения попадания в лёгкие вредного газа. Регуляция дыхания происходит, когда идут нервные импульсы от дыхательных мускул и рецепторов, расположенных в самих легких. От этих импульсов и зависит глубина выдоха и вдоха.

Регуляция дыхания также содействует приспособлению организма к изменениям среды, к примеру, задерживая дыхание, человек может без помощи других поменять его ритм и глубину. У спортсменов конкретно воздействие коры мозга разъясняет предстартовые конфигурации дыхания, его учащение и углубление до соревнований.

Гуморальная регуляция дыхания.

На центр дыхания оказывает влияние хим состав крови, а конкретно, её газовый состав. Накапливаясь в крови, углекислый газ раздражает сенсоры в кровяных сосудах, несущих кровь к голове, и возбуждает на базе рефлексов дыхательный центр. Так же действуют и другие продукты с завышенной кислотностью, которые поступают в кровь, к примеру, молочная кислота. Её содержание возрастает в крови во время мышечной работы. Этот отклик дыхательного центра на изменение состояния организма вследствие воздействия наружной среды происходит одномоментно, за считанные толики секунды. Может быть, таким макаром наш организм волнуется о состоянии нашего здоровья и предупреждает о будущей либо грядущей угрозы. Гуморальную регуляцию по праву можно именовать самой старой формой взаимодействия наших органов с клеточками.

Также многие нужные функции в нашем организме регулируются гормонами. Это высокоактивные и так нужные организму вещества, которые вырабатываются железами внутренней секреции. Секреторные клеточки желёз собственной поверхностью соприкасаются со стенами кровеносных сосудов. Вот поэтому гормоны стремительно попадают в кровь. Действие их на организм существенно.

Нейрогуморальная регуляция дыхания

Нервная регуляция. В головном мозгу расположен дыхательный центр, представляющий группу взаимосвязанных нейронов. Центры вдоха и выдоха, совокупно называемые бульбарным центром, расположены в продолговатом мозгу, а пневмотоксический центр в верхней части воролиева моста среднего мозга. Пневмотоксический центр регулирует работу инспираторного (вдох) и экспираторного (выдох) центров. Нервные импульсы, возникающие в дыхательном центре продолговатого мозга, передаются к подчиненным дыхательным центрам спинного мозга.

При нормальном дыхании импульсы из центра вдоха поступают к межреберным мышцам и диафрагме, вызывая их сокращение, что приводит к увеличению объема грудной клетки и поступлению воздуха в легкие, происходит вдох. Увеличение объема легких возбуждает рецепторы растяжения, расположенные в стенках легких. Импульсы от них по центростремительным нервам поступают в центр выдоха, в результате межреберные мышцы расслабляются, объем легких уменьшается, происходит выдох.

Адаптация дыхания к изменениям условий внешней среды тесно связана с корой больших полушарий. Например, у собаки с удаленной корой больших полушарий дыхание в покое происходит нормальное, но при команде сделать даже несколько шагов у нее появляется отдышка.

Другой пример – это выработка условных рефлексов на условия газовой среды. У собаки в комнате с большим содержанием СО 2 учащается дыхание. Если это сопровождать звонком или светом, то даже не поместив собаку в условия повышенного содержания СО 2 , но сделать звонок или выключить свет, у нее появится учащенное дыхание. У скаковых и рысистых лошадей перед бегами наступает учащенное дыхание.

Гуморальная регуляция . Специфическим фактором, определяющим интенсивность дыхательных движений, является концентрация СО 2 в крови. Повышение уровня СО 2 увеличивает возбудимость дыхательного центра, в результате усиливается и учащается дыхание. Первый вдох у новорожденного связан с увеличение концентрации СО 2 в крови после отделение его от дыхания через плаценту. Эта концентрация, достигнув порогового значения, активизирует нервные структуры дыхательного центра и новорожденный начинает дышать.

Основным факторам, стимулирующим дыхательный центр, является не уменьшение О 2 в крови, а увеличение СО 2 . Это было показано в опыте с перекрестным кровообращением (опыт Фредерика). Для этого у двух наркотизированных собак перерезали и перекрестно соединяли сонные артерии и яремные вены. После этого зажимали трахею первой собаки, т.е. производили ее удушение (остановка дыхания), в результате у второй проявлялась резко выраженная отдышка. Это связано с тем, что в крови правой собаки накопилось избыточное количество СО 2 , и, когда эта кровь поступала к голове второй собаки, то стимулировалась активность дыхательных центров (рис ***). Установлено, что с повышение СО 2 в крови хеморецепторы сосудистых стенок диафрагмы раздражаются и передают импульсы в дыхательный центр.

Треть скопления ядер дыхательных нейронов находится в передней части моста мозга. Эта группа называется пневмотоксическим центром. Он, как и бульбарный центр регулирует ритмику дыхания. От дыхательных нейронов импульсы идут до ядер диафрагмальных и межреберных нервов в спинном мозге. По этим нервам импульсы идут к диафрагме и наружным межреберным мышцам.

Так нервные центры среднего мозга и мозжечка координируют дыхание в соответствии с двигательной активностью, перемещением тела в пространстве.

Существует три механизма секреции:

Мерокриновая – наиболее общий вид секреции и заключается в удалении секретируемых веществ в растворенном состоянии путем диффузии через мембрану клетки. Таким путем происходит выделение гормонов, медиаторов, пищеварительных ферментов.

Регуляция внешнего дыхания. В соответствии с метаболическими потребностями дыхательная система обеспечивает газообмен О2 и СО2 между окружающей средой и организмом. Эту жизненно важную функцию регулирует сеть многочисленных взаимосвязанных нейронов ЦНС, расположенных в нескольких отделах мозга и объединяемых в комплексное понятие"дыхательный центр". При воздействии на его структуры нервных и гуморальных стимулов происходит приспособление функции дыхания к меняющимся условиям внешней среды. Структуры, необходимые для возникновения дыхательного ритма, впервые были обнаружены в продолговатом мозге. Перерезка продолговатого мозга в области дна IV желудочка приводит к прекращению дыхания. Поэтому под главным дыхательным центром понимают совокупность нейронов специфических дыхательных ядер продолговатого мозга.

