Клиническая патофизиология шока. Методы лечения шока. Мониторинг гемодинамики в малом круге кровообращения

Если мы говорим о гиповолемическом шоке, то, следовательно, в основе того понятия лежит гиповолемия. Поэтому важно прежде всего определиться с этим термином и вообще договориться о понятии волемии, ОЦК, объеме сосудистого русла и т.д.

Диагноз гиповолемии предполагает наличие состояния, которое можно назвать нормоволемией. Говорят еще о нормальном объеме циркулирующей крови. Более того, дают величины такого объема, отнесенные к единице массы тела. Все, что укладывается в пределы таких величин - нормоволемия, все, что меньше - гиповолемия. Отсюда следует, что для объективного определения нужно измерить ОЦК и только после этого можно ставить диагноз: нормоволемия, гиповолемия, гиперволемия.

К сожалению (или к счастью), такой подход к решению вопроса о достаточности ОЦК принципиально не верен и те, кто придерживается такой концепции обрекают себя на неверные диагнозы и неэффективную терапию. Более того, отсутствие методики определения ОЦК в большинстве клиник, вообще не дает возможности ставить диагноз, а побуждает действовать наугад, т.е. наименее эффективно и совсем не профессионально. Но даже в том случае, если ОЦК измеряется, результат этого измерения, сам по себе, не дает права на оценку состояния волемии. И дело тут не в возможных ошибках измерения, а в том, что объем крови является лишь одной из составляющих волемии. Второй её составляющей нужно считать емкость сосудистого русла. Таким образом, нормоволемия это состояние, при котором объем наполнителя (ОЦК) соответствует емкости сосудистого русла. Последняя же точно соответствует (в норме) метаболическим потребностям тканей: чем они (потребности) больше, тем большей будет и емкость сосудистого русла. Отсюда правомочен вывод: объем циркулирующей крови есть функция обмена. И далее - гиповолемия характеризуется не только (а иногда и не столько) уменьшением ОЦК, сколько его несоответствием емкости сосудистого русла в данный момент. С другой стороны, для компенсации этого несоответствия каждый раз развивается спазмирование, как сосудов сбора (венозное русло), так и артериального русла. Иными словами, развивается так называемая централизация кровообращения. Таким образом, непременным спутником гиповолемии любой природы является централизация кровообращения (формула не имеет обратной силы: не всякое спазмирование сосудов связано с гиповолемией). Если есть централизация кровообращения можно говорить о гиповолемии, если же централизации нет, нет и оснований ставить диагноз гиповолемии. Иначе говоря, лишь нарушения периферического кровообращения дают нам право подозревать их гиповолемическое происхождение. Отсюда можно сделать два вывода:

  • 1. Для объективной диагностики гиповолемии необходима динамическая информация о состоянии периферического кровообращения.
  • 2. Оценка адекватности лечения гиповолемии может быть проведена прежде всего по динамике показателей периферического кровообращения. Данные об АД и сердечном выбросе имеют важное, но не главное значение в оценке циркуляторных изменений при гиповолемическом шоке.

Итак, важнейшим компенсаторным механизмом при гиповолемии нужно считать централизацию кровообращения. Однако, не только приведение в соответствие емкости русла (ее уменьшение) и ОЦК является «целью» этой реакции. Ещё важнее, что в результате централизации кровообращения привлекается значительный объем интерстициальной и клеточной жидкости в сосуды, что компенсирует уменьшение объема крови.

Все эти компенсаторные механизмы имеют решающее значение, как для увеличения переносимости кровопотери, так и в развитии необратимости шока, поэтому необходимо иметь четкое представление о событиях в системе микроциркуляции, чтобы осознанно помогать организму преодолевать последствия гиповолемии.

Тот час вслед за развитием гиповолемии (в связи с: кровопотерей, эксикацией, увеличением ёмкости сосудистого русла, интоксикацией) сигналы с барорецепторов возбуждают активность симпатической нервной системы, что приводит к спазмированию сосудов сбора и мелких артерий периферии. Кроме того, повышается выброс катехоламинов надпочечниками и другими хромафинными структурами. Гуморальная регуляция направлена главным образом на пре- и пост-капиллярные сфинктеры: катехоламины их закрывают. Очень важно, что такое закрытие прекапиллярных сфинктеров происходит вопреки действию обычного регулятора микроциркуляции - рН среды. Известно, что ацидоз способствует открытию сфинктеров и восстановлению капиллярного кровотока, нормализация рН является сигналом к закрытию капилляров. При гиповолемии и увеличении концентрации катехоламинов возникают конкурентные отношения между ними и влиянием рН среды. До определенного уровня ацидоза влияние катехоламинов оказывается превалирующим. В результате резко редуцируется кровоток, снижается гидростатическое давление в капиллярах. Вследствие этого, согласно правилу Старлинга, межклеточная и клеточная жидкость в значительном объеме привлекается в сосудистое русло. Получается эффект «эндогенной инфузионной терапии», призванной купировать дефицит ОЦК.

Таким образом, уменьшение емкости сосудистого русла (спазм периферических сосудов) и частичное восстановление ОЦК служат мощной компенсаторной реакцией, позволяющей организму переносить потерю до 25% ОЦК и более без катастрофических нарушений циркуляции и снабжения жизненно важных органов и систем. Правда, дается это очень дорогой ценой - прогрессирующим нарушением перфузии тканей и эксикацией. В конечном счете, именно эти нарушения и приводят к состоянию необратимости, которое наступает тогда, когда прекапиллярные сфинктеры из-за нарастающего ацидоза перестают реагировать на катехоламины. Нужно заметить, что посткапиллярные сфинктеры менее чувствительны к кислотности среды и поэтому они дольше сохраняют реакцию на симпатоиметики. В этих условиях кровь входит в капилляры, гидростатическое давление нарастает, что приводит к массивному выходу плазмы (а затем и форменных элементов) в интерстициальное пространство. Теперь любая интенсивная инфузионная терапия оказывается безрезультатной, развивается сладжинг (заболачивание) периферических тканей. Прогрессивно уменьшается объем циркулирующей крови, а, следовательно, и венозный возврат к сердцу. На фоне резчайшей интоксикации, гипоксемии (нарушение вентиляционно-перфузионных отношений из-за снижения кровотока в легких) происходит остановка сердца.

Такова очень краткая, упрощенная схема событий при нелеченной (или леченной неадекватно) гиповолемии. Для простоты усвоения этих событий мы опускаем много существенных подробностей, однако и изложенного достаточно, чтобы сделать несколько очень важных в практическом отношении выводов.

  • 1. Как было уже отмечено, главным критерием тяжести гиповолемического шока и динамики его развития является состояние микроциркуляции периферических тканей.
  • 2. Данные о динамике АД, ударного объема сердца, ОЦК являются важными, но не решающими при оценке состояния больного и определении правильности лечения.
  • 3. Чем меньше времени продолжаются нарушения кровообращения на перирферии, тем больше надежд на благополучный исход при лечении гиповолемического шока.
  • 4. При «контролируемой» кровопотере (в операционной) правильной и адекватной можно назвать только такую терапию, которая предотвращает развитие централизации кровообращения.
  • 5. В случае адекватного и своевременного замещения объема потерянной крови (кровозаменителями и кровью) обменные нарушения тканей будут минимальными и усилия по поддержанию большинства параметров гомеостаза могут быть незначительными.

В течение жизни человек подвергается влиянию различных экзогенных и эндогенных факторов чрезвычайной силы, продолжительности или необычного, непривычного характера. Действие экстремальных факторов приводит к развитию либо адаптации к данному фактору, либо - экстремального (критического, неотложного) состояния.

Экстремальные состояния - общие тяжёлые состояния организма, которые развиваются под действием экстремальных факторов и характеризуются значительными расстройствами жизнедеятельности организма, чреватыми смертью.

К наиболее частым и клинически значимым экстремальным состояниям относят коллапс, шок и кому.

Иногда к экстремальным состояниям относят отравления. Однако, как правило, отравления, особенно при их тяжёлом течении, являются причиной того или иного экстремального состояния (токсогенные варианты коллапса, шока, комы).

Терминальные состояния - крайне тяжёлые общие состояния организма, которые при отсутствии специализированной врачебной помощи приводят к летальному исходу.

Терминальные состояния являются следствием неблагоприятного течения экстремальных состояний. К терминальным состояниям относят все стадии умирания - преагонию, агонию, клиническую смерть, а также начальный этап состояния после успешной реанимации.

Сравнительная характеристика экстремальных и терминальных состояний

Экстремальные и терминальные состояния имеют ряд общих признаков: общие причины, сходные ключевые звенья патогенеза, пограничное положение между жизнью и смертью, чреваты гибелью организма, требуют неотложной врачебной помощи.

Вместе с тем, экстремальные и терминальные состояния имеют ряд существенных отличий (табл. 20-1). В основе терминальных состояний лежат тяжёлые, а, следовательно - прогностически неблагоприятные процессы. В отличие от этого, при некоторых экстремальных состояниях возможна активация процессов адаптации и «выход» организма из этих состояний.

Таблица 20-1. Отличия экстремальных и терминальных состояний

Общая этиология экстремальных состояний

Экстремальные факторы подразделяют на экзогенные и эндогенные.

Экзогенные экстремальные факторы характеризуются высокой (разрушительной) интенсивностью или чрезмерной длительностью воздействия.

