Клонирование невозможно. Клонирование животных. Чем клонированная копия отличается от оригинала? Они как близнецы или не совсем

Создание животных и растений с заданными качествами всегда было чрезвычайно заманчивым потому, что это означало создать организмы устойчивые к болезням, климатическим условиям, дающие достаточный приплод, необходимое количество мяса, молока, плодов, овощей и прочих продуктов. Однако клонирование целых высокоорганизованных организмов - процесс гораздо более сложный. Животные клетки, в отличие от растений не обладают тотипотентностью, поэтому вырастить целый организм из нескольких соматических клеток невозможно. Для клонирования животных приходится использовать процедуру переноса ядер:

1) из яйцеклетки микропипеткой удаляют собственное ядро и на его место помещают ядро соматической клетки;

2) затем индуцируют деление получившейся «зиготы» вне организма, либо в организме промежуточного (первого) реципиента (в перевязанном яйцеводе овцы);

3) полученный эмбрион на стадии бластоцисты помещают в матку суррогатной матери (окончательного, второго реципиента), где их развитие происходит до рождения детеныша.

Первый опыт клонирования земноводных датируется 1952. Впоследствии удалось клонировать также мышей, кроликов, овец, свиней, коров и обезьян. Одним из первых успех сопутствовал советским ученым Пущинского НЦ - в 1987г. появилось первое клонированное животное – мышь. Для этого из яйцеклетки мыши удаляли ядро, а затем вводили в яйцеклетку ядро из эмбриональной мышиной клетки. Т. е. был использован генетический материал соматической, но недифференцированной (неспециализированной) эмбриональной клетки .

В начале же 1990-х годов исследования ученых обратились и к крупным млекопитающим. В 1996 г. группой Вильмута было первое млекопитающее, полученное из ядра взрослой соматической клетки - овца по кличке Долли. Она прожила шесть с половиной лет и оставила после себя 6 ягнят, что вполне может говорить об успехе этого эксперимента. В дальнейшем были проведены успешные эксперименты по клонированию различных млекопитающих (козы, свиньи, коровы, бычков) с использованием ядер, взятых из взрослых соматических клеток животных, а также взятых у мёртвых, замороженных на несколько лет животных.

Надо сказать, что эксперименты, в которых использовали клетки эмбриона, изолированные на ранних стадиях развития до начала их дифференцировки, были более успешными. Дело в том, что по мере роста и развития животного соответствующие его гены "включаются" и "выключаются" в строго определенное время, что обеспечивает гармоничное формирование и функционирование всех частей сложного организма. У взрослой особи гены, регулирующие процессы в специализированных (дифференцированных) клетках, должны работать без сбоев, выполняя характерную именно для этой части тела программу: малейшие нарушения могут привести к болезни и даже гибели особи. Таким образом, клонирование животных из их взрослых клеток путем перепрограммирования последних на нормальное эмбриональное развитие представляет собой хотя и выполнимую, но крайне сложную задачу, которую многие специалисты считали неразрешимой.

Процедура переноса ядер часто сопровождается повреждением внутриклеточных структур, что приводит к гибели большинства зародышей: выход потомства не превышает 10-15 % от количества полученных «зигот». Кроме того, из-за отсутствия среди исследователей однозначного мнения о влиянии переноса ядер на здоровье и продолжительность жизни животных, в настоящее время действует мораторий на эксперименты по клонированию человека. В некоторых странах (США, Великобритания) на законодательном уровне разрешено терапевтическое клонирование человека, когда развитие человеческого эмбриона останавливается в срок не позднее 14 дней, после чего эмбрион используется для получения стволовых клеток. Однако законодатели многих стран опасаются, что легализация даже терапевтического клонирования может привести к его переходу в репродуктивное.

Сама идея клонирования Homo sapiens ставит перед человечеством ряд нерешенных проблем:

·технологические : невозможность достичь стопроцентной чистоты опыта (полного повторения) обуславливает некоторую не идентичность клонов, по этой причине снижается практическая ценность клонирования. Точное воспроизведение организма, даже при естественном клонировании, невозможно, поскольку при клонировании копируется генотип, а не фенотип. Кроме того, даже при развитии в одинаковых условиях клонированные организмы не будут полностью идентичными, так как существуют случайные отклонения в развитии. Это доказывает пример естественных клонов человека - монозиготных близнецов, которые обычно развиваются в весьма сходных условиях. Родители и друзья могут различать их по расположению родинок, небольшим различиям в чертах лица, голосу и другим признакам. Они не имеют идентичного ветвления кровеносных сосудов, также далеко не полностью идентичны их папиллярные линии. Хотя конкордантность многих признаков (в том числе связанных с интеллектом и чертами характера) у монозиготных близнецов обычно гораздо выше, чем у дизиготных, она далеко не всегда стопроцентная. Клонированный организм будет отличаться от материнского за счет:

Соматических мутаций,

Влияния окружающей среды на фенотип

Случайных отклонений, возникающих в ходе онтогенеза.

Из экспериментов с клеточными культурами известно, что у всех позвоночных животных число циклов деления клеток ограничено. Это значит, что если взять клетку взрослого человека, уже прошедшую какую-то часть циклов размножения, то эта клетка и донор закончат свою жизнь ровно с той же скоростью.

· социально-этические : возможные неудачи приведут к созданию неполноценных людей. Как поступать с ними? Имеет ли человек право уничтожать неполноценный клон и как это расценивать (как убийство?). При терапевтическом клонировании проблемой является создание человека лишь для немедленного умерщвления, так же практически неизбежное при современных методиках, например при ЭКО, создание сразу нескольких идентичных клонов, которые практически всегда уничтожаются. Использование клонирования для получения отдельных органов с целью пересадки, предполагает необходимость вырастить весь организм, а не его часть, т.к. в организме существует динамика сложнейших взаимосвязей, индукционных процессов.

· этико-религиозные : клонирование - создание жизни искусственным, противоестественным способом. Проблема в возможности потери уникальности личности.

· социально -правовые : вопросы отцовства, материнства, наследования, брака и др.

· биологические : долгосрочная непредсказуемость генетических изменений. Нет необходимой информации о последствиях для человечества.

Генная терапия

Генная терапия (генотерапия) – это лечение наследственных болезней путем введения пациенту здоровых генов, помимо или вместо дефектных. При этом "маневрированиие" с генетической информацией в живом организме человека требует решения множества сложных технических задач:

Ввести чужеродный ген в клетку и добиться его встраивания в подходящий участок хромосомы

Добиться последующей экспрессии("включения") нормального гена путем введения химических стимуляторов

- «выключить» дефектный ген или вызвать его обратную мутацию

Этиологическое лечение какого-либо наследственного заболевания предполагает изменение структуры ДНК не в одной клетке, а во всех функционирующих клетках (и не только функционирующих).

Сложности этой задачи очевидны, хотя методы для их решения уже имеются в настоящее время.

Первая успешная попытка применения генотерапии в клинической практике была предпринята в 1990 г. в США: ребенку, страдающему тяжелым комбинированным иммунодефицитом, вместо дефектного гена, аденозиндезаминазы ввели его неповрежденную копию. К сожалению, полного излечения достичь не удалось, т.к. требовались повторные введения того же гена в новые клоны лимфоцитов. Сегодня на различных стадиях разработки находится более двухсот различных проектов генной терапии, направленных на лечение моногенные заболеваний (фенилкетонурии, гемофилии, талассемии, муковисцидоза, лизосомных болезней накопления и других).

В лечение генами существуют несколько подходов и технологий . Гены можно вводить в половые клетки, в клетки эмбриона на ранних стадиях развития, либо в соматические клетки.

При работе с половыми и эмбриональными клетками предполагается, что «здоровый» ген попадет во все клетки реципиента. Тем самым происходит исправление его собственного генотипа, и, что важно, создадутся условия для оздоровления генофонда будущих поколений. Однако в настоящее время подобные исследования находятся под запретом по этическим причинам.

Генотерапия соматических клеток получила большее развитие, она затрагивает только организм самого пациента. Генетическая модификация может производиться:

· in vivo - непосредственно в организме больного. В этом случае предусмотрено прямое введение последовательностей ДНК в ткани больного, что сопряжено с техническими трудностями по целенаправленной доставке ДНК к определенным типам клеток. Пока заметные успехи достигнуты только в разработке аэрозольных вакцин для лечения легочных заболеваний.

· ex vivo – вне организма больного, что предполагает выделение и культивирование специфических типов клеток пациента, введение в них чужеродных генов, отбор трансформированных клеток и их возвращение в организм больного.

Все перечисленные методы используются для так называемой заместительной терапии - когда дефектный ген в геноме сохраняется, а внесенная копия заменяет его по функциям. Вероятно, в будущем станет возможно проведение корректирующей терапии , направленной на исправление дефектов «больного» гена.

Введение.

Проблема клонирования животных приобрела в последнее время не только научное, но и социальное звучание, поэтому оно широко освещается в СМИ, зачастую некомпетентными людьми и с непониманием сути проблемы. В связи с этим возникает необходимость осветить положение дела.