Дыхательный центруправляет двумя основными функциями: двигательной, которая проявляется в виде сокращения дыхательных мышц, и гомеостатической, связанной с поддержанием постоянства внутренней среды организма при сдвигах в ней содержания 02 и СО2. Двигательная , или моторная, функция дыхательного центра заключается в генерации дыхательного ритма и его паттерна. Благодаря этой функции осуществляется интеграция дыхания с другими функциями. Под паттерном дыхания следует иметь в виду длительность вдоха и выдоха, величину дыхательного объема, минутного объема дыхания. Гомеостатическая функция дыхательного центра поддерживает стабильные величины дыхательных газов в крови и внеклеточной жидкости мозга, адаптирует дыхательную функцию к условиям измененной газовой среды и другим факторам среды обитания.

Локализация и функциональные свойства дыхательных нейронов.

В передних рогах спинного мозга на уровне С3 - С5 располагаются мотонейроны, образующие диафрагмальный нерв. Мотонейроны, иннервирующие межреберные мышцы, находятся в передних рогах на уровнях Т2 - Т10 (Т2 - Т6 - мотонейроны инспираторных мышц, T8-T10 - экспираторных). Установлено, что одни мотонейроны регулируют преимущественно дыхательную, а другие - преимущественно познотоническую активность межреберных мышц.

Нейроны бульбарного дыхательного центра располагаются на дне IV желудочка в медиальной части ретикулярной формации продолговатого мозга и образуют дорсальную и вентральную дыхательные группы. Дыхательные нейроны, активность которых вызывает инспирацию или экспирацию, называются соответственно инспираторными и экспираторными нейронами. Между группами нейронов, управляющими вдохом и выдохом, существуют реципрокные отношения. Возбуждение экспираторного центра сопровождается торможением в инспираторном центре и наоборот. Инспираторные и экспираторные нейроны, в свою очередь, делятся на "ранние" и "поздние". Каждый дыхательный цикл начинается с активизации "ранних" инспираторных нейронов, затем возбуждаются "поздние" инспираторные нейроны. Также последовательно возбуждаются "ранние" и "поздние" экспираторные нейроны, которые тормозят инспираторные нейроны и прекращают вдох. Современные исследования показали, что в продолговатом мозге нет четкого деления на инспираторный и экспираторный отделы, а есть скопления дыхательных нейронов с определенной функцией.

Спонтанная активность нейронов дыхательного центра начинает появляться к концу периода внутриутробного развития. Возбуждение дыхательного центра у плода появляется благодаря пейсмекерным свойствам сети дыхательных нейронов продолговатого мозга. По мере формирования синаптических связей дыхательного центра с различными отделами ЦНС пейсмекерный механизм дыхательной активности постепенно теряет свое физиологическое значение.

В варолиевом мосту находятся ядра дыхательных нейронов, образующих пневмотаксический центр. Считается, что дыхательные нейроны моста участвуют в механизме смены вдоха и выдоха и регулируют величину дыхательного объема. Дыхательные нейроны продолговатого мозга и варолиева моста связаны между собой восходящими и нисходящими нервными путями и функционируют согласованно. Получив импульсы от инспираторного центра продолговатого мозга, пневмотаксический центр посылает их к экспираторному центру продолговатого мозга, возбуждая последний. Инспираторные нейроны тормозятся. Разрушение мозга между продолговатым мозгом и мостом удлиняет фазу вдоха. Гипоталамические ядра координируют связь дыхания с кровообращением.

Определенные зоны коры больших полушарий осуществляют произвольную регуляцию дыхания в соответствии с особенностями влияния на организм факторов внешней среды и связанными с этим гомеостатическими сдвигами.

Таким образом, мы видим, что управление дыханием - сложнейший процесс, осуществляемый множеством нейронных структур. В процессе управления дыханием осуществляется четкая иерархия различных компонентов и структур дыхательного центра.

Рефлекторная регуляция дыхания.

Нейроны дыхательного центра имеют связи с многочисленными механорецепторами дыхательных путей и альвеол легких и рецепторов сосудистых рефлексогенных зон. Благодаря этим связям осуществляется весьма многообразная, сложная и биологически важная рефлекторная регуляция дыхания и ее координация с другими функциями организма.

Различают несколько типов механорецепторов: медленно адаптирующиеся рецепторы растяжения легких, ирритантные быстро адаптирующиеся механорецепторы и J-рецепторы - "юкстакапиллярные" рецепторы легких.

Медленно адаптирующиеся рецепторы растяжения легкихрасположены в гладких мышцах трахеи и бронхов. Эти рецепторы возбуждаются при вдохе, импульсы от них по афферентным волокнам блуждающего нерва поступают в дыхательный центр. Под их влиянием тормозится активность инспираторных нейронов продолговатого мозга. Вдох прекращается, начинается выдох, при котором рецепторы растяжения неактивны. Рефлекс торможения вдоха при растяжении легких называется рефлексом Геринга - Брейера. Этот рефлекс контролирует глубину и частоту дыхания. Он является примером регуляции по принципу обратной связи. После перерезки блуждающих нервов дыхание становится редким и глубоким.

Ирритантные быстро адаптирующиеся механорецепторы, локализованные в слизистой оболочке трахеи и бронхов, возбуждаются при резких изменениях объема легких, при растяжении или спадении легких, при действии на слизистую трахеи и бронхов механических или химических раздражителей. Результатом раздражения ирритантных рецепторов является частое, поверхностное дыхание, кашлевой рефлекс, или рефлекс бронхоконстрикции.

J-рецепторы - "юкстакапиллярные" рецепторы легких находятся в интерстиции альвеол и дыхательных бронхов вблизи от капилляров. Импульсы от J-рецепторов при повышении давления в малом круге кровообращения, или увеличении объема интерстициальной жидкости в легких (отек легких), или эмболии мелких легочных сосудов, а также при действии биологически активных веществ (никотин, простагландины, гистамин) по медленным волокнам блуждающего нерва поступают в дыхательный центр - дыхание становится частым и поверхностным (одышка).