Эндогенные (неблагоприятное, тяжёлое течение болезней и болезненных состояний):

♦ недостаточность функций органов и физиологических систем;

♦ значительная кровопотеря;

♦ избыток продуктов иммунных или аллергических реакций;

♦ существенный дефицит или избыток БАВ либо их эффектов;

♦ психические травмы и перенапряжения.

Условия, способствующие возникновению экстремальных состояний

Факторы, потенцирующие эффекты экстремальных агентов. Например, последствия кровопотери усугубляются в условиях повышенной температуры воздуха; сердечная недостаточность при выполнении чрезмерной физической нагрузки может привести к кардиогенному шоку и т.д.

Реактивность организма. Гиперили гипоергическое состояние организма (в отличие от нормергического) существенно облегчает возникновение, усугубляет течение и исходы экстремального состояния.

Патогенез и проявления экстремальных состояний

В динамике экстремальных состояний выделяют три стадии: активации адаптивных механизмов, истощения и недостаточности их, экстремального регулирования организма.

СТАДИЯ АКТИВАЦИИ АДАПТИВНЫХ МЕХАНИЗМОВ

ОРГАНИЗМА

Эта стадия характеризуется закономерной генерализованной активацией функций тканей, органов и их систем. Это лежит в основе развития адаптивных реакций разной степени выраженности и специфичности. Принципиально все эти реакции можно подразделить на две категории.

Обеспечивающие специфическую адаптацию к данному конкретному экстремальному фактору (см. раздел «Адаптация», глава 19).

Реализующие неспецифические, стандартные процессы, развивающиеся при действии любого экстремального воздействия, т.е. стресс (см. «Стресс», глава 19).

СТАДИЯ НЕДОСТАТОЧНОСТИ АДАПТИВНЫХ МЕХАНИЗМОВ

Причины: недостаточная эффективность адаптивных реакций и нарастание повреждающего действия экстремального агента.

Звенья патогенеза:

♦ Прогрессирующее снижение эффективности реакций приспособления, компенсации, защиты и репарации.

♦ Нарастающее расстройство физиологических функций и распад функциональных систем организма.

♦ Нарушение обмена веществ и физико-химических процессов.

♦ Повреждение субклеточных структур, клеток и нарушение межклеточного взаимодействия.

Порочные круги могут формироваться при всех экстремальных состояниях, хотя и с разной частотой.

♦ При коллапсе, шоке и коме наблюдается перераспределение кровотока. Большое количество крови скапливается в расширенных венозных и артериальных сосудах брюшной полости, лёгких, подкожной клетчатки. Это значительно уменьшает МОК и, следовательно, приток крови к сердцу. Обусловленное этим снижение сердечного выброса крови приводит к ещё большему уменьшению МОК и усугублению состояния пациента.

♦ Феномен активации СПОЛ. Гипоксия, развивающаяся при всех экстремальных состояниях, обусловливает подавление активности систем антиоксидантной защиты тканей. Это ведёт к интенсификации образования в них активных форм кислорода и продуктов СПОЛ, которые повреждают ферменты тканевого дыхания, гликолиза, пентозофосфатного цикла. В итоге гипоксия усугубляется и порочный круг замыкается.

Проявления стадии недостаточности механизмов адаптации.

♦ Расстройства функций нервной системы. Характеризуются нарушениями чувствительности, контроля движений, интеграции деятельности органов, тканей и их систем, ВНД.

♦ Нарушение деятельности ССС. Проявляется аритмиями, признаками коронарной и сердечной недостаточности, расстройствами центральной, органной и микрогемоциркуляции.

♦ Отклонения в системе крови и гемостаза. Обусловливают нарушения объёма, вязкости и текучести крови; формирование агрегатов её форменных элементов, феномена сладжа, тромбов; развитие ДВС-синдрома, нередко приводящего к гибели пациента.

♦ Расстройства системы внешнего дыхания. Как правило, развиваются периодические формы дыхания (Биота, Чейна-Стокса, Куссмауля), а при тяжёлом течении - его полное прекращение (апноэ).

♦ Недостаточность функций почек. Проявляется олигоили анурией, нарушением фильтрации, экскреции, секреции и других процессов в них.

♦ Расстройство функций других органов и физиологических систем: печени, ЖКТ, эндокринных желёз и др.

♦ Значительные отклонения от нормы показателей гомеостаза, в том числе жизненно важных, критических. Являются закономерным проявлением недостаточности функций органов и их систем.

СТАДИЯ ЭКСТРЕМАЛЬНОГО РЕГУЛИРОВАНИЯ ЖИЗНЕДЕЯТЕЛЬНОСТИ ОРГАНИЗМА

Причины: нарастание степени и масштаба первичной и вторичной альтерации организма, прогрессирующая недостаточность механизмов адаптации.

Ключевые звенья патогенеза:

♦ Нарастающая гипо- и деафферентация центральных и периферических нервных структур, выход из-под нервных влияний исполнительных органов и тканей.

♦ Распад функциональных систем, обеспечивавших поддержание жизненноважных параметров организма.

♦ Переход на элементарный - метаболический уровень регуляции органов и тканей.

При нарастании указанных изменений развивается терминальное состояние и наступает смерть. Однако, проведение эффективного лечения позволяет блокировать прогрессирование расстройств, восстановить и даже нормализовать состояние пострадавшего.

Принципы терапии экстремальных состояний

Неотложные лечебные мероприятия при экстремальных состояниях базируются на реализации четырёх основных принципов: этиотропного, патогенетического, саногенетического и симптоматического. Этиотропное лечение направлено на прекращение или снижение силы и масштаба патогенного действия экстремального агента. Это достигается разными методами, зависящими от типа неотложного состояния (остановка кровотечения, прекращение действия низкой или высокой температуры, нормализация содержания кислорода во вдыхаемом воздухе и пр.).

Патогенетический принцип имеет целью блокирование механизмов развития экстремальных состояний путём воздействия на ключевые звенья патогенеза (расстройства кровообращения, дыхания, гипоксию, сдвиги КЩР, дисбаланс ионов, активацию процессов липопероксидации и др.).

Саногенетическая терапия имеет целью активацию или потенцирование механизмов защиты, компенсации, приспособления и возмещения повреждённых или утраченных структур и функций организма. Обеспечивается путём стимуляции функций сердца, дыхания, почек, печени и других органов и тканей; активации процессов репарации, систем дезинтоксикации, ликвидации избытка кислородных и липидных радикалов; потенцированием пластических реакций и других. Симптоматический принцип подразумевает устранение неприятных, тягостных, усугубляющих состояние пациентов симптомов и ощущений: головной боли, чувства страха смерти, каузалгий, гипоили гипертензивных реакций и других.

КОЛЛАПС

Коллапс - острое общее патологическое состояние, возникающее в результате значительного несоответствия ОЦК ёмкости сосудистого русла.

Характеризуется недостаточностью кровообращения, низким артериальным давлением, первично циркуляторной гипоксией, расстройством функций тканей, органов и их систем.

ЭТИОЛОГИЯ

Причины коллапса

Непосредственная причина коллапса - быстро развивающееся значительное превышение ёмкости сосудистого русла по сравнению с ОЦК. В зависимости от причин, нарушающих это соответствие, выделяют несколько разновидностей коллапса: кардиогенный, гиповолемический, вазодилатационный, постгеморрагический, инфекционный, токсический, ортостатический и др.

При снижении величины сердечного выброса развивается кардиогенный коллапс. Это наблюдается при острой сердечной недостаточности; состояниях, затрудняющих приток крови к сердцу (при стенозах клапанных отверстий, эмболии или стенозе сосудов системы лёгочной артерии).

При уменьшении ОЦК развивается гиповолемический коллапс. К этому приводят острое массивное кровотечение, быстрое и значительное обезвоживание организма, потеря большого объёма плазмы крови (например, при обширных ожогах).

При снижении ОПСС развивается вазодилатационный коллапс. Это может произойти при тяжёлых инфекциях, интоксикациях, гипертермии, эндокринопатиях (при гипотиреоидных состояниях, надпочечниковой недостаточности), передозировке сосудорасширяющих ЛС, гипокапнии, глубокой гипоксии и ряде других состояний.

Факторы риска. На развитие коллапса в значительной мере оказывают влияние физические характеристики окружающей среды (низкая или высокая температура, уровень барометрического давления, влажности), состояние организма (наличие или отсутствие какой-либо болезни, патологического процесса, психоэмоциональный статус и др.).

ПАТОГЕНЕЗ И ПРОЯВЛЕНИЯ КОЛЛАПСА

Несмотря на сходство патогенеза и проявлений различных видов коллапса (см. раздел «Патогенез и проявления экстремальных состояний» выше), некоторые из них имеют существенные различия. Постгеморрагический коллапс. Инициальный патогенетический фактор - быстрое и значительное уменьшение ОЦК (гиповолемия). Возрастание в связи с этим тонуса сосудов не устраняет несоответствия их ёмкости существенно снизившемуся ОЦК. В результате развивается гипоперфузия органов и тканей. Это приводит к нарастающей вначале циркуляторной, а затем (с присоединением гемической и тканевой) - смешанной гипоксии.

Ортостатический коллапс. Инициальное звено патогенеза ортостатического коллапса (обморока) - системная вазодилатация в результате быстрого снижения тонуса стенок артериол, а также ёмкостных сосу-

дов. Наблюдается при резком переходе тела в вертикальное положение из положения лёжа или сидя, особенно после длительной гиподинамии. При этом доминируют холинергические влияния на стенки сосудов (в связи с раздражением нейронов вестибулярных центров). Важный фактор риска - снижение реактивных свойств стенок резистивных сосудов к вазопрессорным веществам: катехоламинам, ангиотензину и другим.

