Легкие – как они работают? Строение легких. Газообмен в легких и тканях Как происходит газообмен в легких человека

Для обеспечения клеток, тканей и органов кислородом в организме человека существует дыхательная система. Она состоит из следующих органов: носовой полости, носоглотки, гортани, трахеи, бронхов и легких. В этой статье мы изучим их строение. А также рассмотрим газообмен в тканях и легких. Определим особенности внешнего дыхания, происходящего между организмом и атмосферой, и внутреннего, протекающего непосредственно на клеточном уровне.

Для чего мы дышим?

Большинство людей, не задумываясь, ответят: чтобы получить кислород. Но они не знают, зачем он нам нужен. Многие отвечают просто: кислород необходим, чтобы дышать. Получается какой-то замкнутый круг. Разорвать его нам поможет биохимия, изучающая клеточный обмен веществ.

Светлые умы человечества, изучающие эту науку, уже давно пришли к выводу, что кислород, поступающий в ткани и органы, окисляет углеводы, жиры и белки. При этом образуются энергетически бедные соединения: вода, аммиак. Но главным является то, что в результате этих реакций синтезируется АТФ - универсальное энергетическое вещество, используемое клеткой для своей жизнедеятельности. Можно сказать, что газообмен в тканях и легких как раз и будет поставлять организму и его структурам необходимый для окисления кислород.

Механизм газообмена

Он подразумевает наличие хотя бы двух веществ, чья циркуляция в организме обеспечивает метаболические процессы. Кроме вышеназванного кислорода, газообмен в легких, крови и тканях происходит с еще одним соединением - углекислым газом. Он образуется в реакциях диссимиляции. Являясь токсичным веществом обмена, он должен быть выведен из цитоплазмы клеток. Рассмотрим этот процесс подробнее.

Диоксид углерода путем диффузии проникает через клеточную мембрану в межтканевую жидкость. Из неё он поступает в капилляры крови - венулы. Далее эти сосуды сливаются, образуя нижнюю и верхнюю полые вены. Они собирают кровь, насыщенную СО 2. И направляют её в правое предсердие. При сокращении его стенок порция венозной крови поступает в правый желудочек. Отсюда начинается легочный (малый) круг кровообращения. Его задачей является насыщение крови кислородом. Венозная в легких становится артериальной. А СО 2 , в свою очередь, выходит из крови и удаляется наружу через Чтобы понять, как это происходит, нужно прежде всего изучить строение легких. Газообмен в легких и тканях осуществляется в особых структурах - альвеолах и их капиллярах.

Строение легких

Это парные органы, расположенные в грудной полости. Левое легкое состоит из двух долей. Правое больше по размерам. Оно имеет три доли. Через ворота легких в них входят два бронха, которые, разветвляясь, образуют так называемое дерево. По его веткам воздух движется во время вдоха и выдоха. На мелких, респираторных бронхиолах располагаются пузырьки - альвеолы. Они собраны в ацинусы. Те, в свою очередь, формируют легочную паренхиму. Важно то, что каждый дыхательный пузырек густо оплетен капиллярной сетью малого и большого кругов кровообращения. Приносящие ветви легочных артерий, поставляющие венозную кровь из правого желудочка, транспортируют в просвет альвеолы углекислый газ. А выносящие легочные венулы забирают из альвеолярного воздуха кислород.

Поступает по легочным венам в левое предсердие, а из него - в аорту. Её ветвления в виде артерий обеспечивают клетки организма необходимым для внутреннего дыхания кислородом. Именно в альвеолах кровь из венозной становится артериальной. Таким образом, газообмен в тканях и легких непосредственно осуществляется циркуляцией крови по малому и большому кругам кровообращения. Происходит это благодаря непрерывным сокращениям мышечных стенок сердечных камер.

Внешнее дыхание

Оно еще называется вентиляцией легких. Представляет собой обмен воздуха между внешней средой и альвеолами. Физиологически правильный вдох через нос обеспечивает организм порцией воздуха такого состава: около 21% О 2 , 0,03% СО 2 и 79% азота. По он поступает в альвеолы. Они имеют собственную порцию воздуха. Её состав следующий: 14,2% О 2 , 5,2% СО 2 , 80% N 2 . Вдох, как и выдох, регулируется двумя путями: нервным и гуморальным (концентрацией углекислого газа). Благодаря возбуждению дыхательного центра продолговатого мозга, нервные импульсы передаются к дыхательным межреберным мышцам и диафрагме. Объем грудной клетки увеличивается. Легкие, пассивно движущиеся вслед за сокращениями грудной полости, расширяются. Давление воздуха в них становится ниже атмосферного. Поэтому порция воздуха из верхних дыхательных путей поступает в альвеолы.

Выдох осуществляется вслед за вдохом. Он сопровождается расслаблением межреберных мышц и поднятием свода диафрагмы. Это приводит к уменьшению объема легких. Давление воздуха в них становится выше атмосферного. И воздух с избытком углекислого газа поднимается в бронхиолы. Далее, по верхним дыхательным путям, он следует в носовую полость. Состав выдыхаемого воздуха следующий: 16,3% О 2 , 4% СО 2 , 79 N 2 . На этом этапе происходит внешний газообмен. Легочный газообмен, осуществляемый альвеолами, обеспечивает клетки кислородом, необходимым для внутреннего дыхания.

Клеточное дыхание

Входит в систему катаболических реакций обмена веществ и энергии. Эти процессы изучает как биохимия, так и анатомия, и Газообмен в легких и тканях взаимосвязан и друг без друга невозможен. Так, поставляет в межтканевую жидкость кислород и удаляет из нее углекислый газ. А внутреннее, осуществляемое непосредственно в клетке её органеллами - митохондриями, которые обеспечивают окислительное фосфолирование и синтез молекул АТФ, использует кислород для этих процессов.

Цикл Кребса

Цикл трикарбоновых кислот является ведущим в Он объединяет и согласует реакции бескислородного этапа и процессов с участием трансмембранных белков. Он также выполняет роль поставщика строительного клеточного материала (аминокислот, простых сахаров, высших карбоновых кислот), образующегося в его промежуточных реакциях и используемого клеткой для роста и деления. Как видим, в данной статье был изучен газообмен в тканях и легких, а также определена его биологическая роль в жизнедеятельности организма человека.

В легких происходит газообмен между поступающим в альвеолы воздухом и протекающей по капиллярам кровью. Интенсивному газообмену между воздухом альвеол и кровью способствует малая толщина такназываемого аэрогематического барьера. Стенки альвеол построены из однослойного плоского эпителия, покрытого изнутритонкой пленкой фосфолипида - сурфактантом, который препятствует сли-панию альвеол при выдохе и понижает поверхностное натяжение.газообмен между воздухом и кровью. При вдохе концентрация парциальное давление кислорода в альве-олах намного выше 100 мм рт. ст., чем в венозной крови 40 мм рт. ст.,протекающей по легочным капиллярам. Поэтому кислород легко выходит из альвеол в кровь, где он быстро вступает в соединение с гемоглобиномэритроцитов. Одновременно углекислый газ, концентрация которого в ве-нозной крови капилляров высокая 47 мм рт. ст., диффундирует в альвеолы, где его парциальное давление ниже 40 мм рт. ст.. Из альвеол легкогоуглекислый газ выводится с выдыхаемым воздухом.Благодаря особому свойству гемоглобина вступать в соединение скислородом и углекислым газом кровь способна поглощать эти газы взначительном количестве

В тканях организма в результате непрерывного обмена веществ и интенсивных окислительных процессов расходуется кислород и образуется углекислый газ.. Образовавшийся при обмене веществ углекислый газ переходит из тканей в кровь и присоединяется к гемоглобину. При этом образуется непрочное соединение - карбогемоглобин. Быстрому соединению гемоглобина с углекислым газом способствует находящийся в эритроцитах фермент карбоангидраза.

