Константа равновесия для газов пример. Вычисление константы равновесия системы

Химическим равновесием называется такое состояние обратимой химической реакции

aA + b B = c C + d D,

при котором с течением времени не происходит изменения концентраций реагирующих веществ в реакционной смеси. Состояние химического равновесия характеризуется константой химического равновесия :

где C i – концентрации компонентов в равновесной идеальной смеси.

Константа равновесия может быть выражена также через равновесные мольные доли X i компонентов:

Для реакций, протекающих в газовой фазе, константу равновесия удобно выражать через равновесные парциальные давления P i компонентов:

Для идеальных газов P i = C i RT и P i = X i P , где P – общее давление, поэтому K P , K C и K X связаны следующим соотношением:

K P = K C (RT) c+d–a–b = K X P c+d–a–b . (9.4)

Константа равновесия связана с r G o химической реакции:

(9.5)

(9.6)

Изменение r G или r F в химической реакции при заданных (не обязательно равновесных) парциальных давлениях P i или концентрациях C i компонентов можно рассчитать по уравнению изотермы химической реакции (изотермы Вант-Гоффа ):

. (9.7)

. (9.8)

Согласно принципу Ле Шателье , если на систему, находящуюся в равновесии, оказать внешнее воздействие, то равновесие сместится так, чтобы уменьшить эффект внешнего воздействия. Так, повышение давления сдвигает равновесие в сторону уменьшения количества молекул газа. Добавление в равновесную смесь какого-либо компонента реакции сдвигает равновесие в сторону уменьшения количества этого компонента. Повышение (или понижение) температуры сдвигает равновесие в сторону реакции, протекающей с поглощением (выделением) теплоты.

Количественно зависимость константы равновесия от температуры описывается уравнением изобары химической реакции (изобары Вант-Гоффа )

(9.9)

и изохоры химической реакции (изохоры Вант-Гоффа )

. (9.10)

Интегрирование уравнения (9.9) в предположении, что r H реакции не зависит от температуры (что справедливо в узких интервалах температур), дает:

(9.11)

(9.12)

где C – константа интегрирования. Таким образом, зависимость ln K P от 1 должна быть линейной, а наклон прямой равен – r H /R .

Интегрирование в пределах K 1 , K 2 , и T 1, T 2 дает:

(9.13)

(9.14)

По этому уравнению, зная константы равновесия при двух разных температурах, можно рассчитать r H реакции. Соответственно, зная r H реакции и константу равновесия при одной температуре, можно рассчитать константу равновесия при другой температуре.

ПРИМЕРЫ

CO(г) + 2H 2 (г) = CH 3 OH(г)

при 500 K. f G o для CO(г) и CH 3 OH(г) при 500 К равны –155.41 кДж. моль –1 и –134.20 кДж. моль –1 соответственно.

Решение. G o реакции:

r G o = f G o (CH 3 OH) – f G o (CO) = –134.20 – (–155.41) = 21.21 кДж. моль –1 .

= 6.09 10 –3 .

Пример 9-2. Константа равновесия реакции

равна K P = 1.64 10 –4 при 400 o C. Какое общее давление необходимо приложить к эквимолярной смеси N 2 и H 2 , чтобы 10% N 2 превратилось в NH 3 ? Газы считать идеальными.

Решение. Пусть прореагировало моль N 2 . Тогда

N 2 (г) + 3H 2 (г) = 2NH 3 (г)
Исходное количество 1 1
Равновесное количество 1– 1–3 2 (Всего: 2–2)
Равновесная мольная доля:

Следовательно, K X = и K P = K X . P –2 = .

Подставляя = 0.1 в полученную формулу, имеем

1.64 10 –4 =, откуда P = 51.2 атм.

Пример 9-3. Константа равновесия реакции

CO(г) + 2H 2 (г) = CH 3 OH(г)

при 500 K равна K P = 6.09 10 –3 . Реакционная смесь, состоящая из 1 моль CO, 2 моль H 2 и 1 моль инертного газа (N 2) нагрета до 500 K и общего давления 100 атм. Рассчитать состав равновесной смеси.

Решение. Пусть прореагировало моль CO. Тогда

CO(г) + 2H 2 (г) = CH 3 OH(г)
Исходное количество: 1 2 0
Равновесное количество: 1– 2–2
Всего в равновесной смеси: 3–2 моль компонентов + 1 моль N 2 = 4–2 моль
Равновесная мольная доля

Следовательно, K X = и K P = K X . P –2 = .

Таким образом, 6.09 10 –3 = .

Решая это уравнение, получаем = 0.732. Соответственно, мольные доли веществ в равновесной смеси равны: = 0.288, = 0.106, = 0.212 и = 0.394.

Пример 9-4. Для реакции

N 2 (г) + 3H 2 (г) = 2NH 3 (г)

при 298 К K P = 6.0 10 5 , а f H o (NH 3) = –46.1 кДж. моль –1 . Оценить значение константы равновесия при 500 К.

Решение. Стандартная мольная энтальпия реакции равна

r H o = 2 f H o (NH 3) = –92.2 кДж. моль –1 .

Согласно уравнению (9.14), =

Ln (6.0 10 5) + = –1.73, откуда K 2 = 0.18.

Отметим, что константа равновесия экзотермической реакции уменьшается с ростом температуры, что соответствует принципу Ле Шателье.

ЗАДАЧИ

  1. При 1273 К и общем давлении 30 атм в равновесной смеси
  2. CO 2 (г) + C(тв) = 2CO(г)

    содержится 17% (по объему) CO 2 . Сколько процентов CO 2 будет содержаться в газе при общем давлении 20 атм? При каком давлении в газе будет содержаться 25% CO 2 ?

  3. При 2000 o C и общем давлении 1 атм 2% воды диссоциировано на водород и кислород. Рассчитать константу равновесия реакции
  4. H 2 O(г) = H 2 (г) + 1/2O 2 (г) при этих условиях.

  5. Константа равновесия реакции
  6. CO(г) + H 2 O(г) = CO 2 (г) + H 2 (г)

    при 500 o C равна K p = 5.5. Смесь, состоящая из 1 моль CO и 5 моль H 2 O, нагрели до этой температуры. Рассчитать мольную долю H 2 O в равновесной смеси.

  7. Константа равновесия реакции
  8. N 2 O 4 (г) = 2NO 2 (г)

    при 25 o C равна K p = 0.143. Рассчитать давление, которое установится в сосуде объемом 1 л, в который поместили 1 г N 2 O 4 при этой температуре.

  9. Сосуд объемом 3 л, содержащий 1.79 10 –2 моль I 2 , нагрели до 973 K. Давление в сосуде при равновесии оказалось равно 0.49 атм. Считая газы идеальными, рассчитать константу равновесия при 973 K для реакции
  10. I 2 (г) = 2I (г).

  11. Для реакции
  12. при 250 o C r G o = –2508 Дж. моль –1 . При каком общем давлении степень превращения PCl 5 в PCl 3 и Cl 2 при 250 o C составит 30%?

  13. Для реакции
  14. 2HI(г) = H 2 (г) + I 2 (г)

    константа равновесия K P = 1.83 10 –2 при 698.6 К. Сколько граммов HI образуется при нагревании до этой температуры 10 г I 2 и 0.2 г H 2 в трехлитровом сосуде? Чему равны парциальные давления H 2 , I 2 и HI?

  15. Сосуд объемом 1 л, содержащий 0.341 моль PCl 5 и 0.233 моль N 2 , нагрели до 250 o C. Общее давление в сосуде при равновесии оказалось равно 29.33 атм. Считая все газы идеальными, рассчитать константу равновесия при 250 o C для протекающей в сосуде реакции
  16. PCl 5 (г) = PCl 3 (г) + Cl 2 (г)

  17. Константа равновесия реакции
  18. CO(г) + 2H 2 (г) = CH 3 OH(г)

    при 500 K равна K P = 6.09 10 –3 . Рассчитать общее давление, необходимое для получения метанола с 90% выходом, если CO и H 2 взяты в соотношении 1: 2.

  19. При 25 o C f G o (NH 3) = –16.5 кДж. моль –1 . Рассчитать r G реакции образования NH 3 при парциальных давлениях N 2 , H 2 и NH 3 , равных 3 атм, 1 атм и 4 атм соответственно. В какую сторону реакция будет идти самопроизвольно при этих условиях?
  20. Экзотермическая реакция
  21. CO(г) + 2H 2 (г) = CH 3 OH(г)

    находится в равновесии при 500 K и 10 бар. Если газы идеальные, как повлияют на выход метанола следующие факторы: а) повышение T ; б) повышение P ; в) добавление инертного газа при V = const; г) добавление инертного газа при P = const; д) добавление H 2 при P = const?