МЕТОДЫ ЛЕЧЕНИЯ КОЛЛАПСА

Терапия коллапсов базируется на реализации этиотропного, патогенетического, саногенетического и симптоматического принципов. Этиотропное лечение направлено на прекращение действия экстремального фактора или снижение степени его повреждающего влияния: останавливают кровотечение, вводят антитоксины, антидоты, антимикробные ЛС.

Патогенетический принцип реализуется путём устранения или снижения степени последствий несоответствия ёмкости сосудистого русла и ОЦК. С этой целью пациентам вливают препараты крови, кровеили плазмозаменители, буферные растворы; вводят ЛС, повышающие тонус стенок резистивных и ёмкостных сосудов, активирующие функцию сердца и дыхательного центра; проводят оксигенотерапию; при наличии признаков надпочечниковой недостаточности используют кортикостероиды.

Саногенетическая терапия подразумевает стимуляцию механизмов адаптации: активацию гемопоэза, системы ИБН, детоксицирующей и других функций печени, экскреторной способности почек. Симптоматическое лечение включает мероприятия по устранению тягостных, неприятных и усугубляющих состояние пациента проявлений коллапса: болевого синдрома, чувства страха смерти, подавленности, тревоги и др. В зависимости от конкретной ситуации применяют антидепрессанты, нейролептики, седативные и болеутоляющие средства, психостимуляторы, транквилизаторы.

Шок - общее, крайне тяжёлое экстремальное состояние. Возникает под действием сверхсильных, разрушительных факторов и характеризуется стадийным прогрессирующим расстройством жизнедеятельности организма вследствие нарушения функций жизненно важных систем.

Этиология шока

Основные причины

♦ Различные варианты травм (механическое повреждение - разрушение, разрывы, отрывы, раздавливание тканей; обширные ожоги, воздействие электрического тока и др.).

♦ Массивная кровопотеря.

♦ Переливание большого объёма несовместимой крови.

♦ Анафилактические реакции.

♦ Острая недостаточность жизненно важных органов (сердца, почек, печени, головного мозга).

♦ Экзо- и эндогенные интоксикации.

Факторы риска

♦ Переохлаждение и перегревание организма.

♦ Длительное голодание.

♦ Нервное или психическое перевозбуждение.

♦ Значительная физическая усталость.

♦ Тяжёлые хронические заболевания.

♦ Нарушения реактивности организма.

Виды шока

Единой классификации шока нет. В качестве критерия для дифференцировки шоковых состояний служат, главным образом, их причина и тяжесть течения.

В зависимости от причины различают шок травматический (раневой), геморрагический, ожоговый, посттрансфузионный, аллергический (анафилактический), электрический, кардиогенный, токсический, психогенный (психический) и др.

В зависимости от тяжести течения выделяют: шок I степени (лёг- кий), шок II степени (средней тяжести), шок III степени (тяжё- лый).

Общий патогенез и проявления шока

Независимо от причины и тяжести клинических проявлений, различают две последовательных стадии шока.

Сначала возникает активация специфических и неспецифических адаптивных реакций. Эту стадию ранее называли стадией генерализованного возбуждения, или эректильной. В последние годы её называют стадией адаптации, или компенсации.

Если процессы адаптации недостаточны, развивается вторая стадия шока. Ранее её называли стадией общего торможения или торпид-

ной (от лат. torpidus - вялый). В настоящее время её называют стадией дезадаптации, или декомпенсации.

СТАДИЯ АДАПТАЦИИ

Стадия адаптации (компенсации, непрогрессирующая, эректильная) характеризуется мобилизацией и максимальным напряжением адаптивных механизмов организма, перераспределением пластических и энергетических ресурсов в пользу жизненно важных органов, что сопровождается значительными изменениями их функций. На стадии компенсации основное значение имеют нейроэндокринное, гемодинамическое, гипоксическое, токсемическое и метаболическое звенья патогенеза.

Нейроэндокринное звено

Вследствие гиперафферентации значительно усиливается выброс в кровь гормонов симпатикоадреналовой и гипоталамо-гипофизарно-надпочечниковой систем, а также щитовидной, поджелудочной и других эндокринных желёз. Эффекты:

Гиперфункция ССС и дыхательной системы, почек, печени, других органов и тканей. Это проявляется гипертензивными реакциями, тахикардией, учащением и углублением дыхания, перераспределением кровотока в разных регионах сосудистого русла, выбросом крови из депо.

По мере нарастания степени повреждения эти реакции принимают избыточный, неадекватный и некоординированный характер, что в значительной мере снижает их эффективность. Это и определяет в значительной мере тяжёлое или даже необратимое самоусугубляющееся течение шоковых состояний.

Сознание при шоке не утрачивается. В эту стадию обычно возникает нервное, психическое и двигательное возбуждение, проявляющееся излишней суетливостью, ажитированной речью, гиперрефлексией.

Гемодинамическое звено

Нарушение гемодинамики при шоке является результатом расстройств деятельности сердца, изменения тонуса резистивных и ёмкостных сосудов, уменьшения ОЦК, изменения вязкости крови, а также активности факторов системы гемостаза.

Расстройства сердечной деятельности.

♦ Причины: прямое действие на сердце экстремального фактора; кардиотоксический эффект высокого уровня в крови катехоламинов, гормонов коры надпочечников и щитовидной железы.

♦ Проявления: значительная тахикардия, различные нарушения ритма сердца, снижение ударного и сердечного выбросов, нару-

шения центральной, органно-тканевой и микрогемоциркуляции, системный застой венозной крови, замедление тока крови в сосудах микроциркуляторного русла.

Изменение тонуса резистивных и ёмкостных сосудов.

♦ Вначале тонус сосудов, как правило, возрастает вследствие гиперкатехоламинемии. В течение какого-то времени повышенный тонус стенок резистивных сосудов (артериол) способствует поддержанию системного АД, а ёмкостных сосудов (венул) - адекватного притока крови к сердцу.

♦ Позднее накапливается избыточное количество БАВ, снижающих тонус стенок сосудов (таких как аденозин, биогенные амины, гистамин, NO, ПгЕ, I 2).

Перераспределение кровотока. Происходит увеличение кровотока в артериях сердца и мозга при одновременном его уменьшении в сосудах кожи, мышц, органов брюшной полости, почек. Этот феномен получил название централизации кровотока.

♦ Причины феномена: неравномерное содержание адренорецепторов и рецепторов к другим биологически активным веществам в разных сосудистых регионах (наибольшее их число выявлено в стенках сосудов мышц, кожи, органов брюшной полости, почек и значительно меньшее - в сосудах сердца и головного мозга), образование в ткани миокарда и мозга большого количества сосудорасширяющих БАВ.

♦ Значение феномена: адаптивное (кровоснабжение сердца и мозга в таких условиях способствует поддержанию жизнедеятельности организма в целом); патогенное (нарушение функций гипоперфузируемых органов, изменение реологических свойств крови в сосудах вследствие стаза и выхода жидкой части крови в ткани).

Уменьшение ОЦК, изменение вязкости крови и активности факторов системы гемостаза выявляются уже на раннем этапе шоковых состояний.

Гипоксическое звено

Гипоксическое звено - один из главных и закономерных компонентов патогенеза шока.

Причины. Первоначально гипоксия обычно является следствием расстройств гемодинамики и носит циркуляторный характер. По мере усугубления состояния гипоксия становится смешанной. Это является результатом прогрессирующих расстройств дыхания, изменений в системе крови и тканевого метаболизма.

Последствия. Снижение эффективности биологического окисления потенцирует нарушение функций тканей и органов, а также - обмена веществ в них. Накопление избытка активных форм кислоро-

да является одной из причин недостаточности системы антиоксидантной защиты тканей и активации перекисных реакций.

Токсемическое звено

Причины:

♦ Сам экстремальный фактор может являться токсином (например, при токсическом, токсико-инфекционном шоке).

♦ Повреждение экстремальным фактором клеток и высвобождение из них избытка БАВ, продуктов нормального и нарушенного метаболизма, ионов, денатурированных соединений.

♦ Нарушение инактивации или экскреции токсичных соединений печенью, почками, другими органами и тканями.

Последствия: нарастание интоксикации потенцирует гипоксию, нарушения гемодинамики и полиорганную недостаточность.

Метаболическое звено

Причины: чрезмерное усиление нервных и гуморальных влияний на ткани и органы, расстройство гемодинамики в тканях и органах, гипоксия, токсемия.

Последствия. В целом изменения метаболизма характеризуются преобладанием процессов катаболизма: протеолиза, липолиза и СПОЛ, гликогенолиза и других. Содержание макроэргических соединений уменьшается, а уровень ионов и жидкости в тканях возрастает.

При неэффективности адаптивных механизмов и усугублении описанного выше комплекса расстройств развивается стадия декомпенсации шока.

СТАДИЯ ДЕКОМПЕНСАЦИИ

На стадии компенсации основное значение имеют те же звенья патогенеза, однако изменения в них носят неадаптивный, патогенный характер.

Нейроэндокринное звено. Сознание на стадии декомпенсации также не утрачивается, но отмечаются признаки заторможенности и спутанности сознания, развивается гипорефлексия. Эффекты нервных и гормональных влияний прогрессирующе уменьшаются вплоть до отсутствия.