Недостаточное поступление кислорода в ткани гипоксия может возникнуть при недостатке его во вдыхаемом воздухе.

При остановке, прекращении дыхания развивается удушье асфиксия. Такое состояние может случиться при утоплении или других неожиданных обстоятельствах.


23. Понятие о гипоксии. Острые и хронические формы. Виды гипоксий.

Гипоксия - типовой патологический процесс, возникающий при недостаточном снабжении тканей организма кислородом или нарушении его утилизации в процессе биологического окисления. это кислородное голодание тканей, может возникать под влиянием физических, химических, биологических и других факторов, Разные органы и ткани имеют неодинаковую чувствительность к недостатку кислорода и АТФ. Наиболее чувствительна к гипоксии ткань головного мозга. при гипоксии в первую очередь страдают клетки центральной нервной системы.виды гипоксий.Экзогенные гипоксии: 1 гипоксическая нормобарическая - возникает при длительном нахождении в замкнутых, плохо вен-тилируемых помещения шахтах, колодцах, кабинах летательных аппаратов и т.п.; 2 гипоксическая гипобарическая - раз-вивается при снижении парциального давления кислорода р02 во вдыхаемом воздухе вследствие снижения барометрического давления, при подъеме на высоту горная или высотная болезнь; 3 гипероксическая - возникает в условиях избытка кислорода, который не потребляется организмом и оказывает токсическое действие, блокируя тканевое дыхание осложнение при гипербарической оксигенации.Эндогенные гипоксии при патологических процессах в организме: 1 дыхательная - возникает при заболеваниях легких, трахеи, плевры, развивается при заболеваниях сердца и кро- оносных сосудов 3 кровяная гемическая - на- Гнподается при уменьшении количества эритроцитов при раз- ничпых анемиях или при изменении свойств гемоглобина и нарушении его способности отдавать кислород; 4 тканевая - возникает при нарушении окислительно-восста- повительных процессов в клетках, 5 смешанная - развивается при одновременном нарушении функции ряда систем, обеспечивающих снабжение тканей кислородом Нагрузочная гипоксия - возникает в результате усиления функции органов и тканей при большой физической нагрузке,. Острая гипоксия развивается быстро и часто возникает при ост-рой дыхательной и сердечно-сосудистой недостаточности. -одышка, тахикардия, головные боли, тошнота, рвота, психические расстройства, нарушение координации движений, цианоз, иногда - расстройства зрения и слуха.Хроническая гипоксия характеризуется длительным течением и возникает при заболеваниях крови, хронической сердечно-сосудистой и дыхательной недостаточности, -расстройства дыха-ния и кровообращения, головные боли, раздражительность, дистрофические изменения в тканях.. Общая гипоксия характеризуется кислородным и энергетическим голоданием всего организма. Для местной гипоксии характерно кислородное и энергетическое голодание отдельных

24. Нарушения функций организма при гипоксии.

Наиболее ранними показателями кислородной недостаточ-ности головного мозга являются общее возбуждение эйфория, ослабление внимания, увеличение числа ошибок при решении сложных задач. Затем наступают торможение, сонливость, нарушение координации движений,. возможна потеря сознания, возникновение судорог, паралич.При выраженной кислородной недостаточности нарушавшей дыхание: оно становится частым, поверхностным, с явлениями гиповентиляции. Затем наступает угнетение дыхания. Не-регулярные дыхательные движения могут сменяться кратко- иременной остановкой дыхания. При некоторых видах гипоксии возникает цианоз - синюш- I юсть кожных покровов, которая связана с уменьшением С02 и содержания оксигемоглобина в крови. При дыхательной гипоксии вследствие снижения СО2 в артериальной крови развивается центральный диффузный цианоз. При циркуляторной гипоксии из-за снижения СО2в венозной крови развивается пе-риферический акроцианоз. При гипоксии нарушается также работасердечно-сосудистой системы. тахикардия и повышение артериального давления. угнетение сердечной деятельности. Во всех органах и тканях, кроме мозга и сердца, наблюдается выраженное нарушение микроциркуляции, что увеличивает тяжесть кислородного голодания тканей.. опасно резкое снижение почечного кровотока, так как это может привести к развитию некроза коркового слоя почки и острой почечной недостаточности. Основной обмен вначале повышается, а затем при выраженной гипоксемии понижается. Падает температура тела.. Увеличива-ется и распад жиров. Вследствие недостатка кислорода жирные кислоты не могут расщепиться полностью, поэтому при гипоксии в клетках и крови накапливаются кетокислоты. В результате дефицита энергии нарушается работа ионных насосов, и к накоплению ионов калия.

25. Компенсаторные механизмы при гипоксии.

В условиях гипоксии немедленно включаются срочные приспособительные реакции. Они обеспечиваются рефлекторными механизмами с участием ЦНС. Дыхательные механизмы: 1 увеличение легочной вентиляции за счет повышения глубины и частоты дыхания компенсаторная одышка; 2 увеличение дыхательной поверхности легких за счет вентиляции дополнительных альвеол; 3 повышение проницаемости альвеолокапиллярной мембраны для 02 и С02.Гемодинамическиемеханизмы: 1 повышение минутного объема сердца вследствие увеличения ударного объема и частоты сердечных сокращений; 2 повышение тонуса кровеносных сосудов и ускорение тока крови; 3 перераспределение крови в кровеносных сосудах Гематогенные механизмы: 1 увеличение содержания эритроцитов в периферической крови за счет мобилизации их из депо; 2 усиление гемопоэза; 3 увеличение диссоциации окси- гемоглобина на кислород и гемоглобин Тканевые механизмы. 1 увеличение количества кислорода, поступающего к тканям из артериальной крови; 2 активация анаэробного гликолиза; 3 ослабление интенсивности метаболизма в органах, Долговременные приспособительные реакции представлены адаптацией к гипоксии Асфиксия - состояние, возникающее при резком уменьшении или полном прекращении поступления кислорода и выделения углекислого газа.Наиболее часто встречается механическая асфиксия, которая возникает при наличии препятствий для поступления воздуха в дыхательные пути или их сдавлении извне:выделяют четыре стадии.Первая стадия повышением возбудимости дыхательного и сосудодвигательного центров, тонуса симпатической нервной системы. инспираторная одышка повышается артериальное давление; в судороги.Во второй стадии повышается тонус парасимпатической нервной системы; развивается экспираторная одышка. брадикардия, Третья стадия -. Дыха-ние останавливается на несколько минут, артериальное давление снижается, сердечная деятельностьзамедляется.Четвертая стадия проявляется терминальным дыханием,артериальное давление падает, сердечные сокращения редкие, рефлексы угасают; появляются су-дороги, непроизвольные мочеиспускание, дефекация. Смерть наступает от паралича дыхания.

26. Белковый обмен и его регуляция.