  22. Константа равновесия газофазной реакции изомеризации борнеола (C 10 H 17 OH) в изоборнеол равна 0.106 при 503 K. Смесь 7.5 г борнеола и 14.0 г изоборнеола поместили в сосуд объемом 5 л и выдерживали при 503 K до достижения равновесия. Рассчитать мольные доли и массы борнеола и изоборнеола в равновесной смеси.
  23. Равновесие в реакции
  24. 2NOCl(г) = 2NO(г) + Cl 2 (г)

    устанавливается при 227 o C и общем давлении 1.0 бар, когда парциальное давление NOCl равно 0.64 бар (изначально присутствовал только NOCl). Рассчитать r G o для реакции. При каком общем давлении парциальное давление Cl 2 будет равно 0.10 бар?

  25. Рассчитать общее давление, которое необходимо приложить к смеси 3 частей H 2 и 1 части N 2 , чтобы получить равновесную смесь, содержащую 10% NH 3 по объему при 400 o C. Константа равновесия для реакции
  26. N 2 (г) + 3H 2 (г) = 2NH 3 (г)

    при 400 o C равна K = 1.60 10 –4 .

  27. При 250 o C и общем давлении 1 атм PCl 5 диссоциирован на 80% по реакции
  28. PCl 5 (г) = PCl 3 (г) + Cl 2 (г).

    Чему будет равна степень диссоциации PCl 5 , если в систему добавить N 2 , чтобы парциальное давление азота было равно 0.9 атм? Общее давление поддерживается равным 1 атм.

  29. При 2000 o C для реакции
  30. N 2 (г) + O 2 (г) = 2NO(г)

    K p = 2.5 10 –3 . В равновесной смеси N 2 , O 2 , NO и инертного газа при общем давлении 1 бар содержится 80% (по объему) N 2 и 16% O 2 . Сколько процентов по объему составляет NO? Чему равно парциальное давление инертного газа?

  31. Рассчитать стандартную энтальпию реакции, для которой константа равновесия
    а) увеличивается в 2 раза, б) уменьшается в 2 раза при изменении температуры от 298 К до 308 К.
  32. Зависимость константы равновесия реакции 2C 3 H 6 (г) = C 2 H 4 (г) + C 4 H 8 (г) от температуры между 300 К и 600 К описывается уравнением

ln K = –1.04 –1088 /T +1.51 10 5 /T 2 .

ГОУ ВПО «Уральский государственный технический университет - УПИ»

Определение констант равновесия химических

реакций и расчет химического равновесия

по курсу физической химии

для студентов дневной формы обучения

Екатеринбург 2007

УДК 544(076)С79

Составитель

Научный редактор, к. х.н., доцент

Определение констант равновесия химических реакций и расчет химического равновесия: методические указания для лабораторной работы № 4 по курсу физической химии / сост. - Екатеринбург: ГОУ ВПО УГТУ-УПИ, 20с.

Методические указания предназначены для дополнительной углубленной проработки материала по химическому равновесию в рамках расчетно-аналитической лабораторной работы. Содержат 15 вариантов индивидуальных заданий, что способствует выполнению поставленной цели.

Библиогр.: 5 назв. Рис. Табл.

© ГОУ ВПО «Уральский государственный

технический университет – УПИ», 2007

Введение

Данная работа, хотя и проводится в рамках лабораторного практикума, относится к расчетно-аналитическим и заключается в освоении теоретического материала и решении ряда задач по теме курса физической химии «Химическое равновесие».

Необходимость ее проведения вызвана сложностью данной темы с одной стороны и недостаточным количеством учебного времени отводимого на ее проработку с другой.

Основная часть темы «Химическое равновесие»: вывод закона химического равновесия, рассмотрение уравнения изобары и изотермы химической реакции и т. д. излагается в лекциях и изучается на практических занятиях (поэтому в данной работе этот материал не приведен). В этом пособии подробно рассмотрен раздел темы, касающийся экспериментального определения констант равновесия и определения равновесного состава системы с протекающей в ней химической реакцией.

Итак, выполнение студентами данной работы позволит решить следующие задачи:

1) познакомиться с методами определения и вычисления констант равновесия химических реакций;

2) научиться рассчитывать равновесный состав смеси, исходя из самых различных экспериментальных данных.

1. ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ О СПОСОБАХ

ОПРЕДЕЛЕНИЯ КОНСТАНТ РАВНОВЕСИЯ ХИМИЧЕСКИХ РЕАКЦИЙ

Остановимся кратко на основных понятиях, используемых далее. Константой равновесия химической реакции называется величина

https://pandia.ru/text/78/005/images/image002_169.gif" width="51" height="29">- стандартная мольная энергия Гиббса реакции r .

Уравнение (1) – определительное уравнение для константы равновесия химической реакции. Нужно отметить, что константа равновесия химической реакции является безразмерной величиной.

Закон химического равновесия записывается следующим образом

, (2)

где https://pandia.ru/text/78/005/images/image005_99.gif" width="23" height="25">- активность k - участника реакции; - размерность активности; стехиометрический коэффициент k - участника реакции r .

Экспериментальное определение констант равновесия – достаточно трудная задача. Прежде всего, необходимо быть уверенным, что при данной температуре равновесие достигнуто, т. е. состав реакционной смеси соответствует равновесному состоянию – состоянию с минимумом энергии Гиббса, нулевым сродством реакции и равенством скоростей прямой и обратной реакций. При равновесии будут постоянными давление, температура и состав реакционной смеси.

На первый взгляд кажется, что состав равновесной смеси можно определить, используя методы количественного анализа с характерными химическими реакциями. Однако введение постороннего реагента, который связывает один из компонентов химического процесса, смещает (т. е. изменяет) состояние равновесия системы. Этот метод можно использовать только в случае, если скорость реакции достаточно мала. Именно поэтому очень часто при изучении равновесия используют также различные физические методы для определения состава системы.

1.1 Химические методы

Различают статические химические методы и динамические химические методы. Рассмотрим конкретные примеры, приведенные в .

1.1.1 Статические методы.

Статические методы заключаются в том, что реакционная смесь помещается в реактор при постоянной температуре и затем по достижении равновесия определяется состав системы. Исследуемая реакция должна быть достаточно медленной, чтобы введение постороннего реактива практически не нарушало состояния равновесия. Чтобы замедлить процесс, можно достаточно быстро охладить реакционную колбу. Классическим примером подобного исследования является реакция между йодом и водородом

H2(г) + I2(г) = 2HI (г) (3)

Лемойн помещал в стеклянные баллоны либо смесь йода с водородом, либо йодистый водород. При 200 оС реакция практически не идет; при 265 оС продолжительность установления равновесия составляет несколько месяцев; при 350 оС равновесие устанавливается в течение нескольких дней; при 440 оС - в течение нескольких часов. В этой связи для исследования этого процесса был выбран температурный интервал 300 – 400 оС. Анализ системы проводился следующим образом. Реакционный баллон быстро охлаждался опусканием в воду, затем открывался кран и йодистый водород растворялся в воде. Титрованием определялось количество йодоводородной кислоты. При каждой температуре эксперимент проводился до тех пор, пока концентрация не достигнет постоянного значения, что свидетельствует об установлении в системе химического равновесия.

1.1.2 Динамические методы.

Динамические методы состоят в том, что газовая смесь непрерывно циркулирует, затем ее быстро охлаждают для последующего анализа. Эти методы наиболее хорошо применимы для достаточно быстрых реакций. Ускоряют реакции, как правило, либо осуществляя их при повышенных температурах, либо вводя в систему катализатор. Динамический метод применялся, в частности, при анализе следующих газовых реакций:

2H2 + O2 ⇄ 2H2O. (4)

2CO + O2 ⇄ 2CO2. (5)

2SO2 + O2 ⇄ 2SO

3H2 + N2 ⇄ 2NH

1.2 Физические методы

Эти методы основаны, главным образом, на измерение давления или плотности массы реакционной смеси, хотя можно использовать и другие свойства системы.

1.2.1 Измерение давления

Каждая реакция, которая сопровождается изменением числа молей газообразных реагентов, сопровождается изменением давления при постоянном объеме. Если газы близки к идеальным, то давление прямо пропорционально общему числу молей газообразных реагентов.

В качестве иллюстрации рассмотрим следующую газовую реакцию, записанную из расчета на одну молекулу исходного вещества

Число молей

в начальный момент 0 0

при равновесии

где https://pandia.ru/text/78/005/images/image016_35.gif" width="245" height="25 src=">, (9)

где https://pandia.ru/text/78/005/images/image018_30.gif" width="20" height="21 src=">.gif" width="91" height="31">.