Термин клон происходит от греческого слова «klon», что означает веточка, побег, отпрыск. Клонированию можно давать много определений, вот некоторые самые распространенные из них, клонирование – популяция клеток или организмов произошедших от общего предка путём бесполого размножения, причём потомок при этом генетически идентичен своему предку.

Воспроизводство организмов полностью повторяющих особь, возможно только в том случае, если генетическая информация матери будет без каких-либо изменений передана дочерям. Но при естественном половом размножении этому препятствует мейоз. В ходе этого незрелая яйцеклетка, имеющая двойной, или диплоидный набор хромосом – носителей наследственной информации – делиться дважды и в результате образуются четыре гаплоидных, с одинарным набором хромосом, клетки. Три из них дегенерируют, а четвёртая с большим запасом питательных веществ, становится яйцеклеткой. У многих животных она в силу гаплоидности не может развиваться в новый организм. Для этого необходимо оплодотворение. Организм, развившийся из оплодотворенной яйцеклетки, приобретает признаки, которые определяются взаимодействием материнской и отцовской наследственности. Следовательно, при половом размножении мать не может быть повторена в потомстве.

Как же вопреки этой строгой закономерности заставить клетку развиваться только с материнским диплоидным набором хромосом? Теоретически решение этой трудной биологической проблемы найдено.

Растения.

Клонирование, прежде всего, изначально относится к вегетативному размножению. Клонирование растений черенками, почками или клубнями известно уже более 4 тысяч лет. Начиная с 70-х гг. нашего столетия для клонирования растений стали широко использовать небольшие группы и даже соматические (неполовые) клетки.

Дело в том, что у растений в отличие от животных по мере их роста, в ходе клеточной специализации – дифференцировки – клетки не теряют так называемые тотипотентные свойства, то есть, не теряют своей способности реализовывать всю генетическую информацию, заложенную в ядре. Поэтому практически любая растительная клетка, сохранившее в процессе дифференцировки своё ядро, может дать начало новому оргазму. Эта особенность растительных клеток лежит в основе многих методов генетики и селекции.

При вегетативном размножении и при клонировании гены не распределяются по потокам, как в случае полового размножения, а сохраняются в полном составе в течение многих поколений.. Всё организмы, входящие в состав определённого клона имеют одинаковый набор генов и фенотипически не различаются между собой.

Клетки животных, дифференцируясь, лишаются тотипотенстности, и в этом, одно из существенных отличий от клеток растений. Как будет показано ниже именно здесь главное препятствие для клонирования взрослых позвоночных животных.

Клонирование шелкопряда.

В изобретение клонирования животных, несомненно, надо отдать должное русским учёным. Сто лет тому назад русский зоолог московского университета А.А. Тихомиров впервые открыл, что яички тутового шелкопряда в результате различных химических и физических воздействий начинают развиваться без оплодотворения.

Однако это развитие, названное партеногенезом, рано останавливалось: партеногенетические эмбрионы погибли ещё до вылупления личинок из яиц. Но это уже была прелюдия к клонированию животных.

БЛ.Л. Астауров в 30-е гг. в результате длительных исследований, получивших мировую известность, подобрал термическое воздействие, которое одновременно активизировало неоплодотворённое яйцо к развитию и блокировало стадию мейоза, то есть превращение диплоидного ядра яйцеклетки в гаплоидное. Развитие с ядром, оставшимся диплоидным, заканчивалось вылуплением личинок, точно повторяющих генотип матери, включая и пол. Так, в результате амейотического партеногенеза были получены первые генетические копии, идентичные матери.

Количество вылупившихся партеногенетических гусениц находилось в зависимости от жизнеспособности матери.

Поэтому у «чистых» пород былупление гусениц не превышало 1%, в то время как у значительно более жизнеспособных межрасовых гибридов оно достигло 40-50%. Несмотря на огромный успех, автор этого метода пережил горькое разочарование: партеногенетическое потомство характеризовалось пониженной жизнеспособностью на эмбриональных и постэмбриональных стадиях развития (гусеницы, куколки, бабочки). Гусеницы развивались неравномерно, среди них было много уродливых, а завитые ими коконы различались по массе. Позже Астауров улучшил метод, применив гибридизацию между селекционными линиями. Так он смог повысить жизнеспособность у новых клонов до нормы, но довести до этого уровня другие количественные признаки ему не удалось: например масса партеногенетических коконов не превышала 82% от массы нормальных коконов такого же генотипа.

Позднее установили причины партеногенетической депрессии и сложными методами, которые позволили накапливать «гены партеногенеза», вывели новые высоко жизнестойкие клоны самок, а позднее и партеногенетических самцов. Скрещивая таких самцов со своими «матерями» или склонными к партеногенезу самками других клонов, получили потомство с ещё большей склонностью к партеногенезу. От лучших в этом отношении самок закладывали новые клоны.

В результате многолетнего отбора удалось накопить в генотипе селекционируемых клонов невиданно большое число генов, обуславливающих высокую склонность к партеногенезу. Вылупление гусениц достигло 90%, а их жизнеспособность повысилась до 95-100%, опередив в этом отношении обычные породы и гибриды. В дальнейшем «скрестили» с помощью партеногенетических самцов два генетически резко отличающихся клона разных рас и от лучших гибридных самок вывели сверхжизнеспособные клоны.

Наконец, научились клонировать самцов тутового шелкопряда. Это стало возможным после того, как удалось получить самцов, у которых все парные гены были идентичными, или гомозиготными. Вначале таких самцов клонировали особым мужским партеногенезом (андрогенезом). Для этого воздействием гамма-лучей и высокой температуры лишали ядро яйца способности к оплодотворению. Ядро проникшего в такое яйцо сперматозоида, не встретив дееспособного женского ядра, само, удваиваясь, приступало к развитию мужского зародыша, который естественно повторял генотип отца. Таким способом ведутся мужские клоны в десятках поколениях. Позже один из таких клонов был преобразован в обоеполовую линию, также состоящих из генетически идентичных (за исключением половых хромосом) теперь уже самок и самцов. Поскольку положивший начало этой линии полностью гомозиготный отец возник в результате размножения, приравненного к самооплодотворению, то сам он и линия двойников обоего пола имеют пониженную жизнеспособность. Скрещивая между собой две такие линии, стали без труда получать гибридных и высоко жизнеспособных двойников в неограниченном количестве.

Итоги клонирования шелкопряда: полученные клоны самок и самцов тутового шелкопряда для практического шелководства непригодны, но это не крах всех надежд. Целесообразно использовать клоны не для непостредственноо применения в шелководческой практике, а на племя для выдающегося по продуктивности потомства. Примерная схема использования клонов в промышленном производстве выглядит следующим образом. Из большого количества коконов выбирают те, из которых развиваются выдающиеся по продуктивности самки, и от каждой получают партеногенетическое потомство, для дальнейшей работы используют партеногенетических клоны, которые повторяют высокую продуктивность матери и проявляют высокую склонность к партеногенезу. За этим следует скрещивание с определёнными клонированными самцами и из полученного гибридного поколения выбирают два производства, только те клоны, которые дали прекрасное во всех отношениях потомство. Его высокие качества обусловлены не только предшествующей селекцией, а ещё и тем, что в процессе отбора особей на высокую склонность к партеногенезу в их генотипе образуется комплекс генов жизнеспособности, компенсирующей вредное влияние искусственного размножения. При переводе клонов на половое размножение этот комплекс, оказавшись несбалансированным, сильно повышает гетерозис.

Первые опыты на амфибиях

Возможность клонирования эмбрионов позвоночных впервые была показана в конце 40-х начале 50-х гг. в опытах на амфибиях, когда российский эмбриолог Георгий Викторович Лопашов разработал метод пересадки (трансплантации) ядер в яйцеклетку лягушки. В июне 1948 года он отправил в «Журнал общей биологии» статью, написанную по материалам собственных экспериментов. Однако на беду Лопашова в августе 1948 года состоялась печально известная сессия ВАСХНИЛ, утвердившая по воле коммунистических вождей беспредельное господство в биологии малограмотного агронома Т.Д. Лысенко, и набор статьи Лопашова, принятой к печати, был рассыпан, потому что она доказывала ведущую роль ядра и содержащихся в нём хромосом в индивидуальном развитии организмов. Работу Лопашова забыли, а в 50-х гг. американские эмбриологи Бриггс и Кинг выполнили сходные опыты, и приоритет достался им, как это часто случалось в истории российской науки.

Бриггс и Кинг разработали микрохирургический метод пересадки ядер эмбриональных клеток с помощью тонкой стеклянной пипетки в лишённые ядра клетки (энуклеированные клетки).

Они установили, что если брать ядра из клеток зародыша на ранней стадии его развития – бластуле (бластула – стадия в развитии зародыша, представляющая собой полный шар из одного слоя клеток), то примерно в 80% случаях зародыши благополучно развиваются дальше и превращаются в нормального головастика. Если же развитие зародышей продвинулось на следующую стадию – гастулу, то лишь менее чем в 20% случаев оперированные клетки развивались нормально. Эти результаты позже были подтверждены в других работах.