В период роста белок необходим для формирования новых клеток и тканей. Чем меньше возраст ребенка, тем большее количество белка требуется на каждый кг массы тела. На первом году жизни ребенка на каждый кг требуется 5-5,5 г белка, в возрасте от 1 года до 3 лет - 4-4,5 г, Потребность мальчиков в белках больше, чем у девочек. Синтез белка в развивающемся организме доминирует над распадом. Поэтому для детей характерен положительный азотистый баланс. Существуют оптимальные суточные дозы белков, при которых отмечается максимальная задержка, или ретенция, азота в организме. Увеличение количества белка выше этой нормы не сопровождается ростом задержки азота в организме. Очень важно, чтобы дети получали с пищей достаточное количество незаменимых аминокислот. Лизина, который способствует кроветворению, потребление триптофана, также необходимого для роста У детей в возрасте от 1 до 3 лет 75% белка, получаемого с пищей, должно быть животного происхождения, 25% - растительного.Белки не откладываются в организме про запас, поэтому если давать их с пищей больше, чем это требуется организму, то увеличение задержки азота и нарастание синтеза белка не произойдет. При этом у ребенка нарушается кислотно-щелочное равновесие, ухудшается аппетит, усиливается выведение азота с мочой и калом. С увеличением возраста содержание белков животного происхождения должно уменьшаться, и в 5 лет количество того и другого белка должно быть одинаковым. Азотистый обмен детей характеризуется наличием в их моче креатина, в то время как моча взрослых его не содержит. Это связано с недостаточным развитием мышц, удерживающих во взрослом состоянии креатин. Только к 17-18 годам креатин исчезает из мочи. Активность многих ферментов повышается после рождения,

27. Углеводный и жировой обмены, их регуляция.

Поступившие с пищей растительные и животные жиры расщепляются в пищеварительном тракте на глицерин и жирные кислоты, которые всасываются, в кровь и лимфу и лишь частично в кровь. Из этих веществ, а также из продуктов обмена углеводов и белков синтезируются липиды. липиды являются обязательной составной частью клеточных структур: цитоплазмы, ядра и клеточной мембраны, особенно нервных клеток. Не израсходованные в организме липиды откладываются в запас в виде жировых отложений.Некоторые непредельные жирные кислоты, необходимые организму линолевая, линоленовая, арахидоновая, должны поступать в организм в готовом виде, так как организм не способен ихсинтезировать - незаменимые жирные кислоты. Содержатся в растительных маслах.С жирами в организм поступают растворимые в них витамины: А, D, E, K, имеющие жизненно важное значение. Потребность организма детей в липидах тем выше, чем меньше возраст ребенка. Без жиров невозможна выработка общего и специфического иммунитета.. Суточное количество жира в пище детей от 1 года до 3 лет должно быть 32,7 г, При грудном вскармливании усваивается до 98% жиров молока, при искусственном - 85%.Установлено, что обмен жиров у детей неустойчив, при недостатке в пище углеводов или при их усиленном расходе быстро истощается жировое депо.Изменения содержания в организме различных липидов вызывают постепенные нарушения проницаемости и плотности клеточных мембран, что сопровождается ухудшением функции клеток. Особенности обмена углеводов. Углеводы являются основным источником энергии. Наибольшее количество содержится в злаках, картофеле, фруктах и овощах. Углеводы расщепляются в пищеварительном тракте до глюкозы, всасываются в кровь и усваиваиваются клетками организма. Неиспользуемая глюкоза депонируется в виде полисахарида гликогена в печени и мышцах, который является резервом углеводов в организме. Особенно чувствительна к недостатку глюкозы в крови гипогликемии ЦНС. При незначительном снижении глюкозы в крови отмечается слабость, головокружение, а при значительном падении углеводов наступают различные вегетативные расстройства, судороги, потеря сознания. Распад углеводов может проходить как в аэробных или в анаэробных условиях. Быстрота распада глюкозы и возможность быстрого извлечения и переработки ее резерва - гликогена создают условия для экстренной мобилизации энергетических ресурсов при резком эмоциональном возбуждении, интенсивных мышечных нагрузках. Как известно, углеводы входят в состав нуклеиновых кислот, цитоплазмы, играют важную пластическую роль при формировании клеточных оболочек.Характерной особенностью углеводного обмена у детей является высокая усвояемость углеводов до 99%,. Необходимо учитывать, что на первом году жизни основным углеводом является лактаза. Организм ребенка испытывает большую потребность в углеводах, так как интенсивность гликолиза в нем очень высока, она на 35% выше, чем у взрослых. Суточная потребность в углеводах составляет в грудном возрасте 10-12 г на 1 кг массы тела, в возрасте от 1 до 3 лет -193 г, Толерантность к глюкозе у детей больше, чем у взрослых.

28. Обмен воды и минеральных солей, его регуляция.

Минеральные соли не являются источниками энергии, но их поступление и выведение является условием его нормальной жизнедеятельности. Минеральные соли создают определенное осмотическое давление. Количество солей, содержащихся в организме ребенка, с возрастомувеличивается. Особенно велика у детей потребность в Са и Р, которые необходимы для формирования костной ткани. Кальций влияет на возбудимость нервной системы, сократимость мышц, свертываемость крови, белковый и жировой обмен в организме. Наибольшая потребность в Са отмечается на первом году жизни и в период полового созревания. На первом году жизни Са требуется в 8 раз больше, чем на втором при уменьшении количества Са в организме у взрослых он начинает поступать в кровь из костной ткани, н. У детей в этом случае, наоборот, Са задерживается костной тканью, крови. Для нормального процесса окостенения необходимо, чтобы в организм поступало достаточное количество фосфора. У детей дошкольного возраста отношение кальция и фосфора должно быть равным единице. В 8 -10 лет кальция требуется несколько меньше, чем фосфора: Фосфор нужен не только для роста костной ткани, но и для нормального функционирования нервной системы, большинства железистых и других органов.Количество ионов Na+, K+ и Cl- в пище детей должно быть меньшим, чем в пище взрослого, Железа ребенок должен получать с пищей больше, чем взрослый. растущий организм нуждается и в микроэлементах, многие из них участвуют в процессах кроветворения медь, кобальт, молибден. они накапливаются в организме. Йод необходим для образования гормонов щитовидной железы. Его отсутствие в пище приводит к развитию заболевания, эндемическим зобом. Фтор необходим для правильного формирования ткани зубов, особенно зубной эмали Водно-солевой обмен. Рост и развитие ребенка зависят от достаточного количества воды в организме, которое обеспечивает интенсивный обмен веществ. = вода в организме человека является = строительным материалом, катализатором всех обменных процессов и терморегулятором тела. Общее количество воды в организме зависит от возраста, пола и упитанности. В среднем в организме мужчины содержится около 61% воды, в организме женщины - 51%. У детей вода очень быстро перераспределяется между кровью и тканями. В кишечнике детей она всасывается быстрее, чем у взрослых. У детей ткани быстро теряют и накапливают воду. Недостаток воды вызывает у детей резкие нарушения промежуточного обмена. Чем младше ребенок, тем больше воды он должен получить на кг веса. Относительная потребность в воде с возрастом уменьшается, а абсолютная - увеличивается. У мальчиков потребность в воде больше, чем у девочек.