Важное биологическое значение, особенно в связи с ухудшением экологических условий и загрязнением атмосферы, имеютзащитные дыхательные рефлексы - чихание и кашель.

Чихание. Раздражение рецепторов слизистой оболочки полости носа, например, пылевыми частицами или газообразными наркотическими веществами, табачным дымом, водой вызывает сужение бронхов, брадикардию, снижение сердечного выброса, сужение просвета сосудов кожи и мышц. Различные механические и химические раздражения слизистой оболочки носа вызывают глубокий сильный выдох - чихание, способствующее стремлению избавиться от раздражителя. Афферентным путем этого рефлекса является тройничный нерв.

Кашель возникает при раздражении механо- и хеморецепторов глотки, гортани, трахеи и бронхов. При этом после вдоха сильно сокращаются мышцы выдоха, резко повышается внутригрудное и внутрилегочное давление (до 200 мм рт. ст.), открывается голосовая щель, и воздух из дыхательных путей под большим напором высвобождается наружу и удаляет раздражающий агент. Кашлевой рефлекс является основным легочным рефлексом блуждающего нерва.

Рефлексы с проприорецепторов дыхательных мышц.

От мышечных веретен и сухожильных рецепторов Гольджи, расположенных в межреберных мышцах и мышцах живота, импульсы поступают в соответствующие сегменты спинного мозга, затем в продолговатый мозг, центры головного мозга, контролирующие состояние скелетных мышц. В результате происходит регуляция силы сокращений в зависимости от исходной длины мышц и оказываемого им сопротивления дыхательной системы.

Рефлекторная регуляция дыхания осуществляется также периферическими и центральными хеморецепторами, что изложено в разделе гуморальной регуляции.

Гуморальная регуляция дыхания.

Главным физиологическим стимулом дыхательных центров является двуокись углерода. Регуляция дыхания обусловливает поддержание нормального содержания СО2 в альвеолярном воздухе и артериальной крови. Возрастание содержания СО2 в альвеолярном воздухе на 0,17% вызывает удвоение МОД, а вот снижение О2 на 39-40% не вызывает существенных изменений МОД.

При повышении в замкнутых герметических кабинах концентрации СО2 до 5 - 8% у обследуемых наблюдалось увеличение легочной вентиляции в 7-8 раз. При этом концентрация СО2 в альвеолярном воздухе существенно не возрастала, так как основным признаком регуляции дыхания является необходимость регуляции объема легочной вентиляции, поддерживающей постоянство состава альвеолярного воздуха.

Деятельность дыхательного центра зависит от состава крови, поступающей в мозг по общим сонным артериям. В 1890 г. это было показано Фредериком в опытах с перекрестным кровообращением. У двух собак, находившихся под наркозом, перерезали и соединяли перекрестно сонные артерии и яремные вены. При этом голова первой собаки снабжалась кровью второй собаки и наоборот. Если у одной из собак, например у первой, перекрывали трахею и таким путем вызывали асфиксию, то гиперпноэ развивалось у второй собаки. У первой же собаки, несмотря на увеличение в артериальной крови напряжения СО2 и снижение напряжения 02, развивалось апноэ, так как в ее сонную артерию прступала кровь второй собаки, у которой в результате гипервентиляции снижалось напряжение СО2 в артериальной крови.

Двуокись углерода, водородные ионы и умеренная гипоксия вызывают усиление дыхания. Эти факторы усиливают деятельность дыхательного центра, оказывая влияние на периферические (артериальные) и центральные (модулярные) хеморецепторы, регулирующие дыхание.

Артериальные хеморецепторы находятся в каротидных синусах и дуге аорты. Они расположены в специальных тельцах, обильно снабжаемых артериальной кровью. Аортальные хеморецепторы на дыхание влияют слабо и большее значение имеют для регуляции кровообращения.

Артериальные хеморецепторы являются уникальными рецепторными образованиями, на которые гипоксия оказывает стимулирующее влияние. Афферентные влияния каротидных телец усиливаются также при повышении в артериальной крови напряжения двуокиси углерода и концентрации водородных ионов. Стимулирующее действие гипоксии и гиперкапнии на хеморецепторы взаимно усиливается, тогда как в условиях гипероксии чувствительность хеморецепторов к двуокиси углерода резко снижается. Артериальные хеморецепторы информируют дыхательный центр о напряжении 02 и СО2 в крови, направляющейся к мозгу.

После перерезки артериальных (периферических) хеморецепторов у подопытных животных исчезает чувствительность дыхательного центра к гипоксии, но полностью сохраняется реакция дыхания на гиперкапнию и ацидоз.

Центральные хеморецепторы расположены в продолговатом мозге латеральнее пирамид. Перфузия этой области мозга раствором со сниженным рН резко усиливает дыхание, а при высоком рН дыхание ослабевает, вплоть до апноэ. То же происходит при охлаждении или обработке этой поверхности продолговатого мозга анестетиками. Центральные хеморецепторы, оказывая сильное влияние на деятельность дыхательного центра, существенно изменяют вентиляцию легких. Установлено, что снижение рН спинномозговой жидкости всего на 0,01 сопровождается увеличением легочной вентиляции на 4 л/мин.

Центральные хеморецепторы реагируют на изменение напряжения СО2 в артериальной крови позже, чем периферические хеморецепторы, так как для диффузии СО2 из крови в спинномозговую жидкость и далее в ткань мозга необходимо больше времени. Гиперкапния и ацидоз стимулируют, а гипокапния и алкалоз - тормозят центральные хеморецепторы.

Для определения чувствительности центральных хеморецепторов к изменению рН внеклеточной жидкости мозга, изучения синергизма и антагонизма дыхательных газов, взаимодействия системы дыхания и сердечно-сосудистой системы используют метод возвратного дыхания. При дыхании в замкнутой системе выдыхаемый СОд вызывает линейное увеличение концентрации СО2 и одновременно повышается концентрация водородных ионов в крови, а также во внеклеточной жидкости мозга.

Совокупность дыхательных нейронов следовало бы рассматривать как созвездие структур, осуществляющих центральный механизм дыхания. Таким образом, вместо термина "дыхательный центр" правильнее говорить о системе центральной регуляции дыхания, которая включает в себя структуры коры головного мозга, определенные зоны и ядра промежуточного, среднего, продолговатого мозга, варолиева моста, нейроны шейного и грудного отделов спинного мозга, центральные и периферические хеморецепторы, а также механорецепторы органов дыхания.