С момента изобретения термина «клон» в 1963 году генная инженерия пережила несколько колоссальных скачков: мы научились извлекать гены, разработали метод полимеразной цепной реакции, расшифровали геном человека и клонировали ряд млекопитающих. И все же, на человеке эволюция клонирования остановилась. С какими этическими, религиозными и технологическими проблемами она столкнулась? Т&P изучили историю создания генетических копий, чтобы понять, почему мы до сих пор не клонировали себя.

Слово «клонирование» (англ. «cloning») происходит от древнегреческого слова «κλών» - «веточка, отпрыск». Этот термин описывает целый ряд разнообразных процессов, которые позволяют создать генетическую копию биологического организма или его части. Внешний вид такой копии может отличаться от оригинала, однако с точки зрения ДНК она всегда полностью ему идентична: группа крови, свойства тканей, сумма качеств и предрасположенностей остаются теми же, что и в первом случае.

История клонирования началась больше ста лет назад, в 1901 году, когда немецкому эмбриологу Хансу Шпеману удалось разделить двухклеточный зародыш саламандры пополам, и вырастить из каждой половины полноценный организм. Так ученым стало известно, что на ранних стадиях развития необходимый объем информации содержит каждая клетка эмбриона. Год спустя другой специалист, генетик из США Уолтер Саттон предположил, что эти сведения находятся в клеточном ядре. Ханс Шпеман принял эту информацию к сведению и через 12 лет, в 1914 году, успешно провел опыт по пересадке ядра из одной клетки в другую, а спустя еще 24 года, в 1938 году, предположил, что ядро можно пересадить в безъядерную яйцеклетку.

Затем развитие клонирования практически остановилось, и только в 1958 году британскому биологу Джону Гердону удалось успешно клонировать шпорцевую лягушку. Для этого он использовал неповрежденные ядра соматических (не принимающих участие в размножении) клеток организма головастика. В 1963 году другой биолог, Джон Холдейн впервые использовал термин «клон», описывая работы Гердона. Тогда же китайский эмбриолог Тун Дичжоу провел эксперимент по переносу ДНК взрослого карпа-самца в икринку женской особи и получил жизнеспособную рыбу, - а заодно и звание «отца китайского клонирования». После этого было проведено несколько успешных экспериментов по клонированию живых организмов: моркови, выращенной из изолированной клетки (1964 год), мышей (1979 год), овцы, чей организмы был создан из эмбриональных клеток (1984 год), двух коров, «рожденных» из дифференцированных клеток однонедельного эмбриона и клеток зародыша (1986 год), еще двух овец по кличке Меган и Мораг (1995 год) и, наконец, Долли (1996 год). И все же, для ученых Долли стала скорее вопросом, чем ответом на вопрос.

Медицинские проблемы: аномалии и «старые» теломеры

Именно Долли на сегодняшний день принадлежит звание самого знаменитого клона в истории дисциплины. Ведь она была создана на основе генетического материала взрослой особи, а не зародыша или эмбриона, как ее предшественницы и предшественники. Однако источник ДНК, согласно предположением ряда ученых, стал для клонированной овцы проблемой. Концы хромосом в организме Долли - теломеры - оказались такими же короткими, как и у ее ядерного донора - взрослой овцы. За длину этих фрагментов в организме отвечает специфический фермент - теломераза. В случае со взрослым организмом млекопитающего она, чаще всего, активна только в половых и стволовых клетках, а также в клетках лимфоцитов в момент иммунного ответа. В тканях, состоящих из такого материала, хромосомы постоянно удлиняются, а вот во всех остальных - укорачиваются после каждого деления. Когда хромосомы достигают критической длины, клетка перестает делиться. Вот почему теломераза считается одним из главных внутриклеточных механизмов, который регулирует продолжительность жизни клеток.

Сегодня нельзя сказать точно, стали ли «старые» хромосомы Долли причиной ее ранней для овец кончины. Она прожила 6,5 лет, что составляет чуть больше половины обычной для этого вида продолжительности жизни.

Специалистам пришлось усыпить Долли, поскольку у нее развился вызванный вирусом аденоматоз (доброкачественные опухоли) легких и тяжелый артрит. Обыкноывенные овцы тоже нередко страдают этими заболеваниями, но чаще в конце жизни, так что исключать влияние длины теломер Долли на деградацию тканей, очевидно, нельзя. Ученым, которые хотели проверить гипотезу о «старых» теломерах клонированных живых существ, не удалось ее подтвердить: искусственное «состаривание» ядер клеток молодого теленка путем их длительного культивирования в пробирке после рождения его клонов дало совершенно противоположный результат: длина теломер в хромосомах новорожденных телят сильно увеличилась и даже перегнала нормальные показатели.

Теломеры клонированных животных могут оказаться короче, чем у их обыкновенных собратьев, однако это не единственная проблема. Большая часть эмбрионов млекопитающих, полученных путем клонирования, погибает. Момент рождения тоже является критическим. Новорожденные клоны часто страдают гигантизмом, умирают от респираторного дистресса, дефектов развития почек, печени, сердца, мозга, а также отсутствия в крови лейкоцитов. Если животное все-таки выживает, нередко к старости у него развиваются другие аномалии: например, клонированные мыши в преклонном возрасте часто страдают ожирением. Тем не менее, потомство клонированных теплокровных существ не наследует пороков их физиологии. Это позволяет говорить о том, что изменения ДНК и хроматина, которые могут возникать при пересадке донорского ядра, являются обратимыми и стираются, когда геном проходит через зародышевый путь: ряд поколений клеток от первичных половых клеток зародыша до половых продуктов взрослого организма.

Общественный аспект: как социализировать клона

Клонирование не позволяет полностью повторить сознание человека, ведь далеко не все в процессе его формирование обусловлено генетикой. Вот почему о полной идентичности донорской и клонированной личности речи идти не может, а потому практическая ценность клонирования в действительности намного ниже, чем то, как традиционно видят ее в своем сознании писатели- и режиссеры-фантасты. И все же, сегодня в любом случае остается неясным, как создать для клонированного человека место в обществе. Какое имя он должен носить? Как в его случае оформить отцовство, материнство, брак? Как решать правовые вопросы имущества и наследования? Очевидно, воссоздание человека на основе донорского генетического материала потребовало бы появления особой общественной и правовой ниши. Ее возникновение изменило бы ландшафт привычной системы семейных и социальных отношений намного сильнее, чем, к примеру, регистрация однополых браков.

Религиозный аспект: человек в роли Бога

Представители крупнейших религий и конфессий выступают против клонирования человека. Папа Римский Иоанн Павел II, который был предстоятелем Римско-католической церкви с 1978 по 2005 год, сформулировал ее позицию так: «Путь, указанный Христом, - это путь уважения человека, и любые исследования должны иметь целью познание его в его истинности, чтобы потом служить ему, а не манипулировать им в соответствии с проектом, который иногда высокомерно считается лучшим, чем проект самого Создателя. Для христианина тайна бытия настолько глубока, что она неисчерпаема для человеческого познания. Человек же, который с самонадеянностью Прометея возносит себя до арбитра между добром и злом, превращает прогресс в собственный абсолютный идеал и впоследствии бывает раздавлен им. Прошедший век с его идеологиями, которыми печально отмечена его трагическая история, и войнами, избороздившими его, стоит перед глазами всех как демонстрация результата такой самонадеянности».

Патриарх Русской православной церкви Алексий II, занимавший этот пост с 1990 по 2008 год, выступил против экспериментов по генетическому воссозданию человека еще жестче. «Клонирование человека - аморальный, безумный акт, ведущий к разрушению человеческой личности, бросающий вызов своему Создателю», - заявил патриарх. Далай-лама XIV также высказывался в отношении экспериментов по генетическому воссозданию человека с опаской. «Что касается клонирования, то, как научный эксперимент, оно имеет смысл, если принесет пользу конкретному человеку, но если применять его сплошь и рядом, в этом нет ничего хорошего», - заявил буддийский первосвященник.

Опасения верующих и служителей церкви вызывает не только тот факт, что в подобных экспериментах человек заступает за рамки традиционных способов воспроизведения своего вида и, по сути, берет на себя роль Бога, но и то, что даже в рамках одной попытки клонирования тканей с использованием эмбриональных клеток должно быть создано несколько зародышей, большая часть из которых погибнет или будет умерщвлена. В отличие от процесса клонирования, который предсказуемо не упоминается в Библии, о зарождении жизни человека в канонических христианских текстах информация есть. Псалом Давида 138:13-16 говорит: «Ибо Ты устроил внутренности мои и соткал меня во чреве матери моей. Славлю Тебя, потому что я дивно устроен. Дивны дела Твои, и душа моя вполне сознает это. Не сокрыты были от Тебя кости мои, когда я созидаем был в тайне, образуем был во глубине утробы. Зародыш мой видели очи Твои; в Твоей книге записаны все дни, для меня назначенные, когда ни одного из них еще не было». Это утверждение богословы традиционно трактуют как указание на то, что душа человека возникает не в момент его появления на свет, а раньше: между зачатием и рождением. Из-за этого уничтожение или гибель эмбриона может рассматриваться как убийство, а это противоречит одной из библейских заповедей: «Не убий».