29. Выделительная система человека. Нефрон - основная структурная и функциональная единица почек. Фазы мочеобразования.

К органам выделения относят: почки, мочеточники, мочевой пузырь, мочеиспускательный канал. Нормальная функция выделительной системы поддерживает кислотно-щелочное равновесие и обеспечивает деятельность органов и систем организма.

Почка лат. ren; греч. nephos - парный экскреторный орган, который образует мочу, имеет массу 100-200 г, располагается по бокам позвоночника на уровне XI грудного и II-III поясничных позвонков.

Почки имеют бобовидную форму, верхний и нижний полюсы, наружный выпуклый и внутренний вогнутый края, переднюю и заднюю поверхности. Почки покрыты тремя оболочками - почечной фасцией, фиброзной и жировой капсулами. Почка состоит из двух слоев: наружного светлого коркового и внутреннего темного мозгового,Корковое вещество в видестолбиков входит в мозговое и делит его на 5-20почечных пирамид. составляющего почечные пирамиды.Основная функционально-структурная единица почки - нефрон их насчитывается около 1,5 млн. Нефрон рис. 83 состоит из почечного тельца, включая сосудистый клубочек. Тельце опоясано двухстенной капсулой капсула Шумлянского-Боумена. Полость капсулы выстлана однослойным кубическим эпителиемОколо 80 % нефронов находится в толще коркового вещества - корковые нефроны, а 18-20 % локализуется в мозговом веществе почки - юкстамедуллярные околомозговые нефроны.Кровоснабжение почки происходит за счет хорошо развет-. вленной сети кровеносных сосудов. Мочеточник ureter - парный орган, выполняющий функцию выведения мочи из почки в мочевой пузырь. Он имеет форму трубки диаметром 6-8 мм, длиной 30-35 см. В нем различают брюшную, тазовую и внутристеночную части.Мочеточник имеет три расширения поясничное, тазовое и перед входом в мочевой пузырь и три сужения в месте перехода из почечной лоханки, при переходе брюшной части в тазовую и перед впадением в мочевой пузырь.Мочевой пузырь - непарный полый орган, в котором накапливается моча 250-500 мл; располагается на дне малого таза. Форма и размеры его зависят от степени наполнения мочой.В мочевом пузыре различают верхушку, тело, дно, шейку. Мочеиспускательный канал предназначен для периодического выведения мочи из мочевого пузыря и выталкивания семени у мужчин Суточное количество мочи диурез у взрослого человека в норме составляет 1,2-1,8 л и зависит от поступившей в организм жидкости, окружающей температуры и других факторов. Цвет нормальной мочи соломенно-желтый и чаще всего зависит от ее относительной плотности. Реакция мочи слабокислая, относительная плотность 1,010- 1,025. В моче содержится 95 % воды, 5 % твердых веществ, основную часть которых составляют мочевина - 2 %, мочевая кислота - 0,05 %, креатинин - 0,075 %. Первичная моча продвигается вдоль канальцев нефрона. Из нее обратно в кровь всасываются все нужные организму вещества и большая часть воды II фаза мочеобразования - реабсорбция. В канальцах остаются продукты распада, питательные вещества, в которых организм не нуждается, или те, которые он сохранить не в состоянии например, глюкозу при сахарном диабете. В результате образуетсявторичная моча около 1,5 л в сутки. Из извитых канальцев моча поступает в собирательные трубочки, которые объединяются и выносят мочу в почечную лоханку. Из нее моча по мочеточникам поступает в мочевой пузырь.


30. Нервная и гуморальная регуляция деятельности почек. Регуляция деятельности почек.

31. Понятие терморегуляции. Химическая и физическая терморегуляция.

Температура отдельных участков тела человека различна, что связано с неодинаковыми условиями теплопродукции и отдачи тепла. В состоянии покоя и умеренной физической нагрузки наибольшая теплопродукция и наименьшая теплоотдача происходит во внутренних органах, поэтому их температура высокая самая высокая в печени-37,8-38 °С.. Наиболее низкая температура кожи у человека отмечается в области кистей и стоп, значительно выше она в подмышечной впадине, где она обычно измеряется В нормальных условиях у здорового человека температура в подмышечной впадине равна 36,5-36,9 °С. В течение суток температура тела человека колеблется: минимальная в 3-4 часа, максимальная - в 16-18 часов. Способность гомойотермных животных поддерживать температуру тела на постоянном уровне обеспечивается двумя взаимосвязанными процессами - теплообразованием и теплоотдачей, Химическая терморегуляция обеспечивает определенный уровень теплопродукции, необходимый для нормального осуществления ферментативных процессов в тканях. Наиболее интенсивное образование тепла происходит в мышцах. В условиях холода теплообразование в мышцах резко возрастает. В процессах теплообразования, кроме мышц, значительную роль играют печень и почки. Физическая терморегуляция осуществляется путем изменения отдачи тепла организмом. Теплоотдача осуществляется следующими путями: Теплоизлучение радиация обеспечивает отдачу тепла организмом окружающей его среде при помощи инфракрасного излучения с поверхности тела. Теплопроведение происходит при контакте с предметами, температура которых ниже температуры тела. Конвекция обеспечивает отдачу тепла прилегающему к телу воздуху или жидкости. Отдача тепла организмом осуществляется также путем испарения воды с поверхности кожи и со слизистых оболочек дыхательным путей в процессе дыхания. через кожу испаряется до 0,5 л воды в сутки. Центр теплообразования расположен в каудальной части гипоталамуса. При разрушении этого участка мозга у животного нарушаются механизмы теплообразования и такое животное становится неспособным поддерживать температуру тела при понижении температуры окружающей среды, и развивается гипотермия. Центр теплоотдачи расположен в переднем гипоталамусе. При разрушении этой области животное также теряет способность поддерживать изотермию, при этом способность переносить низкие температуры у него сохраняется.

Газообмен в легких и тканях.

В легких происходит газообмен между поступающим в альвеолы воздухом и протекающей по капиллярам кровью. Интенсивному газообмену между воздухом альвеол и кровью способствует малая толщина так называемого аэрогематического барьера. Он образован стенками альвеолы и кровеносного капилляра. Толщина барьера – около 2,5 мкм. Стенки альвеол построены из однослойного плоского эпителия, покрытого изнутри тонкой пленкой фосфолипида – сурфактантом, который препятствует сли- панию альвеол при выдохе и понижает поверхностное натяжение.

Альвеолы оплетены густой сетью кровеносных капилляров, что сильно увеличивает площадь, на которой совершается газообмен между воздухом и кровью.

При вдохе концентрация (парциальное давление) кислорода в альвеолах намного выше (100 мм рт. ст.), чем в венозной крови (40 мм рт. ст.)протекающей по легочным капиллярам. Поэтому кислород легко выходит

из альвеол в кровь, где он быстро вступает в соединение с гемоглобином эритроцитов. Одновременно углекислый газ, концентрация которого в венозной крови капилляров высокая (47 мм рт. ст.), диффундирует в альвеолы, где его парциальное давление ниже (40 мм рт. ст.). Из альвеол легкого углекислый газ выводится с выдыхаемым воздухом.

Таким образом, разница в давлении (напряжение) кислорода и углекислого газа в альвеолярном воздухе, в артериальной и венозной крови дает возможность кислороду диффундировать из альвеол в кровь, а угле-

кислому газу из крови в альвеолы.