Своеобразие функции внешнего дыхания состоит в том, что она одновременно и автоматическая, и произвольно управляемая.

Регуляция дыхания (нервная и гуморальная)

В соответствии с метаболическими потребностями дыхательная система обеспечивает газообмен О2 и СО2 между окружающей средой и организмом. Эту жизненно важную функцию регулирует сеть многочисленных взаимосвязанных нейронов ЦНС, расположенных в нескольких отделах мозга и объединяемых в комплексное понятие "дыхательный центр". дыхательный газообмен регуляция рефлекс

Дыхательный центр - это совокупность нейронов, участвующих в регуляции дыхания. При воздействии на его структуры нервных и гуморальных стимулов происходит приспособление функции дыхания к меняющимся условиям внешней и внутренней среды. Структуры, необходимые для возникновения дыхательного ритма, впервые были обнаружены в продолговатом мозге (Н.А. Миславский, 1885). Перерезка продолговатого мозга в области дна IV желудочка приводит к прекращению дыхания. Поэтому под главным дыхательным центром понимают совокупность нейронов специфических дыхательных ядер продолговатого мозга. Роль разных отделов ЦНС в регуляции дыхания демонстрируется ее перерезкой на разных уровнях.

Спинной мозг обеспечивает эфферентную иннервацию дыхательных мышц (III--IV сегменты шейного отдела иннервируют диафрагму, грудные сегменты - межреберные мышцы) и является исполнительной структурой, не обладающей самостоятельной активностью.

Продолговатый мозг является генератором центрального дыхательного ритма.

Варолиев мост обеспечивает правильность центрального дыхательного ритма, оптимальное соотношение между продолжительностью вдоха и выдоха

Гипоталамус осуществляет безусловнорефлекторные реакции внешнего дыхания.

Высшие отделы мозга (новая кора и лимбическая система) обеспечивает условнорефлекторные механизмы адаптативных реакций дыхания.

Дыхательный центр в целом управляет двумя основными функциями: двигательной, которая проявляется в виде сокращения дыхательных мышц, и гомеостатической, связанной с поддержанием постоянства внутренней среды организма при сдвигах в ней содержания 02 и СО2. Двигательная, или моторная, функция дыхательного центра заключается в генерации дыхательного ритма и его паттерна. Благодаря этой функции осуществляется интеграция дыхания с другими функциями. Под паттерном (рисунком) дыхания следует понимать длительность вдоха и выдоха, величину дыхательного объема, минутного объема дыхания. Гомеостатическая функция дыхательного центра поддерживает стабильные величины дыхательных газов в крови и внеклеточной жидкости мозга, адаптирует дыхательную функцию к условиям измененной газовой среды и другим факторам среды обитания.

В передних рогах спинного мозга на уровне С3 - С5 располагаются мотонейроны, образующие диафрагмальный нерв. Мотонейроны, иннервирующие межреберные мышцы, находятся в передних рогах на уровнях Т2 - Т10 (Т2 - Т6 - мотонейроны мышц инспираторов, T8-T10 - экспираторов). Установлено, что одни мотонейроны регулируют преимущественно дыхательную, а другие - преимущественно познотоническую активность межреберных мышц.

Нейроны бульбарного дыхательного центра располагаются на дне IV желудочка в медиальной части ретикулярной формации продолговатого мозга и образуют дорсальную и вентральную дыхательные группы. Нейроны, активность которых вызывает инспирацию или экспирацию, называются соответственно инспираторными и экспираторными нейронами. Между группами нейронов, управляющими вдохом и выдохом, существуют реципрокные отношения.

Возбуждение экспираторного центра сопровождается торможением в инспираторном центре и наоборот. Нейроны инсператорного и экспираторного центра, в свою очередь, делятся на "ранние" и "поздние". Каждый дыхательный цикл начинается с активизации "ранних" инспираторных нейронов, затем возбуждаются "поздние" инспираторные нейроны. Также последовательно возбуждаются "ранние" и "поздние" экспираторные нейроны, которые тормозят инспираторные нейроны и прекращают вдох. Современные исследования показали, что в продолговатом мозге нет четкого деления на инспираторный и экспираторный отделы, а есть скопления нейронов выполняющих определенные функции связанные с дыханием.

Спонтанная активность нейронов дыхательного центра начинает появляться к концу периода внутриутробного развития. Возбуждение дыхательного центра у плода появляется благодаря пейсмекерным (от англ. рacemaker - задающий ритм) свойствам сети нейронов дыхательного центра продолговатого мозга. Эти свойства обеспечивают генерацию электрических колебаний и поддержание ритмического возбуждения нейронов. По мере формирования синаптических связей дыхательного центра с различными отделами ЦНС пейсмекерный механизм дыхательной активности постепенно теряет свое физиологическое значение.

В варолиевом мосту находятся нейроны, образующих пневмотаксический центр. Считается, что дыхательные нейроны моста участвуют в механизме смены вдоха и выдоха и регулируют величину дыхательного объема. Дыхательные нейроны продолговатого мозга и варолиева моста связаны между собой восходящими и нисходящими нервными путями и функционируют согласованно. Получив импульсы от инспираторного центра продолговатого мозга, пневмотаксический центр посылает их к экспираторному центру продолговатого мозга, возбуждая последний. Инспираторные нейроны тормозятся. Разрушение мозга между продолговатым мозгом и мостом удлиняет фазу вдоха.

Гипоталамические ядра координируют связь дыхания с кровообращением.

Определенные зоны коры больших полушарий осуществляют произвольную регуляцию дыхания в соответствии с особенностями влияния на организм факторов внешней среды и связанными с этим гомеостатическими сдвигами.

Таким образом, мы видим, что управление дыханием - сложнейший процесс, осуществляемый множеством нейронных структур. В процессе нервной регуляции дыхания осуществляется четкая соподчиненность различных компонентов и структур дыхательного центра.