Польза клона: воссоздавать органы, а не людей

Клонирование биологического материала человека в ближайшие десятилетия, тем не менее, может все-таки оказаться полезным и лишиться, наконец, своей «криминальной» мистической и этической составляющей. Современные технологии сохранения пуповинной крови позволяют брать из нее стволовые клетки для создания органов для пересадки. Такие органы идеально подходят человеку, поскольку несут в себе его собственный генетический материал и не отторгаются организмом. При этом для такой процедуры нет необходимости воссоздавать зародыш. Эксперименты для развития подобной технологии уже проводились: в 2006 году британским ученым удалось вырастить небольшую печень из клеток пуповинной крови зачатого и рожденного обычным способом младенца. Это произошло спустя несколько месяцев после его появления на свет. Орган получился небольшим: всего 2 см в диаметре, - однако его ткани были в порядке.

Тем не менее, сегодня более известны формы терапевтического клонирования, которые предполагают создание бластоцисты: эмбриона ранней стадии развития, состоящего из порядка 100 клеток. В перспективе бластоцисты, разумеется, являются людьми, так что их использование нередко вызывает такие же споры, как и клонирование с целью получения живого человека. Отчасти именно поэтому сегодня все формы клонирования, включая терапевтическое, во многих странах официально запрещены. Воссоздание человеческого биоматериала в терапевтических целях разрешается только в США, Индии, Великобритании и некоторых частях Австралии. Технологии сохранения пуповинной крови сегодня используются нередко, однако пока ученые рассматривают ее лишь как потенциальное средство борьбы с диабетом I типа и сердечнососудистыми заболеваниями, а не как возможный ресурс для создания органов для трансплантации.

Тестирование по теме «Селекция»

1. Аутбридинг - это:

1)скрещивание между неродственными особями одного вида;

2)скрещивание различных видов;

3)близкородственное скрещивание;

4)нет верного ответа.

2. Гибриды, возникающие при скрещивании различных видов:

1)отличаются бесплодностью;

2)отличаются повышенной плодовитостью;

3)дают плодовитое потомство при скрещивании с себе подобными;

4)всегда бывают женского пола.

3. Полиплоидия заключается в:

1)изменении числа отдельных хромосом;

2)кратном изменении гаплоидных наборов хромосом;

3)изменении структуры хромосом;

4)изменении структуры отдельных генов.

4. Центром происхождения культурных растений считаются районы, где:

1)обнаружено наибольшее число сортов данного вида;

2)обнаружена наибольшая плотность произрастания данного вида;

3)данный вид впервые выращен человеком;

4)нет верного ответа.

5. Близкородственное скрещивание применяют с целью:

1)поддержания полезных свойств организма;

2)усиления жизненной силы;

3)получения полиплоидных организмов;

4)закрепления ценных признаков.

6. Гетерозис наблюдается при:

1)близкородственном скрещивании;

2)скрещивании отдаленных линий;

3)вегетативном размножении;

4)искусственном оплодотворении.

7. В клеточной инженерии при гибридизации используют следующие клетки:

1)половые;

2)соматические;

3)недифференцированные эмбриональные;

4)все перечисленные.

8. В основе селекции лежит:

1)движущий естественный отбор

2)искусственный отбор

3)стабилизирующий естественный отбор

4)борьба за существование

9. Искусственный мутагенез применяется в:

1)селекции собак 2)лечении людей

3)селекции микроорганизмов 4)селекции крупного рогатого скота

10. Клонирование невозможно из клеток:

1)эпидермиса листа 2)корня моркови

3)зиготы коровы 4)эритроцита человека

11. Учение о центрах происхождения культурных растений сыграло важную роль в:

1)изучении мутационного процесса

2)развитии метода прививки

3)одомашнивании растений

4)развитии систематики культурных растений

12. На ранних этапах одомашнивания растений и животных применялся:

1)искусственный отбор 2)метод ментора

3)бессознательный отбор 4)межпородное скрещивание

13. Обработка картофеля колхицином ведет к:

1) полиплоидии 3) гибридизации

2) генным мутациям 4) гетерозису

14. Одним из эффектов, сопровождающих получение чистых линий в селекции, является:

1)гетерозис 2)бесплодие потомства

3)разнообразие потомства 4)снижение жизнеспособности

15. Разработать способы преодоления бесплодия межвидовых гибридов впервые удалось:

1)К.А. Тимирязеву; 2)И.В. Мичурину;

3)Г.Д. Карпеченко 4) Н.И. Вавилову

16. Однородную группу растений с хозяйственно-ценными признаками, созданную человеком, называют:

1)видом 2)породой;

3)сортом; 4) штаммом

17. Примером применения в селекции искусственного мутагенеза является:

1)облучение семян пшеницы рентгеновскими лучами

2)прививка дикой формы яблони на культурную

3)пересадка гена в бактерию

4)выведение декоративных растений

18. Наиболее эффективным методом селекции животных является:

1)отдаленная гибридизация 2)полиплоидия

3)искусственный мутагенез 4)межпородное скрещивание и отбор

19.«Эволюцией, направляемой волей человека», по выражению Н. Вавилова, можно назвать:

1)получение модификационных изменений

2)выведение новых пород и сортов

3)естественный отбор

20. Явление, которое лежит в основе получения высокоурожайных отдаленных гибридов, называется:

1)инбридинг 3) гетерозис

2) самоопыление 4) полиплоидия

21. Центр происхождения культурного томата:

1)Южно-американский; 2) Южно-азиатский тропический;

3)Средиземноморский; 4)Среднеамериканский

22. Явление, при котором происходит многократное увеличение числа хромосом в геноме, называется:

1)полиплоидия 2)полимерия

3) поливалентность 4) полигамия

23. Многообразие пород собак является результатом:

1)естественного отбора 2)искусственного отбора

3)мутационного процесса 4)модификационной изменчивости

24. Полиплоидия как правило встречается у:

1)человека 2)всех живых существ

3)животных 4)растений

25. В биотехнологических процессах чаще всего используются:

1)позвоночные животные 2)бактерии и грибы

26. Гетерозис возникает при:

1)близкородственном скрещивании

2)вегетативном размножении

3)скрещивании отдаленных линий

4)мутагенезе

27. Центр происхождения таких растений, как виноград, олива, капуста, чечевица, находится в:

1)Восточной Азии 2)Центральной Америке

3)Южной Америке 4)Средиземноморье

28. Инбридинг — это:

1)скрещивание различных видов

2)скрещивание близко родственных организмов

3)скрещивание различных чистых линий

4)увеличение числа хромосом у гибридной особи

29. Порода собак представляет собой:

1)род 2)вид

3)природную популяцию 4)искусственную популяцию

30. Центр происхождения кукурузы:

1)Абиссинский 2)Центральноамериканский

3)Южноазиатский 4)Восточноазиатский

31. Для селекции микроорганизмов наиболее часто используются методы:

1)искусственного мутагенеза

2)межвидовой гибридизации

3)искусственной полиплодизации

4)близкородственных скрещиваний

32. Методы создания новых сортов растений и пород животных изучает наука:

1)селекция; 2)цитология;

3)эмбриология; 4)генетика

33. Выдающийся отечественный ученый и селекционер, занимавшийся выведением новых сортов плодовых деревьев:

3)Г.Д. Карпеченко; 4)B.C. Пустовойт

34. Центры многообразия и происхождения культурных растений установил:

1)Н.И. Вавилов; 2)И.В. Мичурин;

3)Б.Л. Астауров; 4)Г.Д. Карпеченко

35. Главная задача селекции:

1)изучение строения и жизнедеятельности культурных

растений и домашних животных;

2)исследование закономерностей наследования признаков;

3)изучение взаимосвязи организмов и среды их обитания;

4)выведение новых сортов растений и пород животных

36. При получении чистых линий у растений снижается жизнеспособность особей, так как

1) рецессивные мутации переходят в гетерозиготное состояние

2) увеличивается число доминантных мутаций

3) рецессивные мутации становятся доминантными

4) рецессивные мутации переходят в гомозиготное состояние

37. Близкородственное скрещивание в селекции животных используют

1) для закрепления желательных признаков

2) для улучшения признаков

3) для увеличения гетерозиготных форм

4) для отбора наиболее продуктивных животных

38. Получением гибридов на основе соединения клеток разных организмов с применением специальных методов занимается

1) клеточная инженерия 2) микробиология

3) систематика 4) физиология

39. Выделением из ДНК какого-либо организма определенного гена или группы генов, включением его в ДНК вируса, способного проникать в бактериальную клетку, с тем чтобы она синтезировала нужный фермент или другое вещество, занимается

1)клеточная инженерия 2)генная инженерия

3)селекция растений 4)селекция животных

40. Метод получения новых сортов растений путем воздействия на организм ультрафиолетовыми или рентгеновскими

лучами, называют

1)гетерозисом 2)полиплоидией

3)мутагенезом 4)гибридизацией

41. В основе создания селекционерами чистых линий культурных растений лежит процесс

1)сокращения доли гомозигот в потомстве

2)сокращения доли полиплоидов в потомстве

3)увеличения доли гетерозигот в потомстве

4)увеличения доли гомозигот в потомстве

42. Большое значение имело открытие центров многообразия и происхождения культурных растений Н.И. Вавиловым для

1)селекции 2)эволюции

3)систематики 4)биотехнологии

43. Отрасль хозяйства, которая производит различные вещества на основе использования микроорганизмов, клеток и

тканей других организмов —

1)бионика 2)биотехнология

3)цитология 4)микробиология

О. В. САБЛИНА,

кандидат биологических наук, СУНЦ НГУ

КЛОНИРОВАНИЕ ЖИВОТНЫХ

Пожалуй, ни одно из достижений биологической науки не вызывало такого накала страстей в обществе, как клонирование млекопитающих. Если некоторые люди, как биологи, так и не имеющие отношения к «Life Sciences» (наукам о жизни), с восторгом приняли появившуюся, хотя бы и теоретически, возможность клонирования человека и готовы завтра же клонироваться, то большинство неспециалистов отнеслись к такой возможности, мягко говоря, очень настороженно.