Благодаря особому свойству гемоглобина вступать в соединение с кислородом и углекислым газом кровь способна поглощать эти газы в значительном количестве. В 1000 мл артериальной крови содержится до

20 мл кислорода и до 52 мл углекислого газа. Одна молекула гемоглобина способна присоединить к себе 4 молекулы кислорода, образуя неустойчивое соединение – оксигемоглобин.

В тканях организма в результате непрерывного обмена веществ и интенсивных окислительных процессов расходуется кислород и образуется углекислый газ. При поступлении крови в ткани организма гемоглобин отдает клеткам и тканям кислород. Образовавшийся при обмене веществ углекислый газ переходит из тканей в кровь и присоединяется к гемоглобину. При этом образуется непрочное соединение – карбогемоглобин. Быстрому соединению гемоглобина с углекислым газом способствует находящийся в эритроцитах фермент карбоангидраза.

Гемоглобин эритроцитов способен соединяться и с другими газами,например, с окисью углерода, при этом образуется довольно прочное соединение карбоксигемоглобин.

Недостаточное поступление кислорода в ткани (гипоксия) может возникнуть при недостатке его во вдыхаемом воздухе. Анемия – уменьшение содержания гемоглобина в крови – появляется, когда кровь не может переносить кислород.

При остановке, прекращении дыхания развивается удушье (асфиксия). Такое состояние может случиться при утоплении или других неожиданных обстоятельствах. При остановке дыхания, когда сердце еще про-

должает работать, делают искусственное дыхание с помощью специальных аппаратов, а при их отсутствии – по методу «рот в рот», «рот в нос»или путем сдавливания и расширения грудной клетки.

23. ПОНЯТИЕ О ГИПОКСИИ. ОСТРЫЕ И ХРОНИЧЕСКИЕ ФОРМЫ. ВИДЫ ГИПОКСИЙ .

Одним из обязательных условий жизни организма является непрерывное образование и потребление им энергии. Она расхо­дуется на обеспечение метаболизма, на сохранение и обновление структурных элементов органов и тканей, а также на осуществле­ние их функции. Недостаток энергии в организме приводит к су­щественным нарушениям обмена веществ, морфологическим из­менениям и нарушениям функций, а нередко - к гибели органа и даже организма. В основе дефицита энергии лежит гипоксия.

Гипоксия - типовой патологический процесс, характеризую­щийся как правило снижением содержания кислорода в клетках и тканях. Развивается в результате недостаточности биологиче­ского окисления и является основой нарушений энергетического обеспечения функций и синтетических процессов организма.

типы гипоксии

В зависимости от причин и особенностей механизмов развития выделяют следующие типы:

1. Экзогенный:

гипобарический;

нормобарический.

Респираторный (дыхательный).

Циркуляторный (сердечно-сосудистый).

Гемический (кровяной).

Тканевый (первично-тканевый).

Перегрузочный (гипоксия нагрузки).

Субстратный.

Смешанный.

В зависимости от распространенности в организме гипоксия может быть общей или местной (при ишемии, стазе или веноз­ной гиперемии отдельных органов и тканей).

В зависимости от тяжести течения выделяют легкую, умеренную, тяжелую и критическую гипоксию, чреватую гибелью организма.

В зависимости от скорости возникновения и длительности тече­ния гипоксия может быть:

молниеносной - возникает в течение нескольких десятков секунд и нередко завершается смертью;

острой - возникает в течение нескольких минут и может длиться несколько суток:

хронической - возникает медленно, длится несколько не­дель, месяцев, лет.

Характеристика отдельных типов гипоксии

Экзогенный тип

Причина: уменьшение парциального давления кислорода Р 0 2 во вдыхаемом воздухе, что наблюдается при высоком подъеме в го­ры ("горная" болезнь) или при разгерметизации летательных ап­паратов ("высотная" болезнь), а также при нахождении людей в замкнутых помещениях малого объема, при работах в шахтах, ко­лодцах, в подводных лодках.

Основные патогенные факторы:

гипоксемия (снижение содержания кислорода в крови);

гипокапния (снижение содержания С0 2), которая развивается в результате увеличения частоты и глубины дыханий и приво­дит к снижению возбудимости дыхательного и сердечно-сосу­дистого центров головного мозга, что усугубляет гипоксию.

Респираторный (дыхательный) тип

Причина: недостаточность газообмена в легких при дыхании, что может быть обусловлено снижением альвеолярной вентиля-

ции или затруднением диффузии кислорода в легких и может на­блюдаться при эмфиземе легких, пневмое. Основные патогенные факторы:

артериальная гипоксемия. например при пневмое, гиперто­нии малого круга кровообращения и др.;

гиперкапния, т. е. увеличение содержания С0 2 ;

гипоксемия и гиперкапния характерны и для асфиксии - удушения (прекращения дыхания).

Циркуляторный (сердечно-сосудистый) тип

Причина: нарушение кровообращения, приводящее к недоста­точному кровоснабжению органов и тканей, что наблюдается при массивной кровопотере, обезвоживании организма, нарушениях функции сердца и сосудов, аллергических реакциях, нарушениях электролитного баланса и др.

Основной патогенетический фактор - гипоксемия венозной крови, так как в связи с ее медленным протеканием в капиллярах происходит интенсивное поглощение кислорода, сочетающееся с увеличением артериовенозной разницы по кислороду.

Гемический (кровяной) тип

Причина: снижение эффективной кислородной емкости крови. Наблюдается при анемиях, нарушении способности гемоглобина связывать, транспортировать и отдавать кислород в тканях (на­пример, при отравлении угарным газом или при гипербарической оксигенации).

Основной патогенетический фактор - снижение объемного содержания кислорода в артериальной крови, а также падение напряжения и содержания кислорода в венозной крови.

Тканевый тип

Нарушение способности клеток поглощать кислород;

Уменьшение эффективности биологического окисления в результате разобщения окисления и фосфорилирования. Развивается при угнетении ферментов биологического окисле­ния, например при отравлении цианидами, воздействии ионизи­рующего излучения и др.

Основное патогенетическое звено - недостаточность биологи­ческого окисления и как следствие дефицит энергии в клетках. При этом отмечаются нормальное содержание и напряжение ки­слорода в артериальной крови, повышение их в венозной крови, снижение артериовенозной разницы по кислороду.

Перегрузочный тип

Причина: чрезмерная или длительная гиперфункция какого-либо органа или ткани. Чаще это наблюдается при тяжелой фи­зической работе.

Основные патогенетические звенья:значительная венозная гипоксемия;гиперкапния.

Субстратный тип

Причина: первичный дефицит субстратов окисления, как пра­вило, глюкозы. Так. прекращение поступления глюкозы в голов­ной мозг уже через 5-8 мин ведет к дистрофическим изменени­ям и гибели нейронов.

Основной патогенетический фактор - дефицит энергии в форме АТФ и недостаточное энергоснабжение клеток.

Смешанный тип

Причина: действие факторов, обусловливающих включение различных типов гипоксии. По существу любая тяжелая гипок­сия, особенно длительно текущая, является смешанной.

Морфология гипоксии

Гипоксия является важнейшим звеном очень многих патоло­гических процессов и болезней, а развиваясь в финале любых за­болеваний, она накладывает свой отпечаток на картину болезни. Однако течение гипоксии может быть различным, и поэтому как острая, так и хроническая гипоксия имеют свои морфологиче­ские особенности.