Нейроны дыхательного центра имеют связи с многочисленными механорецепторами дыхательных путей и альвеол легких и рецепторов сосудистых рефлексогенных зон. Благодаря этим связям осуществляется весьма многообразная, сложная и биологически важная рефлекторная регуляция дыхания и ее координация с другими функциями организма (Рис. 14).

Различают несколько типов механорецепторов: медленно адаптирующиеся рецепторы растяжения легких, ирритантные быстро адаптирующиеся механорецепторы и J-рецепторы - "юкстакапиллярные" рецепторы легких.

Медленно адаптирующиеся рецепторы растяжения легких расположены в гладких мышцах трахеи и бронхов. В каждом легком имеется до 1000 рецепторов. Эти рецепторы возбуждаются при вдохе, импульсы от них по афферентным волокнам блуждающего нерва поступают в дыхательный центр. Под их влиянием тормозится активность инспираторных нейронов продолговатого мозга. Вдох прекращается, начинается выдох, при котором рецепторы растяжения неактивны. Рефлекс торможения вдоха при растяжении легких называется рефлексом Геринга-Брейера. Этот рефлекс контролирует глубину и частоту дыхания. Он является примером регуляции по принципу обратной связи.

После перерезки блуждающих нервов дыхание становится редким и глубоким.

Ирритантные быстро адаптирующиеся механорецепторы, локализованные в слизистой оболочке трахеи и бронхов, возбуждаются при резких изменениях объема легких, при растяжении или спадении легких, при действии на слизистую трахеи и бронхов механических или химических раздражителей. Результатом раздражения ирритантных рецепторов является частое, поверхностное дыхание, кашлевой рефлекс, или рефлекс бронхоконстрикции.

J-рецепторы - "юкстакапиллярные" рецепторы легких находятся в интерстиции альвеол и дыхательных бронхов вблизи от капилляров. Импульсы от J-рецепторов при повышении давления в малом круге кровообращения, или увеличении объема интерстициальной жидкости в легких (отек легких), или эмболии мелких легочных сосудов, а также при действии биологически активных веществ (никотин, простагландины, гистамин) по медленным волокнам блуждающего нерва поступают в дыхательный центр - дыхание становится частым и поверхностным (одышка).

Сопряженные рефлексы дыхания осуществляются при раздражении других экстеро- и интерорецепторов.

Артериальные прессорецепторы. Их раздражение увеличением давления в артериях приводит к слабому снижению вентиляции легких. Падение давления приводит к обратному эффекту.

Пропреорецепторы дыхательных мышц. Их количество на единицу объема мышечной ткани больше, чем в большинстве скелетных мышц. Афферентация от инспираторных мышц возрастает при вдохе и снижается при выдохе. Является вспомогательным фактором для ограничения продолжительности вдоха.

От мышечных веретен и сухожильных рецепторов Гольджи, расположенных в межреберных мышцах и мышцах живота, импульсы поступают в соответствующие сегменты спинного мозга, затем в продолговатый мозг, центры головного мозга, контролирующие состояние скелетных мышц. В результате происходит регуляция силы сокращений в зависимости от исходной длины мышц и оказываемого им сопротивления дыхательной системы.

Рецепторы верхних дыхательных путей. Сильное раздражение слизистой полости носа водой и едкими веществами приводит к временной остановке дыхания (рефлекс ныряльщиков). Важное значение имеют в акте глотания и защитных дыхательных рефлексах.

Влияние моторных зон ЦНС. Является определяющим при максимальной вентиляции легких в условиях физической нагрузки, когда МОД (минутный объем дыхания) возрастает до 120 л/мин. Эффект связан с активацией гипоталамических механизмов интеграции моторной активности и её вегетативного обеспечения.

Экстеротерморецепторы. Их сильное возбуждение вызывает увеличение МОД (минутного объема дыхания).

Интеротерморецепторы. Повышение и незначительное понижение температуры тела приводит к усилению дыхания. Гипотермия вызывает снижение МОД.

Болевые экстерорецепторы. Их раздражение усиливает дыхание. Боль часто приводит к начальной задержке дыхания и последующей одышке.

Влияние гипоталамуса и коры. В гипоталамусе происходит интеграция сенсорной информации от всех систем организма. Нисходящие влияния гипоталамуса модулируют работу центрального дыхательного механизма исходя из нужд всего организма. Кортикоспинальные связи коры обеспечивают возможность произвольного управления дыхательными движениями.

Рефлекс раздувание легких и торможения вдоха. Рецептивным полем рефлекса являются рецепторы растяжения легких.

Снижение [О2], повышение [СО2], повышение [Н+] в крови или спинномозговой жидкости - увеличение МОД. Рецептивное поле рефлекса - рецепторы растяжения легких, хеморецепторы.

Рефлекс спадения -- активация дыхания в результате спадения альвеол.

Рефлекс парадоксальный -- случайные глубокие вдохи, доминирующие над обычным дыханием, возможно, связанные с раздражением рецепторов в начальных фазах развития микроателектазов.

Легочный сосудистый рефлекс -- поверхностное тахипноэ в сочетании с гипертонией малого круга кровообращения.

Важное биологическое значение, особенно в связи с ухудшением экологических условий и загрязнением атмосферы, имеют защитные дыхательные рефлексы - чихание, кашель и задержка дыхания.

Чихание. Раздражение рецепторов слизистой оболочки полости носа, например пылевыми частицами или газообразными раздражающими веществами, а также водой вызывает сужение бронхов, брадикардию, снижение сердечного выброса, сужение просвета сосудов кожи и мышц. Различные механические и химические раздражения слизистой оболочки носа вызывают глубокий сильный выдох - чихание, который в обычных условиях является защитной реакцией организма и способствует очищению дыхательных путей. Афферентным путем этого рефлекса является тройничный нерв. Во время чихания скорость воздушной струи достигает 50 м/сек и сдувает слизь, бактерии и другие частицы с поверхности слизистых оболочек. Частицы диаметром 10 м разлетаются при этом на расстояние 45 м.

Кашель возникает при раздражении механо- и хеморецепторов глотки, гортани, трахеи и бронхов.