Бурные дебаты в средствах массовой информации привели к тому, что среди населения оказалось распространенным мнение о крайней опасности подобных исследований. Этому немало способствовали «клоны», «заселившие» художественную литературу и кино. Несколько лет назад одна из околонаучных группировок заявила о намерении клонировать Гитлера, для того чтобы его повесить за совершенные преступления. Это, в свою очередь, породило опасения, что диктаторы типа Гитлера могут увековечить свою власть, передав ее своим клонам. В большинстве подобных представлений клоны человека - «ненастоящие люди», тупые и злобные, а клонированные животные и растения угрожают погубить всю биосферу. Здесь следует особо отметить, что люди нередко путают клонирование и трансгенез, тогда как это абсолютно разные вещи. Действительно, при получении трансгенных многоклеточных животных применяют клонирование, однако в этом случае клонирование - не цель, а средство. Клонирование без транс-генеза - прием, широко используемый в самых разных по своим целям проектах.

Насколько обоснованы эти страхи и надежды? Представляется очень важным формирование спокойного взвешенного суждения относительно перспектив и возможных последствий этих исследований. Для этого нужно ответить на несколько основных вопросов, что мы и попытаемся сделать.

Итак, что же такое клонирование? Как клонируют животных? Почему ученые этим занимаются? Для чего можно использовать технику клонирования животных? Допустимо ли клонирование человека?

ЧТО ТАКОЕ КЛОН?

Греческое слово κλ w n означает побег, отросток. Сейчас клонами называются особи животных или растений, полученные путем бесполого размножения и имеющие полностью идентичные генотипы. Клоны очень широко распространены среди растений - все сорта вегетативно размножаемых культурных растений (картофель, плодовые и ягодные растения, гладиолусы, тюльпаны и т.д.) являются клонами. Разработанная в настоящее время техника микроклонального размножения позволяет получать за короткое время огромное количество генетически идентичных экземпляров даже таких растений, которые в естественных условиях вегетативно не размножаются.

У животных такой тип размножения распространен значительно меньше. Тем не менее известно более 10 ООО видов многоклеточных животных, размножающихся путем деления одного организма на два или даже несколько частей (аутофрагмен-тация), которые вырастают в полноценные организмы. Эти новые организмы также являются клонами. Естественные клоны, возникающие путем обособления части клеток организма и развития из них полноценной особи, характерны не только для таких примитивных животных, как губки или хрестоматийные гидры. Даже такие достаточно высоко организованные животные, как морские звезды и черви, могут размножаться делением. Но позвоночные или насекомые такой способности лишены. Тем не менее клоны, возникшие естественным путем, встречаются даже у млекопитающих.

Природными клонами являются так называемые монозиготные близнецы, которые происходят из одной оплодотворенной яйцеклетки. Это происходит, когда зародыш на самых ранних стадиях дробления разделяется на отдельные бластомеры и из каждого бластомера развивается самостоятельный организм. Например, у американского девятиполосного броненосца всегда рождается по четыре монозиготных близнеца. Разделение зародыша на стадии четырех бластомеров на самостоятельные зародыши - нормальное явление для этого млекопитающего.

Такие близнецы представляют собой как бы обособившиеся части одного организма и имеют один и тот же генотип, т. е. являются клонами.

Монозиготные (или идентичные) близнецы у человека также являются клонами. Наибольшее известное число родившихся монозиготных близнецов у человека равняется пяти. Вероятность рождения близнецов у человека невелика - среди белого населения Европы и Северной Америки она в среднем составляет около 1%. Реже всего близнецы рождаются в Японии. В африканском племени йоруба частота близнецов составляет 4,5% всех рождений, а в некоторых районах Бразилии - до 10%, однако только незначительная часть из них являются монозиготными. Существуют и семьи с генетической предрасположенностью к рождению близнецов, но тоже только дизиготных.

Одновременная овуляция обусловлена определенным сбоем в работе гормональной системы, который может иметь генетическую природу. Причина же, по которой происходят разделение зародыша и образование монозиготных близнецов у человека, неизвестна. Частота этого явления - около 0,3% во всех популяциях человека.

Очень редко случается, что по неизвестной причине зародыш разделяется не до конца. Тогда рождаются сросшиеся (вернее, недоразделившиеся), так называемые сиамские близнецы. Примерно четверть всех идентичных близнецов являются «зеркальными», например, один из близнецов левша, другой правша, у одного волосы на макушке закручены по часовой стрелке, у другого против, у одного сердце расположено слева, а печень справа, у другого - наоборот. Ученые считают, что «зеркальность» близнецов является следствием разделения эмбриона на достаточно поздней стадии развития.

Таким образом, клоны животных и человека - нормальное природное явление. Этот факт сразу позволяет ответить на некоторые вопросы в связи с клонированием человека: клоны - абсолютно нормальные, полноценные люди, отличающиеся от всех остальных людей только тем, что имеют генетического двойника. Они являются самостоятельными, автономными организмами, хотя и имеющими идентичные генотипы. Поэтому любые надежды достичь бессмертия путем клонирования абсолютно беспочвенны. По этой же причине клоны не могут нести никакой ответственности за поступки, совершенные их «генетическим оригиналом».


ЭКСПЕРИМЕНТАЛЬНОЕ КЛОНИРОВАНИЕ ЖИВОТНЫХ

Клонированием называют искусственное получение клонов животных (в случае клонирования растений чаще пользуются терминами «вегетативное размножение», «меристемная культура»). Поскольку высшие животные не могут размножаться вегетативно, то для получения клона можно в принципе воспользоваться тремя методами:


удвоить набор хромосом в неоплодот-воренной яйцеклетке, получив таким образом диплоидную яйцеклетку, и заставить ее развиваться без оплодотворения;
искусственно получить монозиготных близнецов, разделив начавший развиваться эмбрион;
удалить ядро из яйцеклетки, заменив его на диплоидное ядро соматической клетки, и тоже заставить развиваться такую «зиготу».


Все эти три возможности ученые использовали для клонирования животных.

Первый способ удается применить не для всех животных. Еще в 30-е гг. XX в. Б.Л. Астаурову удалось с помощью термического воздействия активировать неопло-дотворенное яйцо тутового шелкопряда к* развитию, блокировав при этом прохождение первого деления мейоза. Естественно, ядро при этом оставалось диплоидным. Развитие такой диплоидной яйцеклетки заканчивалось вылуплением личинок, точно повторяющих генотип матери. Естественно, при этом получались только самки. К сожалению, разводить самок экономически невыгодно, так как при большей затрате корма они дают коконы худшего качества. В.А. Струнников усовершенствовал этот метод, разработав способ получения клонов тутового шелкопряда, состоящих только из особей мужского пола. Для этого на ядро яйцеклетки воздействовали гамма-лучами и высокой температурой. Это делало ядра, не способными к оплодотворению. Ядро сперматозоида, проникшего в такое яйцо, удваивалось и приступало к делению. Это приводило к развитию самца, повторявшего генотип отца. Правда, полученные клоны для промышленного шелководства непригодны, но их используют в селекции для получения эффекта гетерозиса. Это позволяет резко ускорить и облегчить получение выдающегося по продуктивности потомства. Сейчас эти методы широко применяются в шелководстве в Китае и Узбекистане.

К сожалению, успех с тутовым шелкопрядом является исключением - у других животных получить клоны таким способом не удается. Исследователи пробовали удалить один из пронуклеусов из оплодотворенной яйцеклетки и удваивали число хромосом другого, обрабатывая их веществами, разрушающими микротрубочки веретена деления. Получались диплоидные клетки, гомозиготные по всем генам (содержащие либо два материнских, либо два отцовских генома). Такие зиготы начинали дробиться, однако развитие прекращалось на ранней стадии и получить таким способом клоны млекопитающих оказалось невозможно. Были сделаны попытки пересадить пронуклеусы из одной оплодотворенной яйцеклетки в другую. Оказалось, что полученные таким способом зародыши развивались нормально только в том случае, если один пронуклеус представлял собой ядро яйцеклетки, а другой - сперматозоида. Эти эксперименты показали, что для нормального развития эмбрионов млекопитающих необходимы два разных генома - материнский и отцовский. Дело в том, что при формировании половых клеток имеет место геномный импринтинг - метилирование участков ДНК, что приводит к выключению метилированных генов. Это выключение остается на всю жизнь. Поскольку в мужских и в женских половых клетках выключаются разные гены, то для нормального развития организма нужны оба генома - одна работающая копия гена должна быть.