Острая гипоксия, которая характеризуется быстрым наруше­ниями в тканях окислительно-восстановительных процессов, на­растанием гликолиза, закислением цитоплазмы клеток и внекле­точного матрикса, приводит к повышению проницаемости мем­бран лизосом, выходу гидролаз, разрушающих внутриклеточные структуры. Кроме того, гипоксия активирует перекисное окисле­ние липидов. появляются свободнорадикальные перекисные со­единения, которые разрушают мембраны клеток. В физиологиче­ских условиях в процессе обмена веществ постоянно возникает

легкая степень гипоксии клеток, стромы, стенок капилляров и артериол. Это является сигналом к повышению проницаемости стенок сосудов и поступлению в клетки продуктов метаболизма и кислорода. Поэтому острая гипоксия, возникающая в условиях патологии, всегда характеризуется повышением проницаемости стенок артериол, венул и капилляров, что сопровождается плаз-моррагией и развитием периваскулярных отеков. Резко выражен­ная и относительно длительная гипоксия приводит к развитию фибриноидного некроза стенок сосудов. В таких сосудах крово­ток прекращается, что усиливает ишемию стенки и происходит диапедез эритроцитов с развитием периваскулярных кровоизлия­ний. Поэтому, например, при острой сердечной недостаточности, которая характеризуется быстрым развитием гипоксии, плазма крови из легочных капилляров поступает в альвеолы и возникает острый отек легких. Острая гипоксия мозга приводит к перива-скулярному отеку и набуханию ткани мозга с вклинением его стволовой части в большое затылочное отверстие и развитием ко­мы, приводящей к смерти.

Хроническая гипоксия сопровождается долговременной пере­стройкой обмена веществ, включением комплекса компенсатор­ных и приспособительных реакций, например гиперплазией кост­ного мозга для увеличения образования эритроцитов. В паренхи­матозных органах развивается и прогрессирует жировая дистро­фия и атрофия. Кроме того, гипоксия стимулирует в организме фибробластическую реакцию, активизируются фибробласты, в результате чего параллельно с атрофией функциональной ткани нарастают склеротические изменения органов. На определенном этапе развития заболевания изменения, обусловленные гипокси­ей, способствуют снижению функции органов и тканей с разви­тием их декомпенсации.

Производя попеременно вдох и выдох, человек вентилирует легкие, поддерживая в легочных пузырьках (альвеолах) относительно постоянный газовый состав. Человек дышит атмосферным воздухом с большим содержанием кислорода (20,9%) и низким содержанием углекислого газа (0,03%), а выдыхает воздух, в котором кислорода 16,3%, а углекислого газа 4% (табл. 13).

Состав альвеолярного воздуха значительно отличается от состава атмосферного, вдыхаемого воздуха. В нем меньше кислорода (14,2%).

И , входящие в состав воздуха, в дыхании участия не принимают, и их содержание во вдыхаемом, выдыхаемом и альвеолярном воздухе практически одинаково.

Таблица 13

Состав вдыхаемого, выдыхаемого и альвеолярного воздуха

Почему в выдыхаемом воздухе кислорода содержится больше, чем в альвеолярном? Объясняется это тем, что при выдохе к альвеолярному воздуху примешивается воздух, который находится в органах дыхания, в воздухоносных путях.

Парциальное давление и напряжение газов

В легких из альвеоляр ного воздуха переходит в , а углекислый газ из крови поступает в легкие. Переход газов из воздуха вжидкость и из жидкости ввоздух происходит за счет разницы парциального давления этих газов в воздухе и жидкости.

Парциальным давлением называют часть общего давления, которая приходится на долю данного газа в газовой смеси. Чем выше процентное содержание газа в смеси, тем соответственно выше его парциальное давление. Атмосферный воздух, как известно, - смесь газов. В этой смеси газов кислорода содержится 20,94%, углекислого газа - 0,03% и азота - 79,03%. Давление атмосферного воздуха 760 мм рт. ст. Парциальное давление кислорода в атмосферном воздухе составляет 20,94% от 760 мм, т. е. 159 мм, азота - 79,03% от 760 мм, т. е. около 600 мм, углекислого газа в атмосферном воздухе мало - 0,03% от 760 мм-0,2 мм рт. ст.

Для газов, растворенных в жидкости, употребляют термин «напряжение», соответствующий термину «парциальное давление», применяемому для свободных газов. Напряжение газов выражается в тех же единицах, что и давление (в мм рт. ст.). Если парциальное давление газа в окружающей среде выше, чем напряжение этого газа в жидкости, газ растворяется в жидкости.

Парциальное давление кислорода в альвеолярном воздухе 100-105 мм рт. ст., а в притекающей к легким крови напряжение кислорода в среднем 40 мм рт. ст., поэтому в легких из альвеолярного воздуха переходит в .

Движение газов происходит по законам диффузии, согласно которым газ распространяется из среды с высоким парциальным давлением в среду с меньшим давлением.

Газообмен в легких

Переход в легких кислорода из альвеолярного воздуха в и поступление углекислого газа из крови в легкие подчиняются описанным выше закономерностям.

Благодаря работам И. М. Сеченова стало возможно изучение газового состава крови и условий газообмена в легких и тканях.

Газообмен в легких совершается между альвеолярным воздухом и кровью путем диффузии. Альвеолы легких оплетены густой сетью капилляров. Стенки альвеол и стенки капилляров очень тонкие, что способствует проникновению газов из легких в кровь и наоборот. Газообмен зависит от поверхности, через которую осуществляется диффузия газов, и разности парциального давления (напряжения) диффундирующих газов. Такие условия есть в легких. При глубоком вдохе альвеолы растягиваются и их поверхность достигает 100-150 м 2 . Так же велика и поверхность капилляров в легких. Есть и достаточная разница парциального давления газов альвеолярного воздуха и напряжения этих газов в венозной крови (табл. 14).

Таблица 14

Парциальное давление кислорода и углекислого газа во вдыхаемом и альвеолярном воздухе и их напряжение в крови (в мм рт. ст.)

Из таблицы 14 следует, что разность между напряжением газов в венозной крови и их парциальным давлением в альвеолярном воздухе составляет для кислорода 110-40 = 70 мм рт. ст., а для углекислого газа 47-40=7 мм рт. ст.

Опытным путем удалось установить, что при разнице напряжения кислорода в 1 мм рт. ст. у взрослого человека, находящегося в покое, в кровь может поступить 25-60 см 3 кислорода в минуту. Следовательно, разность давлений кислорода в 70 мм рт. ст. достаточна для обеспечения организма кислородом при разных условиях его деятельности: при физической работе, спортивных упражнениях и др.

Скорость диффузии углекислого газа из крови в 25 раз больше, чем кислорода, поэтому за счет разности в 7 мм рт. ст. углекислый газ успевает выделиться из крови.

Перенос газов кровью

Кровь переносит кислород и углекислый газ. В крови, как и во всякой жидкости, газы могут находиться в двух состояниях: в физически растворенном и в химически связанном. И кислород, и углекислый газ в очень небольшом количестве растворяются в плазме крови. Большая часть кислорода и углекислого газа переносится в химически связанном виде.