При этом после вдоха сильно сокращаются мышцы инспираторы, резко повышается внутригрудное и внутрилегочное давление (до 200 мм рт. ст.), открывается голосовая щель, и воздух из дыхательных путей под большим напором высвобождается наружу и удаляет раздражающий агент. Скорость движения воздуха достигает больших величин: в глотке 50-120 м/сек, в трахее 15-35 м/сек, в главном бронхе 13-32 м/сек, в бронхиолах 2-6 м/сек. Кашлевой рефлекс является основным легочным рефлексом блуждающего нерва.

Задержка дыхания возникает безусловнорефлекторно при вдыхании сильнораздражающих веществ, например аммиака.

Главным физиологическим стимулом для дыхательных центров является двуокись углерода. Регуляция дыхания обусловливает поддержание нормального содержания СО2 в альвеолярном воздухе и артериальной крови. Возрастание содержания СО2 в альвеолярном воздухе на 0,17% вызывает удвоение МОД, а вот снижение О2 на 39-40% не вызывает существенных изменений МОД.

Адреналин увеличивает МОД при стрессе (эффект расширения просвета бронхов). Прогестерон способствует усилению дыхания при беременности, а половые гормоны усиливают дыхание при возникновении половой доминанты.

При повышении в замкнутых герметических кабинах концентрации СО2 до 5 - 8% у обследуемых наблюдалось увеличение легочной вентиляции в 7-8 раз. При этом концентрация СО2 в альвеолярном воздухе существенно не возрастала, так как основным признаком регуляции дыхания является необходимость регуляции объема легочной вентиляции, поддерживающей постоянство состава альвеолярного воздуха.

Деятельность дыхательного центра зависит от состава крови, поступающей в мозг по общим сонным артериям. В 1890 г. это было показано Фредериком в опытах с перекрестным кровообращением.

У двух собак, находившихся под наркозом, перерезали и соединяли перекрестно сонные артерии и яремные вены. При этом голова первой собаки снабжалась кровью второй собаки и наоборот. Если у одной из собак, например у первой, перекрывали трахею и таким путем вызывали асфиксию, то гиперпноэ развивалось у второй собаки. У первой же собаки, несмотря на увеличение в артериальной крови напряжения СО2 и снижение напряжения 02, развивалось апноэ, так как в ее сонную артерию поступала кровь второй собаки, у которой в результате гипервентиляции снижалось напряжение СО2 в артериальной крови.

Двуокись углерода, водородные ионы, молочная кислота и умеренная гипоксия вызывают усиление дыхания. Эти факторы усиливают деятельность дыхательного центра, оказывая влияние на периферические (артериальные) и центральные (модулярные) хеморецепторы, участвующие в регуляции дыхания.

Артериальные хеморецепторы находятся в каротидных синусах и дуге аорты (в рефлексогенных зонах). Они расположены в специальных тельцах, обильно снабжаемых артериальной кровью. Аортальные хеморецепторы на дыхание влияют незначительно, и большее значение имеют для регуляции кровообращения. Артериальные хеморецепторы являются уникальными рецепторными образованиями, на которые гипоксия оказывает стимулирующее влияние. Афферентные влияния каротидных телец усиливаются также при повышении в артериальной крови напряжения двуокиси углерода и концентрации водородных ионов. Стимулирующее действие гипоксии и гиперкапнии на хеморецепторы взаимно усиливается, тогда как в условиях гипероксии чувствительность хеморецепторов к двуокиси углерода резко снижается. Артериальные хеморецепторы информируют дыхательный центр о напряжении 02 и СО2 в крови, направляющейся к мозгу.

После перерезки артериальных (периферических) хеморецепторов у подопытных животных исчезает чувствительность дыхательного центра к гипоксии, но полностью сохраняется реакция дыхания на гиперкапнию и ацидоз.

Центральные хеморецепторы расположены в продолговатом мозге латеральнее пирамид. Перфузия этой области мозга раствором со сниженным рН резко усиливает дыхание, а при высоком рН дыхание ослабевает, вплоть до апноэ. То же происходит при охлаждении или обработке этой поверхности продолговатого мозга анестетиками. Центральные хеморецепторы, оказывая сильное влияние на деятельность дыхательного центра, существенно изменяют вентиляцию легких. Установлено, что снижение рН спинномозговой жидкости всего на 0,01 сопровождается увеличением легочной вентиляции на 4 л/мин. Центральные хеморецепторы реагируют на изменение напряжения СО2 в артериальной крови позже, чем периферические хеморецепторы, так как для диффузии СО2 из крови в спинномозговую жидкость и далее в ткань мозга необходимо больше времени. Гиперкапния и ацидоз стимулируют, а гипокапния и алкалоз - тормозят центральные хеморецепторы.

Для определения чувствительности центральных хеморецепторов к изменению рН внеклеточной жидкости мозга, изучения синергизма и антагонизма дыхательных газов, взаимодействия системы дыхания и сердечно-сосудистой системы используют метод возвратного дыхания. При дыхании в замкнутой системе выдыхаемый СО2 вызывает линейное увеличение концентрации СО2 и одновременно повышается концентрация водородных ионов в крови, а также во внеклеточной жидкости мозга.

Совокупность нейронов дыхательного центраследовало бы рассматривать как созвездие структур, осуществляющих центральный механизм регуляции дыхания.

Таким образом, вместо термина "дыхательный центр" правильнее говорить о системе центральной регуляции дыхания, которая включает в себя структуры коры головного мозга, определенные зоны и ядра промежуточного, среднего, продолговатого мозга, варолиева моста, нейроны шейного и грудного отделов спинного мозга, центральные и периферические хеморецепторы, а также механорецепторы органов дыхания.

Гуморальная регуляция дыхания

Главным физиологическим стимулом дыхательных центров является двуокись углерода. Регуляция дыхания обусловливает поддержание нормального содержания СО 2 в альвеолярном воздухе и артериальной крови. Возрастание содержания СО 2 в альвеолярном воздухе на 0,17% вызывает удвоение МОД, а вот снижение О 2 на 39-40% не вызывает существенных изменений МОД.

Дыхание может учащаться и углубляться при гиперкапнии (повышено напряжение СО 2) и гипоксемии (понижено напряжение О 2) или урежаться и уменьшаться по глубине при гипокапнии (понижено напряжение СО 2).