Второй метод - разделение эмбриона на ранних стадиях дробления в эмбриологии используют очень давно, правда в основном на морских ежах и лягушках. Именно таким способом были получены данные о способности выделенных из зародыша бластоме-ров дать начало полноценному организму. Клоны-монозиготные близнецы млекопитающих были получены существенно позже, но искусственное разделение эмбрионов и последующая их имплантация «суррогатным матерям» уже применяются в селекции сельскохозяйственных животных для получения большого числа потомков от особо ценных родителей. В 1999 г. таким способом была клонирована обезьяна. Оплодотворение было проведено в пробирке. Зародыш на стадии восьми клеток был разделен на четыре части, и каждая двуклеточная часть была имплантирована в матку другой обезьяны. Три зародыша при этом развиваться не стали, а из четвертого родилась обезьянка, которую назвали Тетра (Четвертинка).

Самое знаменитое клонированное животное, овечка Долли, была клонирована с помощью третьего метода - переноса генетического материала соматической клетки в яйцеклетку, лишенную собственного ядра.
Метод пересадки ядер был разработан еще в 40-х гг. XX в. русским эмбриологом Г.В. Лопашовым, работавшим с яйцеклетками лягушки. Правда, взрослых лягушек он не получил. Позднее англичанину Дж. Гёрдону удалось заставить яйцеклетки лягушки с чужим ядром развиваться до получения взрослых особей. Это было выдающееся достижение - ведь он пересаживал в яйцеклетку ядра дифференцированных клеток взрослого организма. Он использовал клетки плавательной перепонки и клетки эпителия кишечника. Но и у него до взрослого состояния развивалось не более 2% таких яйцеклеток, причем выросшие из них лягушки отличались меньшими размерами и пониженной жизнеспособностью по сравнению с их нормальными сверстниками.

Пересадить ядро в яйцеклетку млекопитающего значительно труднее, так как она примерно в 1000 раз мельче, чем яйцеклетка лягушки. В 1970-х гг. в нашей стране в Институте цитологии и генетики в Новосибирске на мышах это пытался сделать замечательный ученый Л.И. Корочкин. К сожалению, его работы не получили продолжения из-за трудностей с финансированием. Зарубежные ученые продолжали исследования, однако операция трансплантации ядра оказалась слишком травматичной для мышиных яйцеклеток. Поэтому экспериментаторы пошли другим путем - стали просто проводить слияние яйцеклетки, лишенной собственного ядра, с целой неповрежденной соматической клеткой.

Группа исследователей из Рослинско-го института в Шотландии, возглавляемая Я. Вилмутом, клонировавшие Долли, использовали для слияния клеток электрический импульс. Они удаляли ядра из зрелых яйцеклеток, затем с помощью микропипетки вводили под оболочку яйцеклетки соматическую клетку, выделенную из молочной железы овцы. С помощью электрического удара клетки сливались и в них стимулировалось деление. Затем, после культивирования в течение 6 дней в искусственных условиях, начавший развиваться эмбрион на стадии морулы имплантировали в матку специально подготовленной овцы другой породы (хорошо отличавшейся фенотипически от донора генетического материала). Рождение овечки Долли стало громкой сенсацией, а у некоторых ученых возникли сомнения в том, что она действительно была клоном. Однако специальные проведенные исследования ДНК показали, что Долли - настоящий клон.

В дальнейшем техника клонирования млекопитающих была усовершенствована. Группе ученых из университета Гонолулу под руководством Риузо Янагимачи удалось с помощью изобретенной ими микропипетки осуществить перенесение ядра соматической клетки непосредственно в яйцеклетку. Это позволило им обойтись без электрического импульса, который был далеко небезопасен для живых клеток. Кроме того, они использовали менее дифференцированные клетки - это были клетки кумулуса (соматических клеток, окружающих яйцеклетку и сопровождающих ее во время движения по яйцеводу). К настоящему времени этим методом клонированы и другие млекопитающие - корова, свинья, мышь, кошка, собака, лошадь, мул, обезьяна.

ЗАЧЕМ КЛОНИРОВАТЬ ЖИВОТНЫХ?

Несмотря на огромные успехи, клонирование млекопитающих остается сложной и дорогостоящей процедурой. Почему же ученые не оставляют эти эксперименты? Прежде всего потому, что это... интересно. Причем не просто любопытно - получится или нет, уже ясно, что получится. Клонирование млекопитающих чрезвычайно важно для фундаментальной науки. Это уникальный инструмент, позволяющий исследовать один из самых сложных и интригующих вопросов биологии - как, какими путями информация, записанная последовательностью нуклеотидов в ДНК, реализуется во взрослом неповторимом организме, каким образом осуществляется точнейшее взаимодействие тысяч генов, каждый из которых «включается» и «выключается» именно в то время и в той клетке, где это необходимо. Известно, что некоторые гены, работающие на самых ранних этапах эмбриогенеза, в ходе дальнейшего развития и дифферен-цировки клеток необратимо выключаются.

Как это происходит? Можно ли заставить дифференцированную клетку претерпеть обратную дифференцировку? На последний вопрос без клонирования ответить вообще невозможно. Сам факт, что клонирование млекопитающих удается, вроде бы говорит о том, что обратная дифференцировка возможна. Однако не все так просто. Часто животные клонированы из недифференцированных - эмбриональных стволовых клеток или из клеток кумулуса. В других случаях, возможно, также были использованы стволовые клетки. В частности, овечка Долли была клонирована из клетки молочной железы беременной овцы, а при беременности под действием гормонов стволовые клетки молочной железы начинают размножаться, так что вероятность того, что экспериментаторы возьмут именно стволовую клетку, повышается. Предполагают, что именно так и было с Долли. Этим может объясняться и очень малая эффективность клонирования - ведь стволовых клеток в ткани немного.

Но, конечно, если бы у метода клонирования не было хорошо просматриваемых практических выходов, исследования не были бы столь интенсивными. Какая же практическая польза может быть от клонированных животных? В первую очередь, клонирование высокопродуктивных домашних животных может быть использовано для получения в короткий срок больших количеств элитных коров, ценных пушных зверей, спортивных лошадей и т.д. Некоторые ученые считают, что клонирование никогда не будет широко применяться в животноводстве из-за того, что эта процедура весьма дорогая. Кроме того, условием селекции всегда было генетическое разнообразие, клонирование же, тиражируя один генотип, сужает это разнообразие. Тем не менее поскольку половое размножение необходимо связано с рекомбинацией, разрушающей сочетания аллелей, клонирование может помочь сохранить уникальные генотипы. Клонирование путем разделения начавших дробиться эмбрионов уже сейчас используется в селекции крупного рогатого скота.

Особые надежды ученые возлагают на клонирование диких животных, которым грозит исчезновение. Уже в настоящее время создаются «Замороженные Зоопарки» - образцы клеток таких животных, хранящиеся в замороженном виде при температуре жидкого азота (-196°С). В Америке уже родились два детеныша дикого быка бантенга, клонированные из клеток животного, умершего в 1980 г. Его клетки были заморожены и более 20 лет хранились в жидком азоте. Клонированы также другой вид дикого быка гаур, европейский дикий баран, дикие африканские степные кошки.

Клонирование кошек - особо интересный и важный эксперимент, проведенный в Институте Природы в городе Одюбоне (США). Там были получены два клона-самки от одной кошки-донора и один клон-самец от кота по имени Джаз. Джаз, в свою очередь, был выращен из эмбриона, который в течение 20 лет хранился в замороженном состоянии в жидком азоте, а потом был выношен и рожден обычной домашней кошкой. В 2005 г. обе кошки-клоны общими усилиями родили восьмерых котят. Отцом всех восьмерых был кот-клон Джаз. Этот опыт показал, что клоны способны к нормальному размножению. Следует, однако, понимать, что с помощью клонирования вряд ли удастся «воскресить» исчезнувший вид. Тем не менее это может помочь сохранить генофонд, если использовать полученные клоны в скрещиваниях с животными, содержащимися в зоопарках. Такое использование клонов может помочь избежать негативных последствий близкородственного скрещивания, неизбежного при малой численности вида.