Основной переносчик кислорода - крови. Каждый грамм гемоглобина связывает 1,34 см 3 кислорода. обладает способностью вступать в соединение с кислородом, образуя оксигемоглобин. Чем выше парциальное давление кислорода, тем больше образуется оксигемоглобина. В альвеолярном воздухе парциальное давление кислорода 100-110 мм рт. ст. При этих условиях 97% гемоглобина крови связывается с кислородом. В виде оксигемоглобина кислород кровью приносится к тканям. Здесь парциальное давление кислорода низкое и оксигемоглобин - соединение непрочное - высвобождает кислород, который используется тканями. На связывание кислорода гемоглобином оказывает влияние и напряжение углекислого газа. Углекислый газ уменьшает способность гемоглобина связывать кислород и способствует диссоциации оксигемоглобина. Повышение температуры также уменьшает возможности связывания гемоглобином кислорода. Известно, что температура в тканях выше, чем в легких. Все эти условия помогают диссоциации оксигемоглобина, в результате чего кровь отдает высвободившийся из химического соединения кислород в тканевую жидкость.

Свойство гемоглобина связывать кислород имеет жизненное значение для организма. Иногда люди гибнут от недостатка кислорода в организме, окруженные самым чистым воздухом. Это может случиться с человеком, оказавшимся в условиях пониженного давления (на больших высотах), где в разреженной атмосфере очень низкое парциальное давление кислорода. 15 апреля 1875 г. воздушный шар «Зенит», на борту которого находились три воздухоплавателя, достиг высоты 8000 м. Когда шар приземлился, в живых остался только один человек. Причиной гибели людей было резкое снижение величины парциального давления кислорода на большой высоте. На больших высотах (7-8 км) артериальная кровь по своему газовому составу приближается к венозной; все ткани тела начинают испытывать острый недостаток кислорода, что и приводит к тяжелым последствиям. Подъем на высоту более 5000 м, как правило, требует пользования специальными кислородными приборами.

При специальной тренировке организм может приспосабливаться к пониженному содержанию кислорода в атмосферном воздухе. У тренированного человека углубляется

Газообмен в легких происходит путем диффузии. Кислород через тонкие стенки альвеол и капилляров поступает из воздуха в кровь, а углекислый газ из крови в воздух. Диффузия газов происходит в результате разности их концентраций в крови и в воздухе. Кислород проникает в эритроциты и соединяется с гемоглобином, кровь становится артериальной и направляется в ткани. В тканях происходит обратный процесс: кислород за счет диффузии переходит из крови в ткани, а углекислый газ, наоборот, переходит из тканей в кровь. Это происходит до тех пор, пока. ихЖизненная емкость легких (ЖЕЛ) включает дыхательный объем, резервный объем вдоха и резервный объем выдоха. Дыхательным объемом называют количество воздуха, поступающего в легкие при одном вдохе. В покое он равен примерно 500 см 3 и соответствует объему выдыхаемого воздуха при выдохе. Если после спокойного вдоха сделать усиленный дополнительный вдох, то в легкие может поступить дополнительно 1500 см 3 воздуха - это резерв объема вдоха. После спокойного выдоха можно при максимальном напряжении выдохнуть еще 1500 см 3 воздуха - это резервный объем. Таким образом, жизненная емкость легких - это наибольшее количество воздуха, которое человек может выдохнуть после самого глубокого вдоха. Она примерно равна 3500 см 3 . ЖЕЛ больше у спортсменов, чем у нетренированных людей, и зависит от степени развития грудной клетки, от пола и возраста. Под влиянием курения ЖЕЛ снижается. Даже после самого максимального выдоха в легких всегда остается немного воздуха, который называется остаточным объемом (ок. 1000см 3).

Дыхательные движения. Попеременное увеличение и уменьшение объема грудной клетки обусловлено ритмическими сокращениями дыхательных мышц. При этом происходит вентиляция легких. Необходимым условием осуществления дыхательных движений является герметичность плевральной полости (плевральной щели), которая находится между легочной плеврой и пристеночной плеврой и заполнена жидкостью. Регуляция дыхания. Дыхательный центр находится в продолговатом мозге. Через каждые 4 сек в дыхательном центре автоматически возникают возбуждения, обеспечивающие чередование вдоха и выдоха. Дыхательный центр автоматически регулирует также частоту и глубину дыхательных движений.

Легкие человека (лат. ед. ч. pulmo), важнейшие органы дыхательной системы у человека, наземных животных и некоторых рыб. У млекопитающих расположены в грудной клетке. Правое и левое легкое у человека занимают 4/5 грудной клетки, плотно прилегая к ее стенкам, оставляя место только для сердца, крупных кровеносных сосудов, пищевода и трахеи. Легкие не одинаковы: правое легкое больше и состоит из 3 долей, меньшее левое легкое состоит из 2 долей. Масса каждого легкого колеблется в пределах 0,5-0,6 кг.

Каждое легкое, правое и левое, по форме напоминает конус с уплощенной одной стороной и закругленной верхушкой, выступающей над I ребром. Прилегающая к диафрагме нижняя (диафрагмальная) поверхность легких вогнутая. Боковая поверхность легких (реберная) прилежит к ребрам, медиальная (средостенная) поверхность каждого легкого имеет вдавление, соответствующее сердцу и крупным сосудам. На средостенной поверхности каждого легкого расположены ворота легкого, через которые проходят образующие корень легкого главный бронх, артерии и нервы, окруженные соединительной тканью, выходят вены и лимфатические сосуды.

Каждое легкое имеет три края: передний, нижний и задний. Передний, острый край легкого разделяет реберную и медиальную поверхности. На правом легком этот край на всем протяжении направлен почти вертикально. В нижней передней части левого легкого имеется сердечная вырезка, где находится сердце. Ниже вырезки расположен так называемый язычок. Острый нижний край отделяет нижнюю поверхность от реберной, задний край закруглен. Каждое легкое разделяется глубокими щелями на доли: правое - на три, левое - на две. Косая щель идет почти одинаково на обоих легких, она начинается сзади на уровне III грудного позвонка и проникает глубоко в ткань легкого, разделяя его на 2 доли, связанные между собой только вблизи корня. На правом легком имеется еще горизонтальная щель. Она менее глубокая и более короткая, отходит от косой на реберной поверхности, идет вперед почти горизонтально на уровне IV ребра до переднего края легкого. Затем она переходит на его медиальную поверхность. Оканчивается кпереди от корня. Эта щель у правого легкого отделяет среднюю долю от верхней.

Каждое легкое покрыто серозной оболочкой - плеврой. У плевры два листка. Один плотно сращен с легким - висцеральная плевра; другой приращен к грудной клетке - париетальная, или пристеночная, плевра. Между обоими листками имеется небольшая плевральная полость, заполненная плевральной жидкостью (около 1-2 мл), которая облегчает скольжение листков плевры при дыхательных движениях. Охватывая легкое со всех сторон, висцеральная плевра на корне легкого непосредственно продолжается в париетальную плевру.

Плевра представляет собой два симметричных серозных мешка, расположенных в обеих половинах грудной клетки; между ними остается свободное пространство - средостение. Здесь помещаются сердце, трахея, пищевод, кровеносные сосуды и нервы.

Доли легких - это отдельные, анатомически обособленные участки легкого с вентилирующим их долевым бронхом. Консистенция легкого мягкая, упругая. Цвет легких у детей бледно-розовый. У взрослых ткань легкого постепенно темнеет, ближе к поверхности появляются темные пятна за счет частиц угля и пыли, которые откладываются в соединительнотканной основе легкого.