Гемодинамическое звено

На стадии декомпенсации гемодинамическое звено патогенеза шока приобретает ключевое значение.

Причины:

♦ Прогрессирующее нарушение функции сердца и развитие сердечной недостаточности.

♦ Тотальное снижение тонуса резистивных и ёмкостных сосудов. Это устраняет адаптивный феномен централизации кровообращения. Снижение систолического АД до 60-40 мм рт.ст. чревато прекращением процесса фильтрации в клубочках почек и развитием острой почечной недостаточности.

♦ Дальнейшее снижение ОЦК и повышение её вязкости в связи с выходом жидкой части крови в межклеточное пространство.

Проявления: тотальная гипоперфузия органов и тканей, существенное расстройство микроциркуляции, капилляро-трофическая недостаточность.

Система гемостаза. Изменения в системе гемостаза заключаются в развитии дисбаланса концентрации или активности факторов свёр- тывающей, противосвёртывающей и фибринолитической систем. Последствия: развитие ДВС-синдрома, ишемии и некроза тканей, геморрагий в них.

Гипоксическое звено. Развивается выраженная гипоксия смешанного типа и некомпенсированный ацидоз вследствие системных расстройств гемодинамики, гиповентиляции лёгких, уменьшения ОЦК, почечной недостаточности, расстройства обмена веществ. Токсемическое звено характеризуется увеличением содержания в крови и других биологических жидкостях продуктов нормального и нарушенного метаболизма; накоплением в крови соединений, высвобождающихся из повреждённых и разрушенных клеток (ферментов, денатурированных белков, ионов, различных включений); БАВ и других. Указанные вещества значительно усугубляют повреждение органов. Метаболическое звено шока на стадии декомпенсации проявляется доминированием процессов катаболизма белков, липидов, углеводов, минимизацией пластических процессов в клетках, гипергидратацией клеток, накоплением в биологических жидкостях недоокисленных веществ, увеличением в тканях уровня продуктов липопероксидации. Клеточное звено патогенеза шока на стадии декомпенсации характеризуется нарастающим подавлением активности ферментов и жизнедеятельности клеток, повреждением и разрушением клеточных мембран, нарушениями межклеточных взаимодействий.

Особенности патогенеза некоторых видов шока

Особенности различных видов шока определяются главным образом их причиной и характером реагирования на неё организма.

ОЖОГОВЫЙ ШОК

Причина: обширные глубокие ожоги кожи (как правило, более 25% её поверхности). У детей и людей пожилого возраста развитие шока возникает при ожоге уже около 10% поверхности кожи.

Основные особенности ожогового шока

♦ Сильная болевая афферентация от зоны поражения.

♦ Выраженная токсемия.

♦ Обычно длительная адаптивная стадия, тяжёлое течение торпидной.

♦ Частое инфицирование ожоговой поверхности и развитие сепсиса.

♦ Значительная дегидратация вследствие испарения с ожоговой поверхности.

♦ Частое развитие «шоковых почек».

ТРАВМАТИЧЕСКИЙ ШОК

Причина травматического шока: массированное повреждение органов, мягких тканей и костей под влиянием механических факторов (например, разрыв или раздавливание тканей и органов, отрыв конечностей, перелом костей и др.).

Основное звено в патогенезе травматического шока - значительная болевая афферентация. Как правило, механическая травма сочетается с большей или меньшей степенью кровопотери и инфицированием раны.

Методы лечения шока

Чем раньше после воздействия экстремального фактора начато лечение шоковых состояний, тем выше его эффективность и благоприятнее прогноз.

Этиотропное лечение проводят путём устранения или ослабления действия шокогенного фактора, предотвращения или снижения выраженности избыточной патогенной афферентации от болевых и других экстеро-, интеро- и проприорецепторов.

Патогенетическое лечение направлено на разрыв ключевых звеньев механизма развития шока, а также на стимуляцию адаптивных реакций и процессов.

Устранение расстройств центральной, органно-тканевой и микрогемоциркуляции.

♦ Пациентам вливают кровь, плазму или плазмозаменители (последние включают высокомолекулярные коллоиды, препятствующие выходу жидкости во внесосудистое русло).

♦ Применяют вазоактивные и кардиотропные препараты, позволяющие нормализовать сократительную функцию миокарда, тонус сосудов и устранить сердечную недостаточность.

♦ Используют средства, уменьшающие проницаемость стенки сосудов: препараты кальция и кортикостероиды.

Ликвидация или уменьшение степени расстройств кровоснабжения органов и тканей.

Устранение (или уменьшение степени) недостаточности внешнего дыхания. Реализуется с помощью ИВЛ, использованием газовых смесей с повышенным содержанием кислорода и гипербарической оксигенации, применением дыхательных аналептиков.

Улучшение кровоснабжения почек, а в тяжёлых случаях - использование аппарата «искусственная почка» (при наличии признаков почечной недостаточности).

Коррекция отклонений КЩР и ионного баланса. Достигается, как правило, в результате нормализации кровообращения, дыхания, функций почек и других органов. Также используют растворы гидрокарбоната натрия и хлорида калия для нормализации КЩР, а также жидкости, содержащие различные ионы, для устранения их дисбаланса.

Уменьшение степени токсемии. С этой целью проводят гемосорбцию и плазмафарез, введение антидотов и антитоксинов, инъекции коллоидных растворов (адсорбирующих токсичные вещества), плазмы и плазмозаменителей, мочегонных препаратов.

Симптоматическая терапия направлена на уменьшение тягостных и неприятных ощущений, чувства страха, тревоги и беспокойства, обычно сопровождающие шоковые состояния. Для этого используют, например, различные психотропные средства.

КОМА

Кома (греч. koma - глубокий сон) - экстремальное состояние, характеризующееся потерей сознания, недостаточностью функций органов и физиологических систем организма.

ВИДЫ КОМАТОЗНЫХ СОСТОЯНИЙ

Коматозные состояния, возникающие при различных патологических процессах, можно разделить на следующие группы.

Обусловленные первичным поражением ЦНС (нейрогенные). К этой группе относят кому, развивающуюся при инсультах, черепно-мозговой травме, эпилепсии, воспалениях и опухолях головного мозга или его оболочек.

Развивающиеся при нарушениях газообмена.

♦ Гипоксические. Связаны с недостаточным поступлением кислорода извне (удушение) или нарушением транспорта кислорода при тяжёлых острых расстройствах кровообращения и анемиях.

Респираторные. Обусловлены гипоксией, гиперкапнией и ацидозом вследствие значительных нарушений лёгочного газообмена при дыхательной недостаточности.

Обусловленные нарушением метаболизма при недостаточной или избыточной продукции гормонов (диабетическая, гипотиреоидная, гипокортикоидная, гипопитуитарная кома), передозировке гормональных препаратов (тиреотоксическая, гипогликемическая кома).

Токсогенные комы, связанные с эндогенной интоксикацией при токсикоинфекциях, недостаточности печени и почек (печёночная, уремическая кома), панкреатите; а также с воздействием экзогенных ядов (кома при отравлениях, в том числе алкоголем).

Обусловленные потерей воды и электролитов (гипонатриемическая кома при синдроме неадекватной продукции АДГ; хлоргидропеническая, развивающаяся у больных с упорной рвотой; алиментарнодистрофическая, или голодная кома).

НАРУШЕНИЯ СОЗНАНИЯ

Степень нарушений сознания нередко играет определяющую роль в исходе многих заболеваний и патологических процессов. Поэтому определение состояния сознания - один из основных моментов при обследовании больного, особенно в экстренных ситуациях. Нарушения сознания принято подразделять на изменения сознания и на угнетение сознания.

Изменения сознания - продуктивные формы нарушения сознания, развивающиеся на фоне бодрствования. Они характеризуются расстройством психических функций, изменённым восприятием окружающей среды и собственной личности. К ним относят делирий, аменцию и сумеречные расстройства сознания.

Угнетения сознания - непродуктивные формы нарушения сознания, характеризующиеся дефицитом психической активности со снижением уровня бодрствования, угнетением интеллектуальных функций и двигательной активности. Для определения степени угнетения сознания используют шкалу Глазго.

Причины комы

Экзогенные факторы - патогенные агенты окружающей среды, как правило, чрезвычайной силы, токсичности или разрушительного характера.

♦ Различные травмирующие (как правило, головной мозг) факторы (электрический ток, механическая травма).

♦ Термические воздействия (перегревание, солнечный удар, переохлаждение).

♦ Значительные колебания барометрического давления (гипо- и гипербария).

♦ Нейротропные токсины (алкоголь и его суррогаты, этиленгликоль, токсичные дозы наркотиков, барбитуратов, седативных и некоторых других лекарственных веществ).

♦ Инфекционные агенты (нейротропные вирусы, ботулинистический и столбнячный токсины, возбудители малярии, брюшного тифа, холеры).

♦ Экзогенная гипоксия.

♦ Лучевая энергия (большие дозы проникающей радиации). Эндогенные факторы, приводящие к развитию комы, являются результатом тяжёлых расстройств жизнедеятельности организма.

♦ Патологические процессы в мозге (ишемия, инсульт, опухоль, абсцесс, отёк и т.п.).

♦ Недостаточность кровообращения и дыхательная недостаточность.

♦ Патология системы крови (массированный гемолиз эритроцитов, выраженная анемия).

♦ Эндокринопатии (гипоинсулинизм, гипо- и гипертиреоидные состояния, надпочечниковая недостаточность).