Между этими давлениями имеются соотношения:

https://pandia.ru/text/78/005/images/image022_24.gif" width="132" height="52 src=">. (11)

https://pandia.ru/text/78/005/images/image024_21.gif" width="108" height="52 src="> . (13)

Константа равновесия, выраженная в p-шкале, будет иметь вид

. (14)

Следовательно, измерив равновесное давление, по формуле (13) можно определить степень диссоциации, а затем по формуле (14) рассчитать и константу равновесия.

1.2.2 Измерение плотности массы

Каждая реакция, которая сопровождается изменением числа молей газообразных участников процесса, характеризуется изменением плотности массы при постоянном давлении.

Например, для реакции (8) справедливо

, (15)

где https://pandia.ru/text/78/005/images/image028_20.gif" width="16" height="19">- объем системы в состоянии равновесия. Как правило в реальных экспериментах измеряют не объем, а плотность массы системы, которая обратно пропорциональна объему..gif" width="37 height=21" height="21"> - плотность массы системы в начальный момент и в момент равновесия, соответственно. Измеряя плотность массы системы, можно по формуле (16) вычислить степень диссоциации, а затем и константу равновесия.

1.2.3 Прямое измерение парциального давления

Наиболее прямым способом определения константы равновесия химической реакции является измерение парциальных давлений каждого участника процесса. В общем случае этот метод весьма сложно применить на практике, чаще всего его используют только при анализе газовых смесей, содержащих водород. В этом случае используют свойство металлов платиновой группы быть проницаемыми для водорода при высоких температурах. Предварительно нагретую газовую смесь пропускают при постоянной температуре через баллон 1, который содержит пустой иридиевый резервуар 2, соединенный с манометром 3 (рис.1). Водород является единственным газом, способным проходить через стенки иридиевого резервуара.

Таким образом, остается измерить общее давление газовой смеси и парциальное давление водорода, чтобы вычислить константу равновесия реакции. Этот метод позволил Ловенштейну и Вартенбергу (1906) изучить диссоциацию воды, HCl, HBr, HI и H2S, а также реакцию типа:

https://pandia.ru/text/78/005/images/image033_14.gif" width="89 height=23" height="23">. (17)

1.2.4 Оптические методы

Существуют методы исследования равновесия, основанные на измерении адсорбции, которые особенно эффективны в случае окрашенных газов. Можно также определять состав газовой бинарной смеси, измеряя показатель преломления (рефрактометрически). Например, Чадрон (1921) изучил восстановление оксидов металлов оксидом углерода, измеряя рефрактометрически состав газовой смеси оксида и диоксида углерода.

1.2.5 Измерение теплопроводности

Этот метод был использован при изучении реакций диссоциации в газовой фазе, например

Предположим, что смесь N2O4 и NO2 помещена в сосуд, правая стенка которого имеет температуру Т2, а левая Т1, причем Т2>Т1 (рис.2). Диссоциация N2O4 в большей степени будет в той части сосуда, которая имеет более высокую температуру. Следовательно, концентрация NO2 в правой части сосуда будет больше, чем в левой, и будет наблюдаться диффузия молекул NO2 справа налево и N2O4 слева направо. Однако, достигая правой части реакционного сосуда, молекулы N2O4 вновь диссоциируют с поглощением энергии в форме теплоты, а молекулы NO2, достигая левой части сосуда, димеризуются с выделением энергии в форме теплоты. То есть возникает суперпозиция обычной теплопроводности и теплопроводности, связанной с протеканием реакции диссоциации. Эта задача решается количественно и позволяет определить состав равновесной смеси.

1.2.6 Измерение электродвижущей силы (ЭДС) гальванического элемента

Измерение ЭДС гальванических элементов является простым и точным методом вычисления термодинамических функций химических реакций. Необходимо только 1) составить такой гальванический элемент, чтобы итоговая реакция в нем совпадала бы с исследуемой, константу равновесия которой нужно определить; 2) измерить ЭДС гальванического элемента в термодинамически равновесном процессе. Для этого нужно, чтобы соответствующий токообразующий процесс совершался бесконечно медленно, то есть, чтобы элемент работал при бесконечно малой силе тока, именно поэтому для измерения ЭДС гальванического элемента используется компенсационный метод, который основан на том, чтобы исследуемый гальванический элемент включался последовательно против внешней разности потенциалов, и последняя подбиралась таким образом, чтобы ток в цепи отсутствовал. Величина ЭДС, измеренная компенсационным методом, соответствует термодинамически равновесному процессу, протекающему в элементе и полезная работа процесса максимальная и равна убыли энергии Гиббса

https://pandia.ru/text/78/005/images/image035_12.gif" width="181" height="29 src="> (20)

при p, T=const, где F –число Фарадея = 96500 Кл/моль, n – наименьшее общее кратное числа электронов, участвующих в электродных реакциях, Ео – стандартная ЭДС, В.

Величина константы равновесия найдется из соотношения (21)

(21)

2. ПРИМЕР ЛАБОРАТОРНОЙ РАБОТЫ ПО ОПРЕДЕЛЕИНЮ ВЕЛИЧИНЫ КОНСТАНТЫ РАВНОВЕСИЯ

В практикумах по физической химии часто встречается лабораторная работа, касающаяся изучения реакции диссоциации карбонатов металлов. Приведем краткое содержание подобной работы.

Цель работы определение константы равновесия и расчет основных термодинамических величин реакции разложения карбоната.

Карбонат кальция https://pandia.ru/text/78/005/images/image038_12.gif" width="192" height="29"> , (22)

при этом образуется газообразный оксид углерода (IV), твердый оксид кальция и остается какая-то часть непродиссоциированного карбоната кальция.

Константа равновесия реакции (22) запишется как:

, (23)

где https://pandia.ru/text/78/005/images/image041_11.gif" width="68" height="51"> в общем виде или ; активности чистых твердых или жидких фаз равны https://pandia.ru/text/78/005/images/image044_10.gif" width="76" height="28 src=">.

Если давление измерять в атмосферах, то = https://pandia.ru/text/78/005/images/image046_9.gif" width="87" height="53"> . (24)

Равновесное давление двуокиси углерода над карбонатом кальция называют упругостью диссоциации CaCO3.

То есть константа равновесия реакции диссоциации карбоната кальция будет численно равна упругости диссоциации карбоната, если последняя выражена в атмосферах. Таким образом, определив экспериментально упругость диссоциации карбоната кальция, можно определить величину константы равновесия данной реакции.

Экспериментальная часть

Для определения упругости диссоциации карбоната кальция используется статический метод. Суть его заключается в непосредственном измерении при данной температуре давления углекислого газа в установке.

Аппаратура. Основными узлами установки являются: реакционный сосуд (1), выполненный из жаропрочного материала и помещенный в электропечь (2); ртутный манометр (3), герметично связанный с реакционным сосудом и через кран (4) с ручным вакуумным насосом (5). Температура в печи поддерживается при помощи регулятора (6), контроль температуры ведется при помощи термопары (7) и вольтметра (8). В реакционный сосуд помещено некоторое количество исследуемого порошкообразного вещества (9) (карбонаты металлов).

Порядок выполнения работы . После проверки герметичности системы, включают печь и с помощь регулятора устанавливают необходимую первоначальную температуру реакционного сосуда. Записывают первые показания термопары и манометра. После этого, с помощью регулятора (6) повышают температуру в печи на 10-20 градусов, ждут установления нового постоянного значения температуры и записывают соответствующее этой температуре значение давления. Таким образом, постепенно повышая температуру, проводят не менее 4-5 замеров. После окончания эксперимента печь охлаждают и систему через кран (4) соединяют с атмосферой. Затем выключают печь и вольтметр. Обработав полученные экспериментальные данные, можно вычислить константу равновесия реакции диссоциации.

Рис.3. Установка для определения упругости диссоциации

карбонатов металлов .

3. ОПРЕДЕЛЕНИЕ КОНСТАНТ РАВНОВЕСИЯ

БЕЗ ПРОВЕДЕНИЯ ЭКСПЕРИМЕНТА

3.1 Вычисление константы равновесия химической реакции по

величине стандартной мольной функции Гиббса реакции

Этот метод вообще не предусматривает эксперимента. Если известны стандартные мольные энтальпия и энтропия реакции при данной температуре, то по соответствующим уравнениям можно вычислить стандартную мольную функцию Гиббса исследуемой реакции при искомой температуре, а через нее величину константы равновесия.