При повышении в замкнутых герметических кабинах концентрации СО 2 до 5 - 8% у обследуемых наблюдалось увеличение легочной вентиляции в 7-8 раз. При этом концентрация СО 2 в альвеолярном воздухе существенно не возрастала, так как основным признаком регуляции дыхания является необходимость регуляции объема легочной вентиляции, поддерживающей постоянство состава альвеолярного воздуха.

Деятельность дыхательного центра зависит от состава крови, поступающей в мозг по общим сонным артериям. В 1890 г. это было показано Фредериком в опытах с перекрестным кровообращением. У двух собак, находившихся под наркозом, перерезали и соединяли перекрестно сонные артерии и яремные вены. При этом голова первой собаки снабжалась кровью второй собаки и наоборот. Если у одной из собак, например у первой, перекрывали трахею и таким путем вызывали асфиксию, то гиперпноэ развивалось у второй собаки. У первой же собаки, несмотря на увеличение в артериальной крови напряжения СО 2 и снижение напряжения О 2 , развивалось апноэ, так как в ее сонную артерию поступала кровь второй собаки, у которой в результате гипервентиляции снижалось напряжение СО 2 в артериальной крови.

Двуокись углерода, водородные ионы и умеренная гипоксия вызывают усиление дыхания. Эти факторы усиливают деятельность дыхательного центра, оказывая влияние на периферические (артериальные) и центральные (модулярные) хеморецепторы, регулирующие дыхание.

Артериальные хеморецепторы находятся в каротидных синусах и дуге аорты. Они расположены в специальных тельцах, обильно снабжаемых артериальной кровью. Аортальные хеморецепторы на дыхание влияют слабо и большее значение имеют для регуляции кровообращения.

Артериальные хеморецепторы являются уникальными рецепторными образованиями, на которые гипоксия оказывает стимулирующее влияние. Афферентные влияния каротидных телец усиливаются также при повышении в артериальной крови напряжения двуокиси углерода и концентрации водородных ионов. Стимулирующее действие гипоксии и гиперкапнии на хеморецепторы взаимно усиливается, тогда как в условиях гипероксии чувствительность хеморецепторов к двуокиси углерода резко снижается. Артериальные хеморецепторы информируют дыхательный центр о напряжении О 2 и СО 2 в крови, направляющейся к мозгу.

После перерезки артериальных (периферических) хеморецепторов у подопытных животных исчезает чувствительность дыхательного центра к гипоксии, но полностью сохраняется реакция дыхания на гиперкапнию и ацидоз.

Центральные хеморецепторы расположены в продолговатом мозге латеральнее пирамид. Перфузия этой области мозга раствором со сниженным рН резко усиливает дыхание, а при высоком рН дыхание ослабевает, вплоть до апноэ. То же происходит при охлаждении или обработке этой поверхности продолговатого мозга анестетиками. Центральные хеморецепторы, оказывая сильное влияние на деятельность дыхательного центра, существенно изменяют вентиляцию легких. Установлено, что снижение рН спинномозговой жидкости всего на 0,01 сопровождается увеличением легочной вентиляции на 4 л/мин.

Центральные хеморецепторы реагируют на изменение напряжения СО 2 в артериальной крови позже, чем периферические хеморецепторы, так как для диффузии СО 2 из крови в спинномозговую жидкость и далее в ткань мозга необходимо больше времени. Гиперкапния и ацидоз стимулируют, а гипокапния и алкалоз - тормозят центральные хеморецепторы.

Для определения чувствительности центральных хеморецепторов к изменению рН внеклеточной жидкости мозга, изучения синергизма и антагонизма дыхательных газов, взаимодействия системы дыхания и сердечно-сосудистой системы используют метод возвратного дыхания. При дыхании в замкнутой системе выдыхаемый СО 2 вызывает линейное увеличение концентрации СО 2 и одновременно повышается концентрация водородных ионов в крови, а также во внеклеточной жидкости мозга.

Совокупность дыхательных нейронов следовало бы рассматривать как созвездие структур, осуществляющих центральный механизм дыхания. Таким образом, вместо термина «дыхательный центр» правильнее говорить о системе центральной регуляции дыхания, которая включает в себя структуры коры головного мозга, определенные зоны и ядра промежуточного, среднего, продолговатого мозга, варолиева моста, нейроны шейного и грудного отделов спинного мозга, центральные и периферические хеморецепторы, а также механорецепторы органов дыхания.

Своеобразие функции внешнего дыхания состоит в том, что она одновременно и автоматическая, и произвольно управляемая.

Регуляция дыхания

Потребность организма в кислороде во время покоя и при работе неодинакова; поэтому частота и глубина дыхания должны автоматически изменяться, приспосабливаясь к изменяющимся условиям. Во время мышечной работы потребление кислорода мышцами и другими тканями может возрасти в 4 - 5 раз.

Для осуществления дыхания необходимо согласованное сокращение множества отдельных мышц; эту координацию осуществляет дыхательный центр - специальная группа клеток, лежащая в одном из отделов головного мозга, называемом продолговатым мозгом. Из этого центра к диафрагме и межреберным мышцам ритмически посылаются залпы импульсов, вызывающие регулярное и координированное сокращение соответствующих мышц каждые 4 - 5 сек. При обычных условиях дыхательные движения совершаются автоматически, без контроля со стороны нашей воли. Но когда нервы, идущие к диафрагме (диафрагмальные нервы) и межреберным мышцам, перерезаны или повреждены (например, при детском параличе), дыхательные движения тотчас прекращаются. Конечно, человек может произвольно изменять частоту и глубину дыхания; он может даже некоторое время совсем не дышать, но он не в состоянии задержать дыхание на такое длительное время, чтобы это причинило сколько-нибудь существенный вред: автоматический механизм вступает в действие и вызывает вдох.