♦ Печёночная недостаточность, нарушения системы пищеварения (синдром мальабсорбции, кишечная аутоинтоксикация или аутоинфекция).

♦ Почечная недостаточность.

♦ Тяжёлое прогрессирующее течение коллапса и шока.

Общий патогенез и проявления

Патогенез коматозных состояний, независимо от вызвавших их причин, включает несколько общих ключевых звеньев.

Гипоксия и нарушения процессов энергообеспечения

Расстройство кислородного обеспечения тканей и органов является важнейшим патогенетическим звеном комы и может служить её причиной.

Нейроны головного мозга, являющиеся наиболее кислородзависимыми структурами, в условиях гипоксии становятся самым уязвимым объектом в организме. Прекращение мозгового кровообращения уже через 8-10 с приводит к нарушениям энергетического обеспечения нейронов. В результате происходит потеря сознания. Наступающее в течение последующих 4-7 мин истощение глюкозы, а также подавление анаэробного метаболизма сопровождается невосполнимым расходованием энергии АТФ. Развиваются быстро

прогрессирующие дистрофические процессы, ацидоз и гипергидратация нервных клеток, что приводит к их гибели.

Нарушение энергообеспечения клеток всех органов и тканей обусловливает их дисфункцию, особенно ЦНС и сердца. В связи с этим у пациентов, находящихся в коме, утрачено сознание, снижена выраженность или отсутствуют рефлексы; развиваются аритмии и недостаточность сократительной функции сердца, а также артериальная гипотензия; нарушается частота и периодичность работы нейронов дыхательного центра, уменьшается объём альвеолярной вентиляции, что приводит к сердечно-лёгочной недостаточности и усугублению гипоксии.

Интоксикация

Кома любого происхождения характеризуется накоплением в организме токсичных веществ. Они попадают в организм извне (при экзогенных комах) и образуются в нём самом (при комах любого генеза).

Токсичные вещества, а также продукты их метаболизма оказывают выраженное патогенное действие на нейроны ЦНС, клетки желёз внутренней секреции, сердца, печени, почек, крови.

Интоксикацию организма продуктами метаболизма усугубляет нарушение дезинтоксикационной функции печени и экскреторной деятельности почек.

Дисбаланс ионов и воды

Нарушение содержания и соотношения между отдельными ионами в цитозоле, межклеточной и других биологических жидкостях - важное звено патогенеза комы.

Снижение активности Na + ,К + -АТФазы плазмолеммы и повреждение мембран клеток приводит к потере клетками К+ с развитием гиперкалиемии, увеличению внутриклеточных и .

Уменьшение или и увеличение в крови (смешанный ацидоз).

Гиперосмия и гиперонкия являются результатом гидролиза крупномолекулярных соединений (ЛП, протеогликанов, гликогена и других) до молекул среднего и малого размера.

Некоторые варианты комы, (например, почечная и печёночная), характеризуются иными изменениями ионного баланса. Последствия

♦ Гипергидратация клеток мозга и других органов.

♦ Увеличение содержания жидкости в межклеточном пространстве.

♦ Возрастание объёма жидкости в сосудистом русле (гиперволемия).

♦ Отёк мозга и лёгких.

♦ Диарея, рвота, полиурия (например, при гипохлоремической, диабетической, гиперосмолярной коме) могут вызвать прогрессирующую вначале внеклеточную, а затем и тотальную гипогидратацию.

♦ Значительное повышение вязкости крови.

♦ Нарушение органно-тканевой и микрогемоциркуляции.

♦ Диссеминированная агрегация форменных элементов крови, её гиперкоагуляция и тромбоз (ДВС-синдром).

Нарушения электрогенеза

Нарушения электрогенеза характеризуются расстройствами формирования МП и ПД, возбудимости и проводимости. В наибольшей мере это проявляется в структурах мозга и сердца.

Последствия: нарушения сознания, вплоть до его потери, расстройства функций нервных центров (прежде всего дыхательного и кардиовазомоторного), развитие сердечных аритмий, включая фибрилляцию желудочков.

Дисбаланс БАВ и их эффектов

Нарушение синтеза и высвобождения БАВ (нейромедиаторов, гормонов, цитокинов и др.).

Расстройство процессов активации, инактивации, доставки БАВ к клеткам-мишеням.

Нарушение взаимодействия БАВ с их клеточными рецепторами.

Расстройство ответа клеток-мишеней обусловлено повреждением мембран клеток и внутриклеточных посредников реализации эффектов гормонов, медиаторов и цитокинов.

Распад физиологических и функциональных систем.

Минимизация функций органов и тканей, энергорасходов и пластических процессов.

Переход на метаболический уровень регулирования функций органов и тканей. Обычно это предшествует развитию терминального состояния.

Особенности патогенеза некоторых коматозных состояний

Специфика отдельных видов комы выявляется обычно на ранних этапах её развития. На этих этапах ещё проявляются особенности причины комы, а также инициальных звеньев её патогенеза. По мере нарастания тяжести коматозных состояний уменьшаются специфические и всё более проявляются общие их черты.

КОМА, СВЯЗАННАЯ С ЧЕРЕПНО-МОЗГОВОЙ ТРАВМОЙ

Причина: травма, сопровождающаяся тяжёлым повреждением головного мозга.

Проявления

♦ Двигательные ответы и открывание глаз на болевой раздражитель отсутствуют или значительно снижены.

♦ Речь отсутствует или пациент издает нечленораздельные звуки.

♦ Гипоили арефлексия.

♦ Ритм сердца и дыхание нарушены.

♦ АД и МОК снижены, даже если не было кровопотери.

♦ Выявляется локальная неврологическая симптоматика в связи с очаговыми поражениями головного мозга: параличи (чаще гемипарезы), патологические рефлексы, локальные расстройства чувствительности, судороги.

♦ В ликворе, как правило, обнаруживаются компоненты крови.

АПОПЛЕКСИЧЕСКАЯ КОМА

Причины:

♦ Кровоизлияние в мозг (геморрагический инсульт).

♦ Острая локальная ишемия мозга с исходом в инфаркт (ишемический инсульт).

Факторы риска: артериальная гипертензия (особенно периоды гипертонических кризов), атеросклеротические изменения стенок сосудов мозга.

Патогенез. Ведущими патогенетическими факторами апоплексической комы являются ишемия и гипоксия мозга, повышение проницаемости стенок сосудов микроциркуляторного русла, нарастающий отёк вещества мозга, вторичные расстройства кровообращения вокруг зоны ишемии.

Последствия инсульта различны и зависят от масштаба и топографии повреждения, степени гипоксии и отёка мозга, количества очагов повреждения, тяжести артериальной гипертензии, выраженности атеросклероза, возраста пациента.

Апоплексическая кома относится к наиболее неблагоприятно протекающим коматозным состояниям, чреватым смертью или инвалидизацией пациента.

ГИПОХЛОРЕМИЧЕСКАЯ КОМА

Причина гипохлоремической (хлоргидропенической, хлоропривной) комы - значительная потеря организмом хлорсодержащих веществ.

♦ Многократная обильная рвота (у пациентов с эндогенными интоксикациями, пищевыми отравлениями, токсикозом беременности, стенозом привратника, кишечной непроходимостью).

♦ Неправильное лечение диуретиками.

♦ Продолжительная бессолевая диета.

♦ Почечная недостаточность на её полиурической стадии.

♦ Свищи тонкого кишечника.

Учитывая, что при названных выше состояниях относительно медленно теряются Cl - , Na + и К + , а также компенсирующие эффекты адаптивных механизмов, кома в типичных случаях развивается постепенно.

Проявления

В связи с потерей организмом жидкости кожные покровы и слизистые сухие, тургор ткани снижен, черты лица заострены, язык сухой, развивается олигурия, Ht значительно повышен, АД обычно снижено, ОЦК уменьшен, развивается ионный дисбаланс и нарушение кровоснабжения мозга.

Нарушение формирования МП и ПД вследствие снижения в плазме крови, межклеточной и других биологических жидкостях содержания Na + , К + , Cl - и некоторых других ионов.

Нарушения специфических и неспецифических функций клеток. В результате этого развиваются мышечная слабость, гипогидратация.

Методы терапии коматозных состояний

Этиотропное лечение является основным. Оно в значительной мере определяет прогноз состояния пациента. В связи с этим принимают меры для прекращения или ослабления патогенного действия причинного фактора.

♦ При травматической коме устраняют повреждающий фактор, применяют обезболивающие, местные анестетики, при необходимости - наркоз.

♦ При коме, вызванной интоксикацией организма применяют специфические антидоты, антитоксины, промывание желудка, диуретики.

♦ При диабетических комах вводят расчётную дозу инсулина, при необходимости - одновременно с раствором глюкозы (для профилактики гипогликемической комы).

♦ При коме инфекционного происхождения применяют антибактериальные средства.

Патогенетическая терапия является ключевой при лечении любого пациента в состоянии комы. Она включает мероприятия, направленные на блокаду, устранение или снижение повреждающих эффектов основных звеньев патогенеза комы: гипоксии, интоксикации, расстройств КЩР, дисбаланса ионов и жидкости, БАВ и их эффектов.

Антигипоксическая терапия: ИВЛ, дыхание газовыми смесями с повышенным содержанием кислорода, гипербарическая окси-

генация, введение антиоксидантов, нормализация работы сердца и тонуса сосудов.