Если значения стандартных мольных энтропии и энтальпии при данной температуре неизвестны, то можно воспользоваться методом Темкина и Шварцмана, то есть по величине стандартных мольных энтальпии и энтропии при температуре 298 К и значениям коэффициентов температурной зависимости мольной теплоемкости реакции, рассчитать стандартную мольную энергию Гиббса реакции при любой температуре.

https://pandia.ru/text/78/005/images/image051_7.gif" width="137" height="25 src=">- справочные коэффициенты, не зависящие от природы реакции и определяемые только значениями температуры .

3.2 Метод комбинирования равновесий

Этот метод используется в практической химической термодинамике. Например, экспериментально при одной и той же температуре были найдены константы равновесия двух реакций

1. СH3OH(г) + CO ⇄ HCOOCH3(г) . (26)

2. H2 + 0,5 HCOOCH3(г) ⇄ CH3OH(г) . (27)

Константу равновесия реакции синтеза метанола

3..gif" width="31" height="32"> и :

. (29)

3.3 Вычисление константы равновесия химической реакции при некоторой температуре по известным значениям констант равновесия этой же реакции при двух других температурах

Этот способ вычисления основан на решении уравнения изобары химической реакции (изобары Вант-Гоффа)

, (30)

где https://pandia.ru/text/78/005/images/image060_3.gif" width="64" height="32">и имеет вид:

. (31)

По этому уравнению, зная константы равновесия при двух разных температурах, можно рассчитать стандартную мольную энтальпию реакции, а, зная ее и константу равновесия при одной температуре, можно рассчитать константу равновесия при любой другой температуре.

4. ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Найти константу равновесия синтеза аммиака y N2 + ” H2 ⇄ NH3 если равновесная мольная доля аммиака равна 0,4 при 1 атм и 600К. Исходная смесь - стехиометрическая, продукта в исходной смеси нет.

Дано: Реакция y N2 + ” H2 ⇄ NH3, 1 атм, 600 К. = 1,5 моль; = 0,5 моль; = 0 моль = 0,4 Найти: - ?

Решение

Из условия задачи нам известно стехиометрическое уравнение, а также то, что в начальный момент времени число молей азота равно стехиометрическому, то есть 0,5 моль (https://pandia.ru/text/78/005/images/image069_3.gif" width="247" height="57 src=">

Запишем реакцию, под символами элементов укажем начальные и равновесные количества молей веществ

y N2 + ” H2 ⇄ NH3

0,5 - 0,5ξ 1,5 – 1,5 ξ ξ

Общее число молей всех участников реакции в системе в момент равновесия

https://pandia.ru/text/78/005/images/image073_4.gif" width="197" height="56 src=">.gif" width="76" height="48 src=">

https://pandia.ru/text/78/005/images/image077_0.gif" width="120" height="47">

= 3,42

Решение прямой задачи химического равновесия – это вычисление равновесного состава системы, в которой протекает данная реакция (несколько реакций). Очевидно, что основой решения является закон химического равновесия. Необходимо лишь выразить все входящие в этот закон переменные через какую-либо одну: например через глубину химической реакции, через степень диссоциации или через какую-либо равновесную мольную долю. Выбирать, какую именно переменную удобно использовать, лучше исходя из конкретных условий задачи.

Задача 2

Константа равновесия газовой реакции синтеза иодистого водорода

H2 + I2 ⇄ 2HI при температуре 600 К и выражении давления в атмосферах, равна Kr = 45,7 . Найти равновесную глубину этой реакции и равновесный выход продукта при данной температуре и давлении 1 атм, если в начальный момент времени количества исходных веществ соответствуют стехиометрическим, а продуктов реакции в начальный момент нет.

Дано Kr = 45,7 . =1 моль; https://pandia.ru/text/78/005/images/image081_1.gif" width="68" height="27 src="> моль. Найти: - ? - ?

Решение

Запишем саму реакцию, а под символами элементов числа молей каждого участника в начальный момент и в момент установившегося равновесия по формуле (4)

1 - ξ 1 - ξ 2ξ

1 - ξ + 1 - ξ +2ξ = 2

Равновесные мольные доли и парциальные давления всех участников реакции, выразим через единую переменную – глубину химической реакции

https://pandia.ru/text/78/005/images/image085_1.gif" width="144" height="47 src=">.

Закон действующих масс или закон химического равновесия

https://pandia.ru/text/78/005/images/image082_1.gif" width="13" height="23 src=">= 0,772.

Задача 3

Условие ее отличается от задачи 2 только тем, что начальные количества молей водорода и иода равны, соответственно 3 и 2 моль. Рассчитать мольный состав равновесной смеси.

Дано : Возможна реакция: H2+I2= 2HI. 600 К, 1 атм. Kr = 45,7 .

3 моль; моль; моль. Найти: - ?.gif" width="32" height="27"> 1 1 0

3 - ξ 2 - ξ 2ξ

Общее число молей всех участников реакции в момент равновесия равно

3 - ξ + 2 - ξ +2ξ = 5

Равновесные мольные доли и парциальные давления всех участников реакции, выраженные через единую переменную – глубину химической реакции

Подстановка парциальных давлений в закон химического равновесия дает:

https://pandia.ru/text/78/005/images/image090_1.gif" width="13" height="21"> и рассчитываем константу равновесия, затем строим график и определяем по нему ту глубину реакции, которая соответствует найденной величине константы равновесия.

= 1,5 = 12

https://pandia.ru/text/78/005/images/image067_4.gif" width="29" height="29 src=">=29,7

https://pandia.ru/text/78/005/images/image067_4.gif" width="29" height="29 src=">= 54

https://pandia.ru/text/78/005/images/image083_1.gif" width="35 height=25" height="25">= 0,712

Для проведения работы нужно выполнить следующие задания

Задание 1

1. Описать способ экспериментального определения упругости двуокиси углерода при изучении реакции диссоциации СaCO3⇄CaO+CO2

(варианты 1 – 15, табл.3);

2. Записать закон химического равновесия для изучаемой реакции; определить значения констант равновесия реакции диссоциации карбоната кальция по экспериментальным данным (табл.3) при разных температурахть задачи из раздела В (согласно указанному варианту)ить задания 1-3, п;

3. Записать определительное выражение для константы равновесия и вычислить теоретически константу равновесия изучаемой реакции при последней указанной в таблице температуре.

Задание 2

1. Подготовить ответ на вопрос 1 (варианты 1-15, табл. 4)

2. Решить задачи 2 и 3.

Справочные данные, необходимые для выполнения работы

Величина для вычисления стандартного мольного изменения энергии Гиббса по методу Темкина и Шварцмана

Таблица 1

Термодинамические данные для расчета стандартной мольной энергии Гиббса

Таблица 2

Экспериментальные данные для выполнения задания 1

Таблица 3

Вариант

Экспериментальные данные

t , o C

p , мм рт ст

p, мм рт ст

p, мм рт ст

p, мм рт ст

p, мм рт ст

p, мм рт ст

p, мм рт ст

p, мм рт ст

p, мм рт ст

p, мм рт ст

p, мм рт ст

p, мм рт ст

p, мм рт ст

p, мм рт ст

p, мм рт ст

Условия задач для выполнения задания 2

Таблица 4

1 вариант

1. Расскажите о химических методах определения величин констант химического равновесия.

2. Имеется смесь газообразных веществ А и В, которые могут вступать в химическую реакцию с образованием продукта реакции С, согласно стехиометрическому уравнению 0,5 А + 2В = С. В начальный момент времени продукта реакции в системе нет, а исходные вещества взяты в стехиометрических количествах. После установления равновесия в равновесной смеси содержится число молей продукта С, равное 0,4, а общее давление равно 2 атм. Найти константу равновесия в p-шкале.

3 . При 1273 К и общем давлении 30 атм в равновесной смеси с предполагаемой реакцией CO2(г) +C (тв) = 2СО (г) содержится 17 % (по объему) CO2. Сколько процентов CO2 будет содержаться в газе при общем давлении 20 атм?. При каком давлении в газе будет содержаться 25 % CO2?

2 вариант

1 . Расскажите о физическом методе определения величины константы химического равновесия по измерению давления.

2. Имеется смесь газообразных веществ А и В, которые могут вступать в химическую реакцию с образованием продукта реакции С, согласно стехиометрическому уравнению 2А + В = С. В начальный момент времени продукта реакции в системе нет, а исходные вещества взяты в стехиометрических количествах. После установления равновесия в равновесной смеси содержится число молей продукта С, равное 0,5, а общее давление равно 2 атм. Найти константу равновесия в p-шкале.

3 . При 2000 оС и общем давлении 1 атм 2% воды диссоциирует на водород и кислород согласно реакции H2O(г)= H2(г) + 0,5 O2(г). Рассчитайте константу равновесия реакции при этих условиях.

3 вариант

1 . Опишите метод определения величины константы равновесия по измерению плотности. К каким методам относится этот метод?