Естественно возникает вопрос: почему дыхательный центр периодически посылает залпы импульсов? С помощью ряда экспериментов было установлено, что если связи дыхательного центра со всеми другими частями головного мозга прерваны, т. е. если перерезаны чувствительные нервы и пути, идущие от высших мозговых центров, то дыхательный центр посылает непрерывный поток импульсов и мышцы, участвующие в дыхании, сократившись, остаются в сокращенном состоянии. Таким образом, дыхательный центр, предоставленный самому себе, вызывает полное сокращение мышц, участвующих в дыхании. Если, однако, либо чувствительные нервы, либо пути, идущие от высших мозговых центров, остались неповрежденными, то дыхательные движения продолжают совершаться нормально. Это означает, что для нормального дыхания необходимо периодическое торможение дыхательного центра, с тем чтобы он прекращал посылку импульсов, вызывающих сокращение мышц. Дальнейшие эксперименты показали, что пневмаксический центр, лежащий в среднем мозгу (фиг. :,268), вместе с дыхательным центром образуют «реверберирующий круговой путь», который и служит основой регулирования частоты дыхания. Кроме того, растяжение стенок альвеол во время вдоха стимулирует находящиеся в этих стенках чувствительные к давлению нервные клетки, и эти клетки посылают в головной мозг импульсы, тормозящие дыхательный центр, что приводит к выдоху.

Дыхательный центр стимулируют или тормозят также импульсы, приходящие к нему по многим другим нервным путям. Сильная боль в любой части тела вызывает рефлекторное учащение дыхания. Кроме того, в слизистой оболочке гортани и глотки имеются рецепторы, которые при их раздражении посылают в дыхательный центр импульсы, тормозящие дыхание. Это важные защитные приспособления. Когда какой-либо раздражающий газ, например аммиак или пары сильных кислот, входит в дыхательные пути, он стимулирует рецепторы гортани, которые посылают в дыхательный центр тормозящие импульсы, и у нас невольно «перехватывает дыхание»; благодаря этому вредное вещество не проникает в легкие. Точно так же, когда в гортань случайно попадает пища, она раздражает рецепторы в слизистой оболочке этого органа, заставляя их посылать тормозные импульсы в дыхательный центр. Дыхание мгновенно приостанавливается, и пища не входит в легкие, где она могла бы повредить нежный эпителий.

Во время мышечной работы частота и глубина дыхания должны возрастать, чтобы удовлетворить повышенную потребность организма в кислороде и предупредить накопление углекислоты. Концентрация углекислоты в крови служит главным фактором, регулирующим дыхание. Повышенное содержание углекислоты в крови, притекающей к головному мозгу, увеличивает возбудимость как дыхательного, так и пневмотаксического центра. Повышение активности первого из них ведет к усиленному сокращению дыхательной мускулатуры, а второго - к учащению дыхания. Когда концентрация углекислоты возвращается к норме, стимуляция этих центров прекращается и частота и глубина дыхания возвращаются к обычному уровню.

Этот механизм действует и в обратном направлении. Если человек произвольно сделает ряд глубоких вдохов и выдохов, содержание углекислоты в альвеолярном воздухе и в крови понизится настолько, что после того, как он перестанет глубоко дышать, дыхательные движения вовсе прекратятся до тех пор, пока уровень углекислоты в крови снова не достигнет нормального. Первый вдох новорожденного младенца вызывается главным образом действием этого механизма. Тотчас после рождения ребенка и отделения его от плаценты содержание углекислоты в его крови начинает повышаться и заставляет дыхательный центр посылать импульсы к диафрагме и межреберным мышцам, которые сокращаются и производят первый вдох. Иногда, когда первый вдох новорожденного младенца задерживается, в его легкие вдувают воздух, содержащий 10% углекислоты, чтобы привести этот механизм в действие.

Опыты показали, что главным фактором, стимулирующим дыхательный центр, служит не столько уменьшение количества кислорода, сколько увеличение количества углекислоты в крови. Если человека поместить в небольшую герметически закрытую камеру, так что ему придется дышать все время одним и тем же воздухом, содержание кислорода в воздухе будет постепенно убывать. Если в камеру поместить, кроме того, химическое вещество, способное быстро поглощать выделяемую углекислоту, с тем чтобы количество ее в легких и в крови не увеличивалось, то частота дыхания возрастет лишь незначительно, даже если эксперимент продолжать до тех пор, пока содержание кислорода не понизится очень сильно. Если же не удалять углекислоту, а позволить ей накапливаться, то дыхание резко участится и у человека возникнут неприятные ощущения и чувство удушья. Когда человеку дают дышать воздухом с нормальным количеством кислорода, но с повышенным содержанием углекислоты, опять-таки наблюдается учащение дыхания. Очевидно, дыхательный центр стимулируется не нехваткой кислорода, а главным образом накоплением углекислоты.

Для большей надежности осуществления надлежащей реакции на изменения концентрации в крови углекислоты и кислорода выработался еще один регулирующий механизм. У основания каждой из внутренних сонных артерий (arteria carotid) находится небольшое вздутие, называемое каротидным синусом, которое содержит рецепторы, чувствительные к изменениям химического состава крови. При повышении уровня углекислоты или понижении уровня кислорода эти рецепторы посылают нервные импульсы в дыхательный центр в продолговатом мозгу и повышают его активность.

Влияние тренировки. Упражнения и практика при спортивной тренировке повышают способность организма к выполнению той или иной задачи. Во-первых, мышцы при тренировке увеличиваются в размерах и становятся сильнее (вследствие роста отдельных мышечных волокон, а не увеличения их числа). Во-вторых, при многократном выполнении того или иного действия человек научается координировать работу мышц и сокращать каждую из них ровно с такой силой, с какой это необходимо для достижения желаемого результата, что ведет к экономии энергии. В-третьих, при этом происходят изменения в сердечно-сосудистой и дыхательной системах. Сердце тренированного физкультурника несколько увеличено и в покое сокращается медленнее. Во время мышечной работы оно перекачивает больший объем крови, причем не столько за счет учащения сокращений, сколько за счет большей силы каждого сокращения. Кроме того, атлет дышит медленнее и глубже, чем обычный человек, и при физической нагрузке количество проходящего через легкие воздуха у него повышается главным образом не за счет учащения дыхания, а за счет увеличения его глубины. Это более эффективный способ достижения той же цели.



Понравилась статья? Поделитесь ей
Наверх