Каждому сегментарному бронху легкого соответствует бронхо-легочный сосудисто-нервный комплекс. Сегмент - участок легочной ткани, имеющий свои сосуды и нервные волокна, он вентилируется отдельным бронхом. Каждый сегмент напоминает усеченный конус, вершина которого направлена к корню легкого. А широкое основание покрыто висцеральной плеврой. Легочные сегменты отделяются друг от друга межсегментарными перегородками, состоящими из рыхлой соединительной ткани, в которой проходят межсегментарные вены. В норме сегменты не имеют четко выраженных видимых границ.

Сегменты образованы легочными дольками, разделенными междольковыми соединительнотканными перегородками. Число долек в одном сегменте около 80. Форма дольки напоминает неправильную пирамиду с диаметром основания 0,5-2 см. В верхушку дольки входит дольковый бронх, который разветвляется на 3-7 концевых (терминальных) бронхиол диаметром 0,5 мм. Их слизистая оболочка выстлана однослойным реснитчатым эпителием, между клетками которого располагаются отдельные секреторные клетки (Клара), которые являются источником восстановления эпителия концевых бронхиол. Собственная пластинка слизистой оболочки богата эластическими волокнами, которые переходят в эластические волокна респираторного отдела, благодаря чему бронхиолы не спадаются.

Функциональной единицей легкого является ацинус. Это система разветвлений одной концевой бронхиолы, которая делится на 14-16 дыхательных (респираторных) бронхиол, образующих до 1500 альвеолярных ходов, несущих до 20 тысячальвеолярных мешочков и альвеол. В одной легочной дольке имеется 16-18 ацинусов. У человека на один альвеолярный ход приходится в среднем 21 альвеола. Внешне альвеолы похожи на пузырьки неправильной формы, они разделяются межальвеолярными перегородками толщиной 208 мкм. Каждая перегородка - это стенка двух альвеол, между которыми в перегородке расположена густая сеть кровеносных капилляров, эластических, ретикулярных и коллагеновых волокон и клеток соединительной ткани.

Количество альвеол в обоих легких человека 600-700 млн., общая их поверхность составляет 40-120 м2. Большая поверхность альвеол способствует лучшему газообмену. По одну сторону этой поверхности находится альвеолярный воздух, постоянно обновляющийся в своем составе, по другую - непрерывно текущая по сосудам кровь. Через обширную поверхность альвеолярной мембраны происходит диффузия кислорода и углекислого газа. Во время физической работы, когда при глубоких вдохах альвеолы значительно растягиваются, размеры дыхательной поверхности увеличиваются. Чем больше общая поверхность альвеол, тем интенсивнее происходит диффузия газов.

Форма альвеол многоугольная, вход в альвеолу округлый, благодаря имеющимся эластическим и ретикулярным волокнам. В межальвеолярных перегородках имеются поры, через которые альвеолы сообщаются между собой.

Альвеолы выстланы изнутри клетками двух типов: дыхательными альвеолоцитами (их большинство) и гранулярными клетками (большими альвеолоцитами). Дыхательные альвеолоциты выстилают 97,5% поверхности альвеол. Это уплощенные клетки толщиной 0,1-0,2 мкм, они соприкасаются друг с другом и располагаются на собственной базальной мембране, обращенной в сторону капилляра. Такое строение способствует лучшему газообмену. Сеть кровеносных сосудов, оплетающих альвеолы, содержит несколько десятков кубических сантиметров крови. Красные кровяные тельца находятся в легочных пузырьках в течение 0,75 с в покое, а при физической нагрузке это время значительно сокращается. Однако столь короткого времени достаточно для газообмена.

Общая дыхательная поверхность альвеол у взрослого человека составляет около 120 квадратных метров. Кислород (1) через стенки альвеол (2) и капилляров (3) попадает в кровь (4), а углекислый газ (5) перемещается в противоположном направлении.

Большие альвеолоциты вырабатывают липопротеин сурфактант, этой пленкой поверхностно-активной смазки их сурфактанта, покрыты изнутри альвеолы. Сурфактант препятствует спаданию альвеол при выдохе, способствует удалению инородных частиц из дыхательных путей и обладает бактерицидной активностью. Большие альвеолоциты также располагаются на базальной мембране, считается, что они являются источником восстановления клеточной выстилки альвеол. Альвеолы оплетены густой сетью ретикулярных и коллагеновых волокон и кровеносных капилляров, которые прилежат к базальной мембране альвеолоцитов. Каждый капилляр граничит с несколькими альвеолами, что облегчает газообмен.

Производя попеременно вдох и выдох, человек вентилирует легкие, поддерживая в альвеолах относительно постоянный газовый состав. Человек дышит атмосферным воздухом с большим содержанием кислорода (20,9%) и низким содержанием углекислого газа (0,03%), а выдыхает воздух, в котором кислорода 16,3%, а углекислого газа 4%.

Состав альвеолярного воздуха значительно отличается от состава атмосферного, вдыхаемого воздуха. В нем меньше кислорода (14,2%). Азот и инертные газы, входящие в состав воздуха, в дыхании участия не принимают, и их содержание во вдыхаемом, выдыхаемом и альвеолярном воздухе практически одинаково. В выдыхаемом воздухе кислорода содержится больше, чем в альвеолярном потому, что к альвеолярному воздуху примешивается воздух, который находится в воздухоносных путях. При дыхании мы не полностью наполняем или освобождаем легкие. Даже после самого глубокого выдоха в легких всегда остается около 1,5 л воздуха. В покое человек обычно вдыхает и выдыхает около 0,5 л воздуха. При глубоком вдохе человек может вдохнуть дополнительно еще 3 л воздуха, а при глубоком выдохе - выдохнуть лишний 1 л воздуха. Такая величина как жизненная емкость легких (максимальный объем воздуха, выдыхаемого после самого глубокого вдоха) - важный антропометрический показатель. У мужчин он составляет 3,5-4,5 л, у женщин в среднем на 25% меньше. Под влиянием тренировки объем легких увеличивается до 6-7 л.

Вдох и выдох осуществляются путем изменения объема грудной клетки за счет сокращения и расслабления дыхательных мышц - межреберных и диафрагмы. При вдохе диафрагма уплощается, нижние отделы легких пассивно следуют за ней, давление воздуха в легких становится ниже атмосферного и воздух по трахее попадает в бронхи и легкие. При выдохе живот немного втягивается, кривизна купола диафрагмы увеличивается, легкие выталкивают воздух.

Легкие растут главным образом за счет увеличения объема альвеол. У новорожденного диаметр альвеолы 0,07 мм, Диаметр альвеол взрослого человека 0,2 мм. В старости объем альвеол увеличивается, их диаметр достигает 0,3-0,35 мм. Усиленный рост легких и дифференцировка их отдельных элементов происходят до 3 лет, К восьми годам число альвеол достигает числа их у взрослого человека. Особенно энергично альвеолы растут после 12 лет. Объем легких к 12 годам увеличивается в 10 раз по сравнению с объемом легких новорожденного, а концу периода полового созревания - в 20 раз (в основном за счет увеличения объема альвеол).



Понравилась статья? Поделитесь ей
Наверх