2. Имеется смесь газообразных веществ А и В, которые могут вступать в химическую реакцию с образованием продукта реакции С, согласно стехиометрическому уравнению А + 2В = С. В начальный момент времени продукта реакции в системе нет, а исходные вещества взяты в стехиометрических количествах. После установления равновесия в равновесной смеси содержится число молей продукта С, равное 0,6, а общее давление равно 2 атм. Найти константу равновесия в p-шкале.

3 . Константа равновесия реакции CO(г)+ H2O(г) = H2(г) + CO2(г) при 500 оС равна 5,5 ([p]=1 атм). Смесь, состоящую из 1 моль СО и 5 моль H2O нагрели до этой температуры. Рассчитайте мольную долю воды в равновесной смеси.

4 вариант

1 . Опишите метод определения величины константы равновесия посредством прямого измерения парциального давления.

2. Имеется смесь газообразных веществ А и В, которые могут вступать в химическую реакцию с образованием продукта реакции С, согласно стехиометрическому уравнению 0,5 А + В = С. В начальный момент времени продукта реакции в системе нет, а исходные вещества взяты в стехиометрических количествах. После установления равновесия в равновесной смеси содержится число молей продукта С, равное 0,3, а общее давление равно 1,5 атм. Найти константу равновесия в p-шкале.

3 .Константа равновесия реакции N2O4(г) = 2NO2(г) при 25 о С равна 0,143 ([p]=1 атм). Рассчитайте давление, которое установится в сосуде объемом 1 л, содержащем 1 г N2O4 при этой температуре.

5 вариант

1 . Как можно определить величину константы равновесия реакции, не прибегая к эксперименту.

2. Имеется смесь газообразных веществ А и В, которые могут вступать в химическую реакцию с образованием продукта реакции С, согласно стехиометрическому уравнению 0,5 А + 3В = С. В начальный момент времени продукта реакции в системе нет, а исходные вещества взяты в стехиометрических количествах. После установления равновесия в равновесной смеси содержится число молей продукта С, равное 0,3, а общее давление равно 2 атм. Найти константу равновесия в p-шкале.

3 . Сосуд объемом 3 л, содержащий 1,79·10 -2 моль I2 , нагрели до 973 К. Давление в сосуде при равновесии оказалось равно 0,49 атм. Считая газы идеальными, рассчитайте константу равновесия при 973 К для реакции

I2(г) = 2I (г).

6 вариант

1. Использования уравнения изобары реакции для определения величины константы химического равновесия при неизученной ранее температуре.

2. Имеется смесь газообразных веществ А и В, которые могут вступать в химическую реакцию с образованием продукта реакции С, согласно стехиометрическому уравнению 3А + В = С. В начальный момент времени продукта реакции в системе нет, а исходные вещества взяты в стехиометрических количествах. После установления равновесия в равновесной смеси содержится число молей продукта С, равное 0,4, а общее давление равно 2 атм. Найти константу равновесия в p-шкале.

3 . Для реакции PCl5(г) =РСl3(г) +Сl2(г) при 250 оС стандартное мольное изменение энергии Гиббса = - ­­­2508 Дж/моль. При каком общем давлении степень превращения PCl5 в РСl3 и Сl2 составит при 250 оС 30 %?

7 вариант

1. Система, в которой протекает эндотермическая газофазная реакция реакция A+3B=2C находится в равновесии при 400 К и 5 атм. Если газы идеальные, то, как повлияет на выход продукта добавление инертного газа при постоянном объеме?

2. Имеется смесь газообразных веществ А и В, которые могут вступать в химическую реакцию с образованием продукта реакции С, согласно стехиометрическому уравнению 2А + В = 2С. В начальный момент времени продукта реакции в системе нет, а исходные вещества взяты в стехиометрических количествах. После установления равновесия в равновесной смеси содержится число молей продукта С, равное 0,3, а общее давление равно 2 атм. Найти константу равновесия в p-шкале.

3 . Для реакции 2HI(г) = H2 +I2(г) константа равновесия Kp = 0,0183 ([p]=1 атм) при 698,6 К. Сколько граммов HI образуется при нагревании до этой температуры 10 г I2 и 0,2 г H2 в трехлитровом сосуде? Чему равны парциальные давления H2, I2 и HI?

8 вариант

1. Система, в которой протекает эндотермическая газофазная реакция реакция A+3B=2C находится в равновесии при 400 К и 5 атм. Если газы идеальные, то, как повлияет на выход продукта повышение температуры?

2. Имеется смесь газообразных веществ А и В, которые могут вступать в химическую реакцию с образованием продукта реакции С, согласно стехиометрическому уравнению 0,5А + 2В = 2С. В начальный момент времени продукта реакции в системе нет, а исходные вещества взяты в стехиометрических количествах. После установления равновесия в равновесной смеси содержится число молей продукта С, равное 0,3, а общее давление равно 2 атм. Найти константу равновесия в p-шкале.

3 . Сосуд объемом 1 л, содержащий 0,341 моль PCl5 и 0,233 моль N2 нагрели до 250 оС. Общее давление в сосуде при равновесии оказалось равно 29,33 атм. Считая все газы идеальными, рассчитайте константу равновесия при 250 оС для протекающей в сосуде реакции PCl5(г) =РСl3(г) +Сl2(г).

9 вариант

1 . Система, в которой протекает эндотермическая газофазная реакция реакция A+3B=2C находится в равновесии при 400 К и 5 атм. Если газы идеальные, то, как повлияет на выход продукта повышение давления?

2. Имеется смесь газообразных веществ А и В, которые могут вступать в химическую реакцию с образованием продукта реакции С, согласно стехиометрическому уравнению 0,5А + В = 2С. В начальный момент времени продукта реакции в системе нет, а исходные вещества взяты в стехиометрических количествах. После установления равновесия в равновесной смеси содержится число молей продукта С, равное 0,5, а общее давление равно 2 атм. Найти константу равновесия в p-шкале.

3 . Константа равновесия реакции CO(г) + 2H2 = СH3OH(г) при 500 К равна Kr = 0,00609 ([p]=1 атм). Рассчитайте общее давление, необходимое для получения метанола с 90 % выходом, если CO и H2 взяты в соотношении 1:2.

10 вариант

1. Опишите метод определения констант равновесия путем измерения парциального давления.

2. Имеется смесь газообразных веществ А и В, которые могут вступать в химическую реакцию с образованием продукта реакции С, согласно стехиометрическому уравнению 0,5А + 1,5В = 2С. В начальный момент времени продукта реакции в системе нет, а исходные вещества взяты в стехиометрических количествах. После установления равновесия в равновесной смеси содержится число молей продукта С, равное 0,4, а общее давление равно 2 атм. Найти константу равновесия в p-шкале.

3 . Равновесие в реакции 2NOCl (г)=2NO(г)+Cl2(г) устанавливается при 227 оС и общем давлении 1,0 бар, когда парциальное давление NOCl равно 0,64 бар (изначально присутствовал только NOCl) . Рассчитайте этой реакции при данной температуре.

11 вариант

1 . Опишите химические методы определения констант равновесия.

2. Имеется смесь газообразных веществ А и В, которые могут вступать в химическую реакцию с образованием продукта реакции С, согласно стехиометрическому уравнению 2А + 0,5В = 2С. В начальный момент времени продукта реакции в системе нет, а исходные вещества взяты в стехиометрических количествах. После установления равновесия в равновесной смеси содержится число молей продукта С, равное 0,2, а общее давление равно 2 атм. Найти константу равновесия в p-шкале.

3 . Рассчитайте общее давление, которое необходимо приложить к смеси 3 частей H2 и 1 части N2 , чтобы получить равновесную смесь, содержащую 10 объемных % NH3 при 400 оС.

Константа равновесия для реакции N2(г) + 3 H2(г)= 2NH3(г) при 400 оС

и выражении давления в атм равна 1,6·10-4 .

12 вариант

1 . Система, в которой протекает эндотермическая газофазная реакция реакция A+3B=2C находится в равновесии при 400 К и 5 атм. Если газы идеальные, то, как повлияет на выход продукта понижение давления?

2. Имеется смесь газообразных веществ А и В, которые могут вступать в химическую реакцию с образованием продукта реакции С, согласно стехиометрическому уравнению 2А + В = 0,5С. В начальный момент времени продукта реакции в системе нет, а исходные вещества взяты в стехиометрических количествах. После установления равновесия в равновесной смеси содержится число молей продукта С, равное 0,4, а общее давление равно 2 атм. Найти константу равновесия в p-шкале.