Устранение или уменьшение степени интоксикации организма путём переливания крови, плазмы или плазмозаменителей, физиологического раствора хлорида натрия. Эти препараты сочетают с диуретиками для стимуляции выведения из организма жидкости и находящихся в ней токсичных веществ. В тяжёлых случаях, а также при почечной недостаточности, уремической коме показаны гемодиализ и перитонеальный диализ.

Нормализация показателей КЩР, баланса ионов и жидкости достигается введением в организм буферных растворов с необходимым содержанием и соотношением различных ионов.

Нормализация уровня БАВ и их эффектов. С этой целью используют гормоны надпочечников, гормоны поджелудочной железы и др. Указанные препараты нормализуют функции сердца, почек, мозга и других органов, показатели гомеостаза, активируют специфические и неспецифические адаптивные реакции организма.

Симптоматическая терапия направлена на оптимизацию функций органов и их систем, устранение судорог, боли, тягостных ощущений в пре- и посткоматозном периодах. С этой целью применяют противосудорожные средства, болеутоляющие вещества (включая наркотические), кардиотропные и вазоактивные препараты, дыхательные аналептики.

Учитывая, что кома характеризуется тяжёлыми расстройствами функций органов, их систем, механизмов регуляции организма, эффективность терапевтических мероприятий должна контролироваться постоянной регистрацией состояния жизненно важных функций (сердечной деятельности, дыхания, экскреторной функции почек и др.), сознания и параметров гомеостаза.

ОТРАВЛЕНИЯ

Отравление (интоксикация) - патологическое состояние, возникающее при воздействии на организм химического соединения (яда), вызывающего нарушения жизненно важных функций и развитие экстремальных состояний.

АКТУАЛЬНОСТЬ

В последние годы, особенно в России, отмечают постоянное увеличение числа бытовых отравлений. Кроме того, участились случаи криминальных отравлений.

Частота острых отравлений достигает 200-300 человек на 100 000 населения в год (3-5% всех больных).

Случайные отравления составляют около 80%, суицидальные - 18%, профессиональные - 2% в их структуре.

Преобладающий пол: суицидальные отравления - женский, случайные бытовые отравления (особенно алкогольная и наркотическая интоксикации) - мужской.

ЭТИОЛОГИЯ

Причины. Виды ядов в зависимости от их органно-тканевой тропности:

♦ Нейротоксические (вызывают нарушение психической деятельности, судороги и параличи) - наркотики, снотворные средства, алкоголь и его суррогаты, угарный газ, фосфорорганические соединения, никотин, боевые отравляющие вещества (БОВ: виикс, би-зет, зарин), производные изониазида.

♦ Кардиотоксические (приводят к нарушениям сократительной функции и ритма сердца, токсической дистрофии миокарда) - сердечные гликозиды, соли бария, калия.

♦ Пульмонотоксические (вызывают токсический отёк лёгких, дыхательную недостаточность) - оксиды азота, БОВ (фосген, дифосген).

♦ Гепатотоксические (обусловливают токсическую гепатопатию, печёночную недостаточность) - хлорированные углеводороды (дихлорэтан), ядовитые грибы (бледная поганка), фенолы, альдегиды.

♦ Нефротоксические (приводят к токсической нефропатии и почечной недостаточности) - соли тяжёлых металлов, этиленгликоль, щавелевая кислота.

♦ Гемо- и гемоглобинотропные (нарушают транспорт и утилизацию кислорода в связи с гемолизом эритроцитов, метгемоглобинемией, карбоксигемоглобинемией) - анилин и его производные, нитриты, мышьяковистый водород, синильная кислота и её производные, угарный газ, БОВ (хлорциан).

♦ Кожно-резорбтивные (вызывают местные воспалительные и некротические изменения в сочетании с общетоксическими явлениями) - дихлорэтан, гексахлоран, БОВ (иприт, люизит), кислоты и щёлочи, мышьяк и его соединения, ртуть (сулема).

♦ Слезоточивые и раздражающие (раздражают слизистые оболочки) - хлорпикрин, БОВ (си-эс), пары концентрированных кислот и щёлочей.

Факторы риска

♦ Алкоголизм, токсикомания, наркомания.

♦ Частые стрессы, неблагоприятная семейная обстановка, материальное и бытовое неблагополучие.

♦ Напряжённость современных условий жизни, вызывающая у некоторых людей потребность в постоянном приёме успокаивающих средств.

♦ Психические заболевания.

♦ Профессиональные вредности (хронические отравления).

♦ Плохо контролируемая продажа ЛС, самолечение, обращение к знахарям, шарлатанам.

♦ Неправильное хранение ЛС и химических препаратов в домашних условиях (чаще приводит к отравлениям у детей).

СТАДИИ ОСТРЫХ ОТРАВЛЕНИЙ

Токсикогенная (ранняя). Характеризуется специфическими проявлениями воздействия на организм токсичного вещества (нарушение функции мембран, белков и других рецепторов токсичности), а также (при тяжёлой интоксикации) признаками коллапса, шока или комы.

Соматогенная. Проявляется активацией адаптивных реакций организма, направленных на ликвидацию нарушений гомеостаза (гипофизарно-адреналовая реакция, централизация кровообращения, реакции системы гемостаза).

ЛЕЧЕНИЕ

Общая тактика:

♦ Срочная госпитализация пострадавшего в специализированные токсикологические центры.

♦ Выполнение мероприятий по ускоренному выведению токсичных веществ из организма (активная детоксикация).

♦ Проведение специфической (антидотной) терапии.

♦ Нормализация функций органов, тканей и их систем. Этиотропное лечение направлено на детоксикацию организма.

Специфическая (антидотная) терапия.

Предотвращение попадания яда в кровь и его системного действия.

♦ Введение рвотных средств или вызывания рвоты раздражением задней стенки глотки.

♦ Промывание желудка через зонд (особенно важно на догоспитальном этапе).

♦ Фиксация отравляющего вещества и выведение его из кишечника с помощью адсорбентов (например, активированного угля), слабительных средств, зондирование кишечника с последующим введением растворов, устраняющих сдвиги pH и дисбаланс ионов (кишечный лаваж).

♦ Транспортировка пострадавшего на чистый воздух, обеспечение проходимости дыхательных путей, ингаляция кислорода.

♦ Обильное обмывание кожных покровов проточной водой при попадании токсичных веществ на кожу.

Ускорение выведения токсичного вещества из организма посредством форсирования диуреза (вливание растворов электролитов с последующим введением диуретиков), устранение гиповолемии (инфузии плазмозамещающих растворов) и др. Патогенетическая терапия направлена на блокаду основных звеньев патогенеза и восстановление жизненно важных функций организма посредством нормализации дыхания, восстановления сердечной деятельности, нормализации функций почек и печени, коррекции нарушений КЩР.

Симптоматическое лечение имеет целью устранение усугубляющих состояние пациента симптомов (головной боли, гиперили гипотензивных реакций, миалгий и т.п.).

Шок - пат процесс, развивающийся в ответ на воздействие чрезвычайных раздражителей и сопровождающийся прогрессивным нарушением жизненно важных функций нервной системы, кровообращения, дыхания, обмена веществ и некоторых других функций.

Для любого шока характерно двухфазное изменение деятельности ЦНС:

1) первоначальное распространенное возбуждение нейронов («эректильная стадия» или стадия компенсации);

2) в дальнейшем распространенное угнетение их активности («торпидная стадия» или стадия декомпенсации).

Обычно в обеих фазах шока сохраняется сознание. Сохранены, хотя существенно ослаблены, и рефлекторные реакции на внешние раздражители различной модальности.

3) терминальная стадия - сознание полностью отсутствует(ком состояние).

Для эректильной стадии (компенсации) шока характерно усиление симпатоадреналовых и гипофизарно-надпочечниковых влияний, которые повышают активность большинства физиологических систем.

В начале торпидной фазы шока уровень катехоламинов и кортикостероидов обычно сохраняется повышенным, однако эффективность их действия на различные органы снижается.

Во второй стадии шока происходит ослабление центральной гемодинамики: АД снижается, увеличивается депонированная фракция крови, падает ОЦК и пульсовое давление, часто отмечается «нитевидный» пульс. В стадии декомпенсации нарастающая недостаточность кровообращения и дыхания приводит к развитию тяжелой гипоксии, и именно она в дальнейшем определяет тяжесть шокового состояния .Характерными для шока являются расстройства микроциркуляции. Они могут возникать уже на первой стадии вследствие перераспределения кровотока и его редукции в ряде органов (почках, печени, кишечнике и др.).

Обязательный патогенетический фактор при шоках разной этиологии - это эндотоксемия. Токсическое действие при шоке оказывают многочисленные БАВ, в избытке поступающие во внутреннюю среду организма (гистамин, серотонин, кинины, катехоламины и др.). Существенное значение в развитии токсемии имеют метаболиты, усиленно образующиеся в клетках вследствие расстройств обмена веществ: молочная и пировиноградная кислоты, кетокислоты, калий и др. Возникающие в результате гипоксии и расстройств микроциркуляции нарушения функции печени и почек приводят к еще большим изменениям состава крови: ацидозу, ионному и белковому дисбалансу, сдвигам осмотического и онкотического давления в различных средах организма.

Указанные выше изменения в организме накладывают отпечаток на биохимические процессы и в клетке («шоковая» клетка). Для клеточных нарушений характерна известная триада гипоксии: дефицит АТФ, ацидоз, повреждение биомембран.Очень важно то, что в процессе развития шока часто возникают так называемые «порочные круги».