Здесь следует сказать и о надеждах клонировать уже исчезнувших животных - мамонта, тасманийского сумчатого волка, зебры квагги. Оптимисты предполагают, что можно использовать ДНК этих животных, сохранившуюся либо в вечной мерзлоте, либо в законсервированных тканях. Однако предпринятая попытка клонировать тасманийского сумчатого волка, последнийэкземпляр которого погиб в зоопарке в 1936 г., не удалась. Это и неудивительно, так как в распоряжении ученых не было живых клеток, а только образцы тканей, хранившиеся в спирте. Из них была выделена ДНК, но она оказалась слишком поврежденной, да и существующие в настоящее время методы не позволяют клонировать животных») не имея достаточного количества живых клеток. По этой же причине мала вероятность когда-либо клонировать мамонта. Во всяком случае, все предпринятые попытки культивировать клетки мамонта, пролежавшие тысячелетия в вечной мерзлоте, оказались безуспешными. Кроме того, следует иметь в виду, что если даже и удалось бы получить и вырастить один клон мамонта или квагги, это не было бы воскрешением вида. Из одного или даже из нескольких экземпляров получить вид нельзя. Считается, что для устойчивого существования и воспроизведения вида необходимо по крайней мере несколько сотен особей. Поэтому ископаемая ДНК или ДНК из хранящихся в спирте тканей достаточна для анализа или даже для трансгенеза, но недостаточна для клонирования. Хотя известны случаи выживания вида после катастрофического падения численности. Один из таких видов - гепард. Генетический анализ показывает, что в его истории был момент, когда его поголовье составляло 7-10 особей. Хотя гепарды и выжили, последствия близкородственного скрещивания остались - частое бесплодие, мертворождения и другие трудности с размножением. Другой такой вид - человек. В эволюционной истории человека было не менее двух эпизодов прохождения резкого падения численности вида, а для американских индейцев - даже больше (заселение Америки шло из Восточной Сибири по Берингийскому перешейку очень небольшими группами - 7-10 человек). Именно поэтому генетическое разнообразие человека невелико, следствием чего является разнообразие фенотипическое - многие гены находятся в гомозиготном состоянии.

Безусловно, незаменимым методом клонирование является для получения трансгенных животных. Хотя применяются и другие методы получения трансгенных животных, именно клонирование позволяет получать животных с заданными свойствами для практических нужд. В том же Рослинском институте в Эдинбурге, где родилась Долли, были получены и клонированные овечки Полли и Молли. Для их клонирования были использованы генетически измененные клетки, культивировавшиеся в искусственных условиях. Эти клетки, кроме обычных овечьих генов, несли человеческий ген IX фактора свертываемости крови.

Генетическая конструкция содержала промотор, экспрессирующийся в клетках молочной железы. Поэтому белок, кодируемый этим геном, выделялся с молоком. Полли была первым клонированным трансгенным млекопитающим. Ее рождение открыло новые перспективы в лечении некоторых заболеваний человека. Ведь многие болезни связаны с нехваткой определенного белка - фактора свертываемости или гормона. До сего времени такие лекарства можно было получать только из донорской крови. А ведь количество гормона в крови очень мало! Кроме того, использование препаратов крови чревато инфекционными заболеваниями - не только СПИДом, но и вирусными гепатитами, которые не менее опасны. А трансгенных животных можно тщательно отобрать и проверить, содержать их на чистейших альпийских пастбищах. Ученые подсчитали, что для того чтобы обеспечить лекарственным белком всех (!) больных гемофилией на Земле, потребуется не слишком большое стадо трансгенных животных - 35-40 коров. При этом провести трансгенез и клонирование нужно-то всего только двух животных - самки и самца, а они, размножаясь естественным путем, передадут нужный ген потомству. При этом, поскольку у самцов ген в молочной железе не работает вообще, а у самок работает только во время лактации и продукт сразу же выводится с молоком из организма, никаких неудобств или нежелательных последствий для животных этот чужой ген не представляет. Сейчас используют в качестве таких биореакторов овец, коз, кроликов и даже мышей. Правда, коровы дают существенно больше молока, но и размножаются они гораздо медленнее и лактировать начинают позже. Есть и другие возможности использования трансгенных клонов и в научных, и в практических целях, но здесь мы это рассматривать не будем.

ТРУДНОСТИ И ПРОБЛЕМЫ, ВОЗНИКАЮЩИЕ ПРИ КЛОНИРОВАНИИ МЛЕКОПИТАЮЩИХ

Несмотря на впечатляющие успехи, пока нельзя утверждать, что клонирование стало обычной лабораторной методикой. Это по-прежнему очень сложная процедура, не слишком часто приводящая к ожидаемому результату. Какие же трудности возникают при клонировании животных?
В первую очередь, это низкая эффективность клонирования. Процедуры, применяемые при клонировании млекопитающих, являются весьма травмирующими для клеток. Далеко не всем клеткам удается их благополучно пережить. Не все начавшие развиваться эмбрионы доживают до рождения. Так, чтобы получить Долли, пришлось для выделения яйцеклеток прооперировать 40 овец (см. рис. 5). Из 430 яйцеклеток удалось получить 277 диплоидных «зигот», из которых только 29 начали развиваться и были имплантированы «суррогатным» матерям. Из них дожил до рождения всего один эмбрион - Долли. Для получения клонированной лошадки Прометеи было «сконструировано» около 840 эмбрионов, из них только 17 развились до того, чтобы их можно было имплантировать «матерям». Четыре из них стали развиваться, но до рождения дожила только одна Прометея.

Другой серьезной проблемой является здоровье родившихся клонов. Как правило, когда сообщается о рождении очередного клона, подчеркивается его отменное здоровье. Действительно, многие клонированные животные, вполне здоровые при рождении, доживали до взрослого состояния и рождали нормальных детенышей. Однако потом у них проявлялись нарушения со стороны разных систем органов. Так, Долли родилась здоровой и родила нескольких здоровых ягнят, но потом начала стремительно стареть и прожила вдвое меньше, чем обычная овца. Трансгенные Полли и Молли, также клонированные в Рослинском институте, прожили еще меньше. Успешно размножились клонированные степные кошки. Правда, о продолжительности их жизни данных пока нет. А вот бычок гаур, также производивший при рождении впечатление здорового, прожил всего два дня из-за кишечного заболевания. Вопрос о здоровье клонов еще нельзя считать окончательно решенным - результаты разных исследователей противоречивы. По некоторым данным очень многие клоны обладают слабым иммунитетом, подвержены простудным и желудочно-кишечным заболеваниям и стареют в 2-3 раза быстрее своих генетических родителей. Исследования японских ученых показали, что у клонированных мышей серьезно нарушено функционирование примерно 4% генов.

Но, пожалуй, самым обескураживающим оказалось то, что клоны могут довольно сильно отличаться от оригинала. Еще В.А. Струнниковым на тутовом шелкопряде было установлено, что, несмотря на одинаковые генотипы, члены одного клона оказываются непохожими по целому ряду признаков. В некоторых клонах это разнообразие оказалось даже большим, чем в обычных, генетически разнородных, популяциях. Несколько лет назад в США родилась очередная клонированная кошечка, которую назвали Сиси (Сс, CopyCat). Генетической мамой ее была трехцветная кошка Рэйн-боу (Радуга). Сиси оказалась непохожей на маму - двухцветной. Но анализ ДНК показал, что она действительно является клоном Радуги. Различия связаны с тем, что ген рыжей окраски находится в Х-хромосоме. У самок одна из Х-хромосом оказывается инактивированной в раннем эмбриогенезе. Инактивируются Х-хромосомы случайно, состояние инактивированности в клетке и клетках-потомках сохраняется на всю жизнь. У гетерозиготной кошки рыжими оказываются те клетки, где инактивирована «нерыжая» Х-хромосома. Клон был получен из одной соматической клетки, в которой одна из Х-хромосом уже была инактивирована. У Сиси инактивированной оказалась «рыжая» Х-хромосома. У млекопитающих в Х-хромосоме находится около 5% всех генов, и клоны могут оказаться непохожими друг на друга по достаточно большому числу признаков. Кстати, такое явление известно и для природных клонов - монозиготных близнецов. Были описаны две сестры - монозиготные близнецы, одна из которых была здорова, а у другой была гемофилия. Известно, что у женщин гемофилия бывает крайне редко, только в случае гомозиготное™. У гетерозигот примерно половина «здоровых» Х-хромосом инактивирована, но оставшейся половины достаточно для нормальной свертываемости крови. Упомянутые близнецы, по-виДимому, возникли в результате разделения эмбриона на стадии, когда Х-хромосомы уже были инакти-вированы и у одной из сестер нормальная хромосома оказалась инактивированной во всех клетках организма. Результатом стало развитие заболевания у гетерозиготы.

Могут быть и другие причины непохожести клонов. Все искусственно полученные клонированные эмбрионы развиваются не в таких условиях, как оригинал. Другими являются возраст суррогатной матери, её гормональный статус, питание и т. п. А эти факторы очень важны во время эмбриогенеза. Причинами различий клона и оригинала могут быть и вариации фенотипического проявления генов (экспрессивность и пенетрантность), различия в геноме митохондрий (клоны имеют не такие митохондрии, как оригинал), отличия в рисунке инактивации (импринтинг) некоторых генов в эмбриогенезе, неустранимые различия ядер соматических и половых клеток (например, неполная дедифференцировка ядра соматической клетки, помещенного в яйцеклетку).