3 . При 250 оС и общем давлении 1 атм PCl5 диссоциирован на 80 % по реакции PCl5(г) =РСl3(г) +Сl2(г). Чему будет равна степень диссоциации PCl5, если в систему добавить азот, чтобы парциальное давлении азота было равным 0,9 атм? Общее давление поддерживается равным 1 атм.

13 вариант

1 . Система, в которой протекает экзотермическая реакция

CO(г) + 2H2 = СH3OH(г) находится в равновесии при 500 К и 10 бар.

Если газы идеальные, то как повлияет на выход метанола понижение давления?

2. Имеется смесь газообразных веществ А и В, которые могут вступать в химическую реакцию с образованием продукта реакции С, согласно стехиометрическому уравнению 1,5А + 3В = 2С. В начальный момент времени продукта реакции в системе нет, а исходные вещества взяты в стехиометрических количествах. После установления равновесия в равновесной смеси содержится число молей продукта С, равное 0,5, а общее давление равно 2 атм. Найти константу равновесия в p-шкале.

3 . Константа равновесия реакции CO(г) + 2H2 = СH3OH(г) при 500 К равна 6,09 ×10 5 ([ р] = 1 атм). Реакционная смесь, состоящая из 1 моль СО,

2 моль H2 и 1 моль инертного газа (азота) нагрета до 500 К и общего давления 100 атм. Рассчитайте состав реакционной смеси.

14 вариант

1 . Опишите метод определения констант равновесия по электрохимическим данным.

2. Имеется смесь газообразных веществ А и В, которые могут вступать в химическую реакцию с образованием продукта реакции С, согласно стехиометрическому уравнению 2А + 0,5В = С. В начальный момент времени продукта реакции в системе нет, а исходные вещества взяты в стехиометрических количествах. После установления равновесия в равновесной смеси содержится число молей продукта С, равное 0,4, а общее давление равно 2 атм. Найти константу равновесия в p-шкале.

3. Для реакции N2(г) + 3 H2(г)= 2NH3(г) при 298 К константа равновесия при выражении давления в атм равна 6,0 ×10 5, а стандартная мольная энтальпия образования аммиака равна = - 46,1 кДж/моль. Найти значение константы равновесия при 500 К.

15 вариант

1 . Система, с экзотермической реакцией CO(г) + 2H2 = СH3OH(г) находится в равновесии при 500 К и 10 бар. Если газы идеальные, то, как повлияет на выход метанола понижение температуры.

2. Имеется смесь газообразных веществ А и В, которые могут вступать в химическую реакцию с образованием продукта реакции С, согласно стехиометрическому уравнению 2А + В = 1,5С. В начальный момент времени продукта реакции в системе нет, а исходные вещества взяты в стехиометрических количествах. После установления равновесия в равновесной смеси содержится число молей продукта С, равное 0,5, а общее давление равно 2 атм. Найти константу равновесия в p-шкале.

3. Константа равновесия реакции N2(г) + 3 H2(г)= 2NH3(г) при 400 оС и выражении давления в атм равна 1,6·10-4 . Какое общее давление необходимо приложить к эквимолярной смеси азота и водорода, чтобы 10 % азота превратилось в аммиак? Газы считать идеальными.

В отчет по лабораторной работе представляется целесообразным включить следующие разделы: введение, часть 1, часть 2, выводы.

1. Во введении можно кратко изложить теоретические сведения по одному из далее перечисленных вопросов: либо о законе действующих масс, истории его открытия и об его авторах; либо об основных понятиях и определительных соотношениях раздела «Химическое равновесие»; либо вывести закон химического равновесия в современной его формулировке; либо рассказать о факторах, влияющих на величину константы равновесия и т. д.

Закончить раздел «Введение» следует изложением целей работы.

В части 1 необходимо

2.1. Привести схему установки для определения упругости диссоциации карбонатов металлов и описать ход опыта.

2.2 . Привести результаты расчета константы равновесия по приведенным опытным данным

2.3. Привести расчет константы равновесия по термодинамическим данным

В части 2 необходимо

3.1 . Привести полный обоснованный ответ на вопрос 1 задания 2.

3.2 . Привести решение задач 2 и 3 задания 2. Условие задач нужно записать в символьном обозначении.

В выводах целесообразно отразить выполнение поставленных в работе целей, а также сравнить величины константы равновесия, вычисленные в 2.2 и 2.3.

Библиографический список

1. Карякин химической термодинамики: Учеб. пособие для вузов. М.: Академия., 20с.

2. Пригожин И., Кондепуди Д. Современная термодинамика. От тепловых двигателей до диссипативных структур. М.: Мир, 20с.

3. , Черепанов по физической химии. Методическое пособие. Екатеринбург: изд-во УрГУ, 2003.

4. Краткий справочник физико-химических величин /Под ред. и. Л.: Химия, 20с.

5. Задачи по физической химии: учебн. пособие для вузов / , и др. М.: Экзамен, 20с.

Компьютерная верстка

Большинство химических реакций обратимы, т.е. протекают одновременно в противоположных направлениях. В тех случаях, когда прямая и обратная реакции идут с одинаковой скоростью, наступает химическое равновесие. Например, в обратимой гомогенной реакции: H 2 (г) + I 2 (г) ↔ 2HI(г) соотношение скоростей прямой и обратной реакций согласно закону действующих масс зависит от соотношения концентраций реагирующих веществ, а именно: скорость прямой реакции: υ 1 = k 1 [Н 2 ]. Скорость обратной реакции: υ 2 = k 2 2 .

Если H 2 и I 2 – исходные вещества, то в первый момент скорость прямой реакции определяется их начальными концентрациями, а скорость обратной реакции равна нулю. По мере израсходования H 2 и I 2 и образования HI скорость прямой реакции уменьшается, а скорость обратной реакции возрастает. Спустя некоторое время обе скорости уравниваются, и в системе устанавливается химическое равновесие, т.е. число образующихся и расходуемых молекул HI в единицу времени становится одинаковым.

Так как при химическом равновесии скорости прямой и обратной реакций равны V 1 = V 2 , то k 1 = k 2 2 .

Поскольку k 1 и k 2 при данной температуре постоянны, то их отношение будет постоянным. Обозначая его через K, получим:

К – называется константой химического равновесия, а приведенное уравнение – законом действующих масс (Гульдберга - Ваале).

В общем случае для реакции вида аА+bB+…↔dD+eE+… константа равновесия равна . Для взаимодействия между газообразными веществами часто пользуются выражением , в котором реагенты представлены равновесными парциальными давлениями p. Для упомянутой реакции .

Состояние равновесия характеризует тот предел, до которого в данных условиях реакция протекает самопроизвольно (∆G<0). Если в системе наступило химическое равновесие, то дальнейшее изменение изобарного потенциала происходить не будет, т.е. ∆G=0.

Соотношение между равновесными концентрациями не зависит от того, какие вещества берутся в качестве исходных (например, H 2 и I 2 или HI), т.е. к состоянию равновесия можно подойти с обеих сторон.

Константа химического равновесия зависит от природы реагентов и от температуры; от давления (если оно слишком высокое) и от концентрации реагентов константа равновесия не зависит.

Влияние на константу равновесия температуры, энтальпийного и энтропийного факторов . Константа равновесия связана с изменением стандартного изобарно-изотермического потенциала химической реакции ∆G o простым уравнением ∆G o =-RT ln K.

Из него видно, что большим отрицательным значениям ∆G o (∆G o <<0) отвечают большие значения К, т.е. в равновесной смеси преобладают продукты взаимодействия. Если же ∆G o характеризуется большими положительными значениями (∆G o >>0), то в равновесной смеси преобладают исходные вещества. Указанное уравнение позволяет по величине ∆G o вычислить К, а затем и равновесные концентрации (парциальные давления) реагентов. Если учесть, что ∆G o =∆Н o -Т∆S o , то после некоторого преобразования получим . Из этого уравнения видно, что константа равновесия очень чувствительна к изменению температуры. Влияние на константу равновесия природы реагентов определяет ее зависимость от энтальпийного и энтропийного факторов.

Принцип Ле Шателье

Состояние химического равновесия сохраняется при данных неизменных условиях любое время. При изменении же условий состояние равновесия нарушается, так как при этом скорости противоположных процессов изменяются в разной степени. Однако спустя некоторое время система снова приходит в состояние равновесия, но уже отвечающее новым изменившимся условиям.

Смещение равновесия в зависимости от изменения условий в общем виде определяется принципом Ле-Шателье (или принципом подвижного равновесия): если на систему, находящуюся в равновесии, оказывать воздействие извне путем изменения какого-либо из условий, определяющих положение равновесия, то оно смещается в направлении того процесса, протекание которого ослабляет эффект произведенного воздействия.