10. Действие высоких температур (ожоги, ожоговая болезнь, гипертермия, тепловой и солнечный удар, проявления, патогенез).

.Ожоговая болезнь - разносторонние функциональные нарушения внутренних органов и систем целостного организма, обусловленные обширными (более 10–15 % поверхности тела) и глубокими ожогами. Ведущими патогенетическими факторами становятся: а) гиповолемия; б) болевое раздражение; в) выраженное повышение проницаемости сосудов.

В развитии ожогового шока выделяют две стадии: компенсацию и декомпенсацию.

Для первой стадии (компенсаторной) характерно усиление симпатоадреналовых и гипофизарно-надпочечниковых влияний, которые модифицируют обмен веществ и повышают активность ряда физиологических систем. В эту стадию шока происходит активация функций системы кровообращения: тахикардия, артериальная гипертензия (спазм сосудов), перераспределение кровотока; наблюдается учащение дыхания и увеличение альвеолярной вентиляции. Кожные покровы бледные, зрачки расширены. В начальный период компенсаторной фазы ожогового шока уровень катехоламинов и кортикостероидов обычно повышен. Плазмопотеря на первой стадии ожоговой болезни приводит к выраженным нарушениям водно-электролитного обмена. Вначале развивается внеклеточная дегидратация. Затем, в результате значительного увеличения внутриклеточного натрия (повышение проницаемости биомембран для натрия), других ионов, анионов органических кислот, вода в избытке поступает в клетки. Возникает внутриклеточная гипергидратация (отек клетки).

Второй период ожоговой болезни - общая токсемия. Эта фаза связана с развивающейся аутоинтоксикацией продуктами распада тканей, образующимися на месте ожога. А именно - с денатурированным белком, биологически активными аминами.

Ожоговое истощение . В этот период организм страдает от прогрессирующей кахексии, отеков, анемии, гипоксии и дистрофических изменений. Усугубляются эти нарушения стимуляцией распада собственных белков для обеспечения процессов восстановления пораженных структур. В этот период могут формироваться пролежни.

Выздоровление характеризуется полным отторжением некротических тканей, рубцеванием и эпителизацией очагов поражения. Восстанавливается масса тела. Появляется аппетит (булимия).

Принципы патогенетической терапии ожоговой болезни:

1. На первой стадии - восстановление нормального объема циркулирующей крови, снижение плазмопотери, детоксикация.

2. На второй и третьей стадиях - удаление токсинов, нормализация функций почек (гемосорбция, гемодиализ), водно-минерального обмена, борьба с инфекцией и устранение иммунодефицита. Усиленное парентеральное питание.

Особенно чувствительны к перегреванию пожилые люди и дети в возрасте до года (несовершенство механизмов терморегуляции).

Нарушения функций органов и систем при перегревании

Повышение температуры тела сопровождается: 1) резким учащением дыхания (тепловая одышка) вследствие раздражения дыхательного центра нагретой кровью; 2) учащением сердечных сокращений и повышением АД; 3) при усилении потоотделения - сгущением крови, нарушением электролитного обмена, как следствие - гемолизом эритроцитов и интоксикацией организма продуктами распада гемоглобина; 4) разрушением плазменных факторов свертывания крови и, следовательно, нарушением процессов ферментативного гемостаза; 5) изменениями в системе крови, ведущими к гипоксии и ацидозу.

Острое перегревание организма с быстрым повышением температуры тела и длительное воздействие высокой температуры окружающей среды могут вызвать тепловой удар . Температура тела при этом достигает 40–41 о С.

Этиология: 1) температура среды > 50 о С; 2) температура среды > 40 о С и влажность 80 % и больше. Основной патогенетический фактор - воздействие инфракрасного излучения.Патогенез патологических изменений при тепловом ударе разделяют на две стадии: первая носит преимущественно компенсаторный характер, а вторая - отражает явления декомпенсации и разрушения гомеостатических механизмов теплорегуляции.

Смерть при тепловом ударе наступает от паралича дыхательного центра.

Принципы патогенетической терапии: 1) охлаждение тела;

2) стимулирование сердечно-сосудистой системы (восстановление ОЦП, уменьшение гемоконцентрации, борьба с циркуляторной гипоксией); 3) проведение антидегидратационной терапии.

11.Действие низких температур (гипотермия и отморожения: проявления патогенез). Роль охлаждения в возникновении простудных заболеваний .

Могут вызвать снижение температуры тела (гипотермию, температура тела < 35 о С) и местные изменения в тканях (отморожение). Возникающие патологические процессы могут завершиться замерзанием организма. Терморегуляция в организме проявляется в форме взаимосочетания процессов теплообразования и теплоотдачи, регулируемых нервно-эндокринным путем.Нарушение теплового баланса в организме, приводящее к гипотермии, возникает: 1) при усиленной отдаче тепла при нормальной теплопродукции; 2) при снижении теплопродукции; 3) при сочетании этих факторов. При охлаждении поверхности тела возбуждаются холодовые рецепторы, что рефлекторно (через активацию САС) возбуждает беспорядочные непроизвольные сокращения мышц, проявляющиеся как раз в виде дрожи (озноба). При этом увеличивается потребление кислорода и углеводов мышечной тканью, что и влечет за собой повышение теплообразования.В условиях длительного действия низких температур компенсация теплопотери нарушается и наступает вторая стадия охлаждения - стадия декомпенсации (собственно гипотермия). Она характеризуется нарушением естественных механизмов химической теплорегуляции (активность ферментов снижается) и сохранением механизмов физической теплорегуляции.В эту стадию снижается температура тела, прекращается мышечная дрожь, снижается потребление кислорода и интенсивность обменных процессов, расширяются периферические кровеносные сосуды. Изменяется работа сердца, что связано, видимо, с прямым действием холодового фактора на мышцу. Следствием этого является снижение возбудимости миокарда, скорости проведения возбуждения, увеличение рефрактерного периода.

Поскольку жидкая часть крови выходит из сосудистого русла, развивается гемоконцентрация. Функции ЦНС угнетены, снижена иммунологическая реактивность.Вышесказанное свидетельствует о том, что в стадию декомпенсации в организме создаются условия, приводящие к гипоксии, преимущественно за счет нарушения гемоциркуляции. Следствием гипоксии является накопление недоокисленных продуктов: лактата, кетоновых тел, значит, развивается ацидоз и дисфункция клеточных мембран.Смерть наступает обычно от паралича дыхательного центра (при иммерсии чаще вследствие нарушения работы сердца). При развитии гипотермии клинически выделяют две стадии:

1. Ступорозно-адинамическая. Сонливость, слабость, снижение систолического АД до 95 мм рт.ст. (диастолическое - в норме). Речь тихая, медленная.

2. Судорожная - стадия холодового наркоза. Сознание отсутствует, кожные покровы бледные, холодные. Дыхание поверхностное, пульс плохих свойств. Зрачки не реагируют на свет. Температура тела 26–30 о С.Завершая рассмотрение основных вопросов патофизиологии общего охлаждения при действии холодового фактора на организм, выделим ряд биологических особенностей, присущих этому патогенному фактору:

1. Обратная зависимость между резистентностью к холоду и сложностью организации организма (простейшие замерзают при t = 0 о С, млекопитающие - при t = 26 о С).

2. Замедление активности белков-ферментов, а следовательно, биохимических процессов и физиологических функций при снижении температуры приводит к снижению потребления кислорода.

3. Высокая резистентность белка к охлаждению по сравнению с нагреванием.

4. Отсроченность патологических проявлений от момента холодовой травмы.

Местное действие низкой температуры может вызвать отморожения различной тяжести.

Отморожение поверхностных тканей организма - это результат замедления процессов жизнедеятельности на каком-либо участке периферии тела, в то время как внутренние органы и ткани сохраняют нормальную температуру и активность ферментов, обусловливающих ход обмена веществ.При отморожении в коже происходит существенное нарушение кровотока, связанное с расстройством микроциркуляции (спазм, тромбоз, нарушение реологических свойств крови). Следствием этого является развитие гипоксии.

Патофизиология отморожения - это местное воспаление. Организм стремится расплавить и удалить омертвевшую ткань, для чего используются нейтрофилы и макрофаги, осуществляющие лизис с помощью их лизосомных ферментов. Вторым важным патогенетическим звеном является присоединение инфекции. Это происходит из-за наличия полноценной питательной среды для флоры в зоне некроза и подавления местных факторов противоинфекционной защиты.

Принципы согревания: 1. Стимуляция сердечно-сосудистой системы (борьба с циркуляторной гипоксией). 2. «Ступенчатое» согревание тела с целью повышения температуры «ядра». Пострадавший помещается в ванну с водой при ее температуре, равной температуре тела. Далее температура воды повышается на два градуса в течение 20 мин (до 40 о С).

ЯРОСЛАВСКАЯ ГОСУДАРСТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ КАФЕДРА ПАТОФИЗИОЛОГИИ

УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ ДЛЯ СТУДЕНТОВ

В. В. Поликарпов

ПАТОФИЗИОЛОГИЯ ЭКСТРЕМАЛЬНЫХ СОСТОЯНИЙ

(Шока, коллапса, комы)

Ярославль 2000

1. Экстремальные состояния организма. Определение, классификация, общие звенья патогенеза…………........................................................... ……………………………………

2. Шок.........................................................................................……………………………………

2.1. Классификация, стадии, общие механизмы развития и проявления шокового процесса……

……………......................................................................... …………………………………...