ПРОБЛЕМА КЛОНИРОВАНИЯ ЧЕЛОВЕКА

Именно возможность искусственного клонирования человека вызвала бурные эмоции в обществе. Количество самых полярных высказываний (диапазон их от «к концу следующего столетия население планеты будет состоять из клонов» до «какой-то фантастический роман, интересный, но абсолютно нереалистичный») не поддается исчислению. Некоторые люди уже завещают сохранить их клетки в состоянии глубокого замораживания для того, чтобы, когда техника клонирования будет отработана, воскреснуть в виде клона, обеспечив тем самым себе бессмертие. Другие думают путем клонирования преодолеть бесплодие или вырастить себе «запасные части» - органы для трансплантации. Третьи хотят облагодетельствовать человечество, населив его клонами гениев. Насколько оправданы эти оценки и чаяния? Попробуем спокойно, «без гнева и пристрастья» ответить на некоторые вопросы, возникающие в связи с понятием «клонирование человека».

Вопрос первый: возможно ли клонирование человека? Ответ однозначен: да, конечно, технически это возможно.

Вопрос второй: зачем клонировать человека? Ответов несколько, разной степени реалистичности:

1. Достижение личного бессмертия. Эту перспективу можно серьезно не обсуждать, об абсурдности этих надежд было сказано выше.
2. Выращивание гениальных личностей. Главное сомнение - а будут ли они гениальными? Слишком сложный это признак, и, хотя генетическая составляющая в его формировании не вызывает сомнения, величина этой составляющей может варьировать, а влияние средовых факторов может быть велико и непредсказуемо. И - важный вопрос - будут ли они благодарны тем, кто создал их двойников, нарушив естественное право человека на собственную неповторимость? Ведь и у монозиготных близнецов иногда возникают проблемы, связанные именно с этим аспектом.
3. Научные исследования. Сомнительно, чтобы существовали такие научные проблемы, которые можно было бы разрешить исключительно только с помощью клонов человека (об этических аспектах этого - чуть позже).
4. Использование клонирования в медицинских целях. Это именно тот вопрос, который следует обсуждать серьезно.

Предполагается, что можно использовать клонирование для преодоления бесплодия - это так называемое репродуктивное клонирование. Бесплодие, действительно, является чрезвычайно важной проблемой, многие бездетные семьи согласны на самые дорогие процедуры, чтобы иметь возможность родить ребенка.

Но возникает вопрос - а что принципиально нового может дать клонирование по сравнению, например, с экстракорпоральным оплодотворением с использованием донорских половых клеток? Честный ответ будет - ничего. Клонированный ребенок не будет иметь генотипа, являющего комбинацией генотипов мужа и жены. Генетически такая девочка будет монозиготной сестрой своей матери, генов отца у нее не будет. Точно так же клонированный мальчик для своей матери будет генетически чужд. Другими словами, получить генетически полностью «своего» ребенка с помощью клонирования бездетная семья не сможет, так же как и при использовании донорских половых клеток («дети из пробирки», полученные с помощью собственных половых клеток мужа и жены, генетически не отличаются от «обычных» детей). А в таком случае - зачем такая сложная и, что особенно важно, очень рискованная процедура? А если вспомнить, какова эффективность клонирования, представить себе, сколько нужно получить яйцеклеток, чтобы родился один клон, который к тому же, возможно, будет больным, с укороченной продолжительностью жизни, сколько эмбрионов, уже начавших жить, погибнет, то перспектива репродуктивного клонирования человека становится устрашающей. В большинстве тех стран, где технически возможно осуществление клонирования человека, репродуктивное клонирование законодательно запрещено.

Терапевтическое клонирование предполагает получение эмбриона, выращивание его до 14-дневного возраста, а затем использование эмбриональных стволовых клеток в лечебных целях. Перспективы лечения с помощью стволовых клеток ошеломляющи - излечение многих нейродегене-ративных заболеваний (например болезней Альцгеймера, Паркинсона), восстановление утраченных органов, а при клонировании трансгенных клеток - лечение многих наследственных болезней. Но посмотрим правде в лицо: фактически это означает вырастить себе братика или сестричку, а потом - убить, чтобы использовать их клетки в качестве лекарства. И если убивается не новорожденный младенец, а двухнедельный эмбрион, дела это не меняет. И, хотя, ограниченное использование терапевтического клонирования в большинстве стран не запрещено, очевидно, что человечество вряд ли пойдет по этому пути. Поэтому ученые ищут другие пути для получения стволовых клеток.

Китайские ученые с целью получения эмбриональных стволовых клеток человека создали гибридные эмбрионы путем клонирования ядер клеток кожи человека в яйцеклетках кроликов. Было получено более 100 таких эмбрионов, которые в течение нескольких дней развивались в искусственных условиях, а затем из них были получены стволовые клетки. Неизбежно возникает вопрос, что получилось бы, если такой эмбрион имплантировали бы в матку суррогатной матери и дали ему возможность развиваться. Эксперименты с другими видами животных дают основания считать, что жизнеспособный плод вряд ли бы мог развиться. Ученые надеются, что такой способ получения стволовых клеток окажется этически более приемлемым, чем клонирование человеческих эмбрионов.

Но, к счастью, оказывается, что эмбриональные стволовые клетки можно получать гораздо проще, не прибегая к сомнительным с этической точки зрения манипуляциям. У каждого новорожденного в его собственной пуповинной крови содержится довольно много стволовых клеток. Если эти клетки выделить, а затем хранить в замороженном виде, их можно будет использовать, если возникнет такая необходимость. Создавать такие банки стволовых клеток можно уже сейчас. Правда, следует иметь в виду, что стволовые клетки еще могут преподнести сюрпризы, в том числе и неприятные. В частности, есть данные о том, что стволовые клетки могут легко приобретать свойства злокачественности. Скорее всего, это связано с тем, что в искусственных условиях они изъяты из-под жесткого контроля со стороны организма. А ведь контроль «социального поведения» клеток в организме не только жесткий, но весьма сложный и многоуровневый. Но, конечно, возможности использования стволовых клеток столь впечатляющи, что исследования в этой области и поиски доступного источника стволовых клеток будут продолжаться.

И наконец, последний вопрос: допустимо ли клонирование человека?
Конечно, клонирование человека, безусловно, недопустимо, пока не преодолены технические сложности и низкая эффективность клонирования, пока не гарантирована нормальная жизнеспособность клонов. Несмотря на то, что время от времени появляются сообщения о том, что где-то родились клонированные дети, до настоящего времени ни одного документированного, достоверного случая успешного клонирования человека нет. Сенсационное сообщение о клонировании человеческих эмбрионов с очень высокой эффективностью южнокорейским ученым Ву-Сук Хваном не подтвердилось, были получены доказательства фальсификации результатов. До того чтобы клонирование стало обычной безопасной процедурой, еще очень далеко. Смысл вопроса в другом - допустимо ли клонирование человека в принципе? Какие последствия могло бы иметь применение этого способа размножения?

Одним из вполне реальных последствий клонирования может стать нарушение соотношения полов в потомстве. Не секрет, что очень и очень многие семьи во многих странах хотели бы иметь скорее мальчика, чем девочку. Уже в настоящее время в Китае возможность пренатальной диагностики пола и меры по ограничению рождаемости привели к такому положению, что в некоторых районах среди детей наблюдается значительное преобладание мальчиков. Что будут делать эти мальчики, когда придет время заводить семью?

Другое негативное следствие широкого применения клонирования - снижение генетического разнообразия человека. Оно и так невелико - существенно меньше, чем, например, даже у таких малочисленных видов, как человекообразные обезьяны. Причина этого - резкое снижение численности вида, имевшее место не менее двух раз за последние 200 тыс. лет. Следствием является большое количество наследственных заболеваний и дефектов, вызываемых переходом мутантных аллелей в гомозиготное состояние. Дальнейшее снижение разнообразия может поставить под угрозу существование человека как вида. Правда, справедливости ради следует сказать, что столь широкого распространения клонирования вряд ли следует ожидать даже в отдаленном будущем.

И наконец, не следует забывать о тех последствиях, которые мы пока не в состоянии предусмотреть.

В заключение нужно сказать вот о чем. Стремительное развитие биологии и медицины поставило перед человеком множество новых вопросов, которые никогда раньше не возникали и не могли возникнуть - допустимость клонирования или эвтаназии; возможности реанимации поставили вопрос о границе жизни и смерти; угроза перенаселения Земли требует ограничения рождаемости. С подобными проблемами человечество никогда не сталкивалось и поэтому не выработало никаких этических установок по их поводу. Именно поэтому сейчас невозможно дать ясные и четкие ответы, что можно, а что нельзя. Нужно отдавать себе отчет и вот еще в чем: можно законодательно запретить те или иные работы, но природа человека такова, что, если что-нибудь (клонирование человека, например) технически возможно, оно рано или поздно будет сделано несмотря ни на какие запреты. Именно поэтому необходимо широкое обсуждение подобных вопросов, с тем чтобы вырабатывалось осознанное отношение к таким проблемам, по которым в настоящее время невозможно дать однозначного ответа.


"Биология для школьников" . - 2014 . - № 1 . - С. 18-29.



Понравилась статья? Поделитесь ей
Наверх