Так, повышение температуры вызывает смещение равновесия в направлении того из процессов, течение которого сопровождается поглощением тепла, а понижение температуры действует в противоположном направлении. Подобно этому повышение давления смещает равновесие в направлении процесса, сопровождающегося уменьшением объема, а понижение давления действует в противоположную сторону. Например, в равновесной системе 3Н 2 +N 2 2H 3 N, ∆H o = -46,2 кДж повышение температуры усиливает разложение H 3 N на водород и азот, так как этот процесс эндотермический. Повышение давления смещает равновесие в сторону образования H 3 N, ибо при этом уменьшается объем.

Если в систему, находящуюся в состоянии равновесия, добавить некоторое количество какого-либо из веществ, участвующих в реакции (или наоборот, удалить из системы), то скорости прямой и обратной реакций изменяются, но постепенно снова уравниваются. Иными словами, система снова приходит к состоянию химического равновесия. В этом новом состоянии равновесные концентрации всех веществ, присутствующих в системе, будут отличаться от первоначальных равновесных концентраций, но соотношение между ними останется прежним. Таким образом, в системе, находящейся в состоянии равновесия, нельзя изменить концентрацию одного из веществ, не вызвав изменения концентраций всех остальных.

В соответствии с принципом Ле Шателье введение в равновесную систему дополнительных количеств какого-либо реагента вызывает сдвиг равновесия в том направлении, при котором концентрация этого вещества уменьшается и соответственно увеличивается концентрация продуктов его взаимодействия.

Изучение химического равновесия имеет большое значение как для теоретических исследований, так и для решения практических задач. Определяя положение равновесия для различных температур и давлений, можно выбрать наиболее благоприятные условия проведения химического процесса. При окончательном выборе условий проведения процесса учитывают также их влияние на скорость процесса.

Пример 1. Вычисление константы равновесия реакции по равновесным концентрациям реагирующих веществ.

Вычислите константу равновесия реакции А+В 2С, если равновесные концентрации [А]=0,3моль∙л -1 ; [В]=1,1моль∙л -1 ; [С]=2,1моль∙л -1 .

Решение. Выражение константы равновесия для данной реакции имеет вид: . Подставим сюда указанные в условии задачи равновесные концентрации: =5,79.

Пример 2 . Вычисление равновесных концентраций реагирующих веществ. Реакция протекает по уравнению А+2В С.

Определите равновесные концентрации реагирующих веществ, если исходные концентрации веществ А и В соответственно равны 0,5 и 0,7 моль∙л -1 , а константа равновесия реакции К р =50.

Решение. На каждый моль веществ А и В образуется 2 моль вещества С. Если понижение концентрации веществ А и В обозначить через Х моль, то увеличение концентрации вещества будет равно 2Х моль. Равновесные концентрации реагирующих веществ будут:

С А =(о,5-х)моль∙л -1 ; С В =(0,7-х)моль∙л -1 ; С С =2х моль∙л -1

х 1 =0,86; х 2 =0,44

По условию задачи справедливо значение х 2 . Отсюда равновесные концентрации реагирующих веществ равны:

С А =0,5-0,44=0,06моль∙л -1 ; С В =0,7-0,44=0,26моль∙л -1 ; С С =0,44∙2=0,88моль∙л -1 .

Пример 3. Определение изменения энергии Гиббса ∆G o реакции по значению константы равновесия К р. Рассчитайте энергию Гиббса и определите возможность протекания реакции СО+Cl 2 =COCl 2 при 700К, если константа равновесия равна Кр=1,0685∙10 -4 . Парциальное давление всех реагирующих веществ одинаково и равно 101325Па.

Решение. ∆G 700 =2,303∙RT .

Для данного процесса:

Так как ∆Gо<0, то реакция СО+Cl 2 COCl 2 при 700К возможна.

Пример 4 . Смещение химического равновесия. В каком направлении сместится равновесие в системе N 2 +3H 2 2NH 3 -22ккал:

а) при увеличении концентрации N 2 ;

б) при увеличении концентрации Н 2 ;

в) при повышении температуры;

г)при уменьшении давления?

Решение. Увеличение концентрации веществ, стоящих в левой части уравнения реакции, по правилу Ле-Шателье должно вызвать процесс, стремящийся ослабить оказанное воздействие, привести к уменьшению концентраций, т.е. равновесие сместится вправо (случаи а и б).

Реакция синтеза аммиака – экзотермическая. Повышение температуры вызывает смещение равновесия влево – в сторону эндотермической реакции, ослабляющей оказанное воздействие (случай в).

Уменьшение давления (случай г) будет благоприятствовать реакции, ведущей к увеличению объема системы, т.е. в сторону образования N 2 и Н 2 .

Пример 5. Во сколько раз изменится скорость прямой и обратной реакции в системе 2SO 2 (г) + О 2 (г) 2SO 3 (r) если объем газовой смеси уменьшится в три раза? В какую сторону сместится равновесие системы?

Решение. Обозначим концентрации реагирующих веществ: =а, =b, =с. Согласно закону действующих масс, скорости прямой и обратной реакций до изменения объема равны

v пр = Ка 2 b, v обр = К 1 с 2

После уменьшения объема гомогенной системы в три раза концентрация каждого из реагирующих веществ увеличится в три раза: = 3а, [О 2 ] = 3b; = 3с. При новых концентрациях скорости v" np прямой и обратной реакций:

v" np = K(3a) 2 (3b) = 27 Ka 2 b; v o 6 p = K 1 (3c) 2 = 9K 1 c 2 .

;

Следовательно, скорость прямой реакции увеличилась в 27 раз, а обратной - только в девять раз. Равновесие системы сместилось в сторону образования SO 3 .

Пример 6. Вычислите, во сколько раз увеличится скорость реакции, протекающей в газовой фазе, при повышении температуры от 30 до 70 0 С, если температурный коэффициент реакции равен 2.

Решение. Зависимость скорости химической реакции от температуры определяется эмпирическим правилом Вант-Гоффа по формуле

Следовательно, скорость реакции при 70°С большескорости реакции при 30° С в 16 раз.

Пример 7. Константа равновесия гомогенной системы

СО(г) + Н 2 О(г) СО 2 (г) + Н 2 (г) при 850°С равна 1. Вычислите концентрации всех веществ при равновесии, если исходные концентрации: [СО] ИСХ = 3 моль/л, [Н 2 О] ИСХ = 2 моль/л.

Решение. При равновесии скорости прямой и обратной реакций равны, а отношение констант этих скоростей постоянно и называется константой равновесия данной системы:

V np = К 1 [СО][Н 2 О]; V o б p = К 2 [СО 2 ][Н 2 ];

В условии задачи даны исходные концентрации, тогда как в выражение К р входят только равновесные концентрации всех веществ системы. Предположим, что к моменту равновесия концентрация [СО 2 ] Р = х моль/л. Согласно уравнению системы число молей образовавшегося водорода при этом будет также х моль/л. По столько же молей моль/л) СО и Н 2 О расходуется для образования по х молей СО 2 и Н 2 . Следовательно, равновесные концентрации всех четырех веществ (моль/л):

[СО 2 ] Р = [Н 2 ] р = х; [СО] Р = (3 –х); P =(2-х).

Зная константу равновесия, находим значение х, а затем исходные концентрации всех веществ:

; х 2 =6-2х-3х + х 2 ; 5х = 6, л = 1,2 моль/л.

Константа химического равновесия

Большинство химических реакций обратимы, т.е. протекают одновременно в противоположных направлениях. В тех случаях, когда прямая и обратная реакции идут с одинаковой скоростью, наступает химическое равновесие. Например, в обратимой гомогенной реакции: H 2 (г) + I 2 (г) ↔ 2HI(г) соотношение скоростей прямой и обратной реакций согласно закону действующих масс зависит от соотношения концентраций реагирующих веществ, а именно: скорость прямой реакции: υ 1 = k 1 [Н 2 ]. Скорость обратной реакции: υ 2 = k 2 2 .

Если H 2 и I 2 – исходные вещества, то в первый момент скорость прямой реакции определяется их начальными концентрациями, а скорость обратной реакции равна нулю. По мере израсходования H 2 и I 2 и образования HI скорость прямой реакции уменьшается, а скорость обратной реакции возрастает. Спустя некоторое время обе скорости уравниваются, и в системе устанавливается химическое равновесие, т.е. число образующихся и расходуемых молекул HI в единицу времени становится одинаковым.

Так как при химическом равновесии скорости прямой и обратной реакций равны V 1 = V 2 , то k 1 = k 2 2 .

Поскольку k 1 и k 2 при данной температуре постоянны, то их отношение будет постоянным. Обозначая его через K, получим:

К – называется константой химического равновесия, а приведенное уравнение – законом действующих масс (Гульдберга - Ваале).