2.2. Особенности патогенеза отдельных видов шока............. ……………………………………

3. Коллапс. Причины, вилы, основные механизмы развития и проявления коллапса………...

4. Кома ………………………………………................................................................................

4.1. Классификация, стадии, общие механизмы развития и проявления коматозных состояний…..................................................................................................................................................4.2. Особенности патогенеза экзогенных видов комы…………………………………………..4.3. Особенности патогенеза эндогенных видов комы…………………………………………..

5. Литература……………………………………………………………………………………..

I. ЭКСТРЕМАЛЬНЫЕ СОСТОЯНИЯ ОРГАНИЗМА. ОПРЕДЕЛЕНИЕ. КЛАССИФИКАЦИЯ, ОБЩИЕ ЗВЕНЬЯ ПАТОГЕНЕЗА.

При воздействии на организм чрезвычайно сильных патогенных факторов или при неблагоприятном развитии уже имеющихся патологических процессов (болезней) могут возникать крайне тяжелые состояния, характеризующиеся предельным напряжением защитно-приспособитель- ных реакций организма. Подобные состояния получили название экстремальных или критических (латин, extremum крайний, предельный, чрезвычайный). Они представляют серьезную опасность для жизни и требуют немедленных лечебных мероприятий.

К экстремальным состояниям организма относятся коллапс, шок и кома. Развитие того или иного экстремального состояния определяется причиностным фактором, условиями взаимодействия и реактивными свойствами организма. Для каждого вида экстремальных состояний характерны как общие, так и специфические звенья патогенеза, определяющие тяжесть их течения и клинические проявления.

Наиболее общим звеном патогенеза экстремальных состояний, вызывающим однотипные изменения обмена веществ, относят нарушения микроциркуляции. Они характеризуются уменьшением перфузии капилляров, их расширением и увеличением проницаемости. Возникают агрегация эритроцитов, тромбоцитов, развивается стаз и микротромбоз, ухудшаются реологические свойства крови. Нарушения микроциркуляции закономерно вызывают развитие гипоксии. Чаще гипоксия носит смешанный характер, поскольку обусловлена комбинацией нарушений гемодинамики, дыхания, условий оксигеиации гемоглобина, тканевого дыхания.

Из-за гипоксии, в первую очередь, страдает энергетический и углеводный обмен. В клетках уменьшается содержание креатинфосфата, АТФ. накапливаются АДФ, АМФ, аденозин и неорганический фосфат. За счет включения анаэробного гликолиза развивается метаболический ацидоз. Усиливается активность свободнорадикальных процессов и лизосомальных ферментов. Нарушаются процессы активного транспорта ионов клеточных мембран. Дефицит ЛТФ сопровождается нарушением всех энергозависимых метаболических процессов: синтеза белков, нуклеиновых кислот, фосфолипидов и т.д. Накопление продуктов нарушенного метаболизма, ферментов, физиологически активных веществ вызывает интоксикацию организма, токсемию.

Указанные нарушения метаболизма являются типичными для всех видов экстремальных состояний. По их выраженность и соотношение отдельных сдвигов могут существенно отличаться. Благодаря возникновению порочных кругов при экстремальных состояниях нарушения обмена веществ вызывают изменение функции тех или иных органов, что дополнительно усугубляет метаболические расстройства.

В клинической практике нередко трудно провести четкую грань между тяжелыми формами экстремальных состояний и терминальными состояниями организма, которые являются пограничными между жизнью и смертью. В обоих случаях возникает реальная угроза гибели организма, требуются экстренные лечебные мероприятия. Однако, между экстремальными и терминальными состояниями имеются существенные различия. Главное отличие заключается в том, что экстремальные состояния (в большинстве случаев) самостоятельно обратимы, в то время как,

терминальные - без специальной помощи заканчиваются прогрессирующим угнетением физиологических функций, гибелью организма. При экстремальных состояниях, даже крайней степени тяжести, активизируются те или иные адаптационные процессы, достигая максимальною уровня напряжения. Включение механизмов адаптации при экстремальных состояниях, как и при стрессе, происходит благодаря активации симпатико-адреналовой и гипофизарно-надпочечниковой систем. Однако, в отличие от стресса, происходит сужение диапазона приспособительных реакций, организм переходит на "экстремальный уровень регулирования". В его основе лежит нарастающее отключение структур ЦНС от избыточной патологической афферентации. Возникает функциональная изоляция нейронов, они переходят на авторитмический режим - максимально экономный по энергозатратам. Наибольшую устойчивость проявляют бульбарные центры и структуры лимбико-ретикулярного комплекса. Функция дыхательною и сосудодвигательного центров снижается до уровня, необходимого для поддержания элементарных форм дыхания и кровообращения.

При неблагоприятном развитии экстремального состояния может произойти срыв и угасание механизмов адаптации. В этом случае экстремальное состояние переходит в терминальное.

Кроме этого, при экстремальных состояниях отчетливо проявляются свойства патогенного фактора, вызвавшего их развитие и специфические механизмы патогенеза (например, при травматическом шоке, гипогликемической коме). В этой связи устранение этиологического фактора и блокада основных звеньев патогенеза (например, болевой афферентации, гипогликемии) оказываются наиболее эффективными методами терапии. При терминальных состояниях организма значение вида этиологического фактора и особенностей патогенеза невелико. Поэтому жизнь больного полностью зависит от состояния кровообращения, дыхания и от времени, прошедшего после их прекращения.

Таким образом, при экстремальных состояниях механизмы адаптации направлены не только на поддержание жизни, но и на борьбу и выход организма из угрожающих жизни состояний.

2. ШОК

2.1. Классификации, стадии, общие механизмы развития и проявления шокового процесса.

Шок (франц. choc удар)- остро развивающийся, угрожающий жизни патологический процесс, обусловленный действием на организм сверхсильного патогенного раздражителя. Шок характеризуется этапным нарушением деятельности ЦНС (эректильная и торпидная стадии), вызывающим угрожающие жизни изменения висцеральных функций и обмена веществ.

В зависимости от причинного фактора, вызывающего шок выделяют следующие его вилы: I) травматический; 2) геморрагический; 3) ожоговый; 4) гемотрансфузионный; 5) анафилактический; 6) кардиогенный.

Часто понятие шока не дифференцируют от других экстремальных состояний организма, например, коллапса или комы. Действительно, как при коллапсе или коме в торпидную стадию шока может развиваться сосудистая недостаточность. Однако, необходимо учесть, что коллапс по патогенезу является первично гемодинамическим расстройством, протекающим в виде нарастающего снижения артериального и венозного давления. При коме артериальная гипотензия является

следствием первичного глубокого угнетения функций ЦНС. А при шоке изменения кровообращения возникают вторично, в результате фазных нарушений деятельности ЦНС. Отмечаются две последовательно сменяющие друг друга формы изменения кровообращения - гипердинамическая (в эректильную стадию шока) и гиподинамическая (в торпидную стадию).

Следует иметь в виду и то, что при шоке сознание больного полностью не утрачивается. При коме отмечается стойкая, полная утрата сознания. При коллапсе, практически всегда, возникает кратковременная утрата сознания - обморок. Кроме этого, наркоз и обезболивание при шоке имеют профилактическое и лечебное значение, но на течение коллапса и комы влияют крайне отрицательно.

На различные этиологические шокогенные факторы организм отвечает типовой реакцией. Для всех видов шока характерно двухфазное изменение деятельности ЦНС: первоначальное генерализованное возбуждение нейронов (эректильная стадия), сменяющееся в дальнейшем распространенным угнетением их активности (торпидная стадия). Стадийные изменения активности ЦНС обусловлены чрезмерной патологической афферентацией: неадекватным раздражением всех видов рецепторов, нервных стволов, сплетений, центральных нервных структур.

На всем протяжении шока сознание не утрачивается полностью, однако, рефлекторные реакции на все внешние раздражители (в том числе болевые) существенно ослаблены. В основе сохранения ясности сознания при шоке лежит отключение, а не торможение коры головного мозга, чем шок принципиально отличается от других экстремальных состояний организма. Блокада прохождения патологической афферентной им пульсации осуществляется вставочными тормозными нейронами на всех уровнях ЦНС (таламус, ретикулярная формация, спиной мозг). Кроме того, при шоке происходит активация опиоидных структур ЦНС, вызывающая блокад) ноцицептивной импульсации на всех уровнях ее происхождения и активация антиноцицептивных структур ЦНС (b -эндорфин).

Фазовые изменения в нервной системе вызывают расстройства регуляции эндокринных желез. В эректильную стадию шока повышается тонус симпатической нервной системы, усиливается активность гипофизарно-надпочечниковой системы.

Катехоламины вызывают сокращение сосудов с выраженной а -адренорецепцией (кожа, почки, органы брюшной полости). Кровоток в этих органах резко ограничивается, развивается ишемия. Возбуждение b -адренорецепторов сердца сопровождается тахикардией. Коронарные и мозговые сосуды не имеют выраженной a -адренорецепции. поэтому не сокращаются. Возникает централизация кровообращения, т.е. сохранение кровотока в жизненно важных органах - сердце, мозге и поддерживается (или повышается) давление в крупных артериальных сосудах. Под воздействием катехоламинов может развиваться эритроцитоз за счет выхода эритроцитов из депо.

В торпидную стадию шока уровень несвязанных с плазменными белками катехоламинов и кортикостероидов несколько уменьшается, оставаясь, однако, заметно выше обычного уровня. В дальнейшем отмечается снижение