В общем случае для реакции вида аА+bB+…↔dD+eE+… константа равновесия равна . Для взаимодействия между газообразными веществами часто пользуются выражением , в котором реагенты представлены равновесными парциальными давлениями p. Для упомянутой реакции .

Состояние равновесия характеризует тот предел, до которого в данных условиях реакция протекает самопроизвольно (∆G<0). Если в системе наступило химическое равновесие, то дальнейшее изменение изобарного потенциала происходить не будет, т.е. ∆G=0.

Соотношение между равновесными концентрациями не зависит от того, какие вещества берутся в качестве исходных (например, H 2 и I 2 или HI), т.е. к состоянию равновесия можно подойти с обеих сторон.

Константа химического равновесия зависит от природы реагентов и от температуры; от давления (если оно слишком высокое) и от концентрации реагентов константа равновесия не зависит.

Влияние на константу равновесия температуры, энтальпийного и энтропийного факторов . Константа равновесия связана с изменением стандартного изобарно-изотермического потенциала химической реакции ∆G o простым уравнением ∆G o =-RT ln K.

Из него видно, что большим отрицательным значениям ∆G o (∆G o <<0) отвечают большие значения К, т.е. в равновесной смеси преобладают продукты взаимодействия. Если же ∆G o характеризуется большими положительными значениями (∆G o >>0), то в равновесной смеси преобладают исходные вещества. Указанное уравнение позволяет по величине ∆G o вычислить К, а затем и равновесные концентрации (парциальные давления) реагентов. Если учесть, что ∆G o =∆Н o -Т∆S o , то после некоторого преобразования получим . Из этого уравнения видно, что константа равновесия очень чувствительна к изменению температуры. Влияние на константу равновесия природы реагентов определяет ее зависимость от энтальпийного и энтропийного факторов.

Константа химического равновесия

Все химические реакции можно разделить на 2 группы: реакции необратимые, т.е. протекающие до полного израсходования одного из реагирующих веществ, и реакции обратимые, в которых ни одно из реагирующих веществ не расходуется полностью. Это связано с тем, что необратимая реакция протекает только в одном направлении. Обратимая же реакция может протекать как в прямом, так и в обратном направлении. Например, реакция

Zn + H 2 SO 4 ® ZnSO 4 + H 2 ­

протекает до полного исчезновения либо серной кислоты, либо цинка и не протекает в обратном направлении: металлический цинк и серную кислоту невозможно получить, пропуская водород в водный раствор сульфата цинка. Следовательно, эта реакция необратимая.

Классическим примером обратимой реакции может служить реакция синтеза аммиака из азота и водорода: N 2 + 3 H 2 ⇆ 2 NH 3 .

Если при высокой температуре смешать 1 моль азота и 3 моль водорода, то даже после достаточно длительного промежутка времени протекания реакции в реакторе будут присутствовать не только продукт реакции (NH 3), но и непрореагировавшие исходные вещества (N 2 и H 2). Если в реактор при тех же условиях ввести не смесь азота и водорода, а чистый аммиак, то через некоторое время окажется, что часть аммиака разложилась на азот и водород, т.е. реакция протекает в обратном направлении.

Для понимания природы химического равновесия необходимо рассмотреть вопрос о скоростях прямой и обратной реакций. Под скоростью химической реакции понимают изменение концентрации исходного вещества или продукта реакции за единицу времени. При изучении вопросов химического равновесия концентрации веществ выражают в моль/л; эти концентрации показывают, сколько моль данного реагирующего вещества содержится в 1 литре сосуда. Например, утверждение «концентрация аммиака равна 3 моль/л» означает, что в каждом литре рассматриваемого объёма содержится 3 моль аммиака.

Химические реакции осуществляются в результате столкновений между молекулами, поэтому, чем больше молекул находится в единице объёма, тем чаще происходят столкновения между ними, и тем больше скорость реакции. Таким образом, чем больше концентрации реагирующих веществ, тем больше скорость реакции.

Концентрации исходных веществ в системе (системой называется совокупность реагирующих веществ) максимальны в момент начала реакции (в момент времени t = 0). В этот же момент начала реакции в системе ещё отсутствуют продукты реакции, следовательно, скорость обратной реакции равна нулю. По мере взаимодействия исходных веществ друг с другом, их концентрации умень шаются, следовательно, уменьшается и скорость прямой реакции. Концентрация же продукта реакции постепенно возрастает, следовательно, возрастает и скорость обратной реакции. Через некоторое время скорость прямой реакции становится равна скорости обратной. Это состояние системы называется состоянием химического равновесия (рис. 5.1). Рис. 5.1 – Изменение скоростей прямой и обратной реакций во времени. В состоянии химического

равновесия в системе не наблюда-

ется никаких видимых изменений.

Так, например, концентрации всех веществ могут сколь угодно долго оставаться неизменными, если на систему не оказывать внешнего воздействия. Это постоянство концентраций в системе, находящейся в состоянии химического равновесия, совсем не означает отсутствия взаимодействия и объясняется тем, что прямая и обратная реакции протекают с одинаковой скоростью. Такое состояние также называют истинным химическим равновесием. Таким образом, истинное химическое равновесие является динамическим равновесием.

От истинного равновесия следует отличать равновесие ложное. Постоянство параметров системы (концентраций веществ, давления, температуры) является необходимым, но недостаточным признаком истинного химического равновесия. Это можно пояснить следующим примером. Взаимодействие азота и водорода с образованием аммиака, как и разложение аммиака, протекает с заметной скоростью при высокой температуре (около 500 °С). Если при комнатной температуре смешивать в любых соотношениях водород, азот и аммиак, то реакция N 2 + 3 H 2 ⇆ 2 NH 3

протекать не будет, и все параметры системы будут сохранять постоянное значение. Однако в данном случае равновесие является ложным, а не истинным, т.к. оно не является динамическим; в системе отсутствует химическое взаимодействие: скорость как прямой, так и обратной реакции равна нулю.

При дальнейшем изложении материала термин «химическое равновесие» будет использоваться применительно к истинному химическому равновесию.

Количественной характеристикой системы в состоянии химического равновесия является константа равновесия K .

Для общего случая обратимой реакции a A + b B + ... ⇆ p P + q Q + ...

Константа равновесия выражается следующей формулой:

В формуле 5.1 С(А), С(B), С(P) С(Q) – равновесные концентрации (моль/л) всех веществ-участников реакции, т.е. концентрации, которые устанавливаются в системе в момент химического равновесия; a, b, p, q – стехиометрические коэффициенты в уравнении реакции.

Выражение константы равновесия для реакции синтеза аммиака N 2 +3H 2 ⇆2NH 3 имеет следующий вид: . (5.2)

Таким образом, численная величина константы химического равновесия равна отношению произведения равновесных концентраций продуктов реакции к произведению равновесных концентраций исходных веществ, причём концентрация каждого вещества должна быть возведена в степень, равную стехиометрическому коэффициенту в уравнении реакции.

Важно понимать, что константа равновесия выражается через равновесные концентрации, но не зависит от них ; напротив, соотношение равновесных концентраций участвующих в реакции веществ будет таким, чтобы соответствовать константе равновесия. Константа равновесия зависит от природы реагирующих веществ и температуры и представляет собой постоянную (при постоянной температуре) величину .

Если K >> 1, то числитель дроби выражения константы равновесия во много раз превышает знаменатель, следовательно, в момент равновесия в системе преобладают продукты реакции, т.е. реакция в значительной мере протекает в прямом направлении.

Если K << 1, то знаменатель во много раз превышает числитель, следовательно, в момент равновесия в системе преобладают исходные вещества, т.е. реакция лишь в незначительной степени протекает в прямом направлении.

Если К ≈ 1, то равновесные концентрации исходных веществ и продуктов реакции сопоставимы; реакция в заметной степени протекает как в прямом, так и в обратном направлении.

Следует иметь в виду, что в выражение константы равновесия входят концентрации только тех веществ, которые находятся в газовой фазе или в растворённом состоянии (если реакция протекает в растворе). Если в реакции участвует твёрдое вещество, то взаимодействие происходит на его поверхности, поэтому концентрация твёрдого вещества принимается постоянной и не записывается в выражение константы равновесия.

CO 2 (газ) + C (тв.) ⇆ 2 CO (газ)

CaCO 3 (тв.) ⇆ CaO (тв.) + CO 2 (газ) K = C(CO 2)

Ca 3 (PO 4) 2 (тв.) ⇆ 3Ca 2+ (раствор) + 2PO 4 3– (раствор) K = C 3 (Ca 2+)·C 2 (PO 4 3–)



Понравилась статья? Поделитесь ей
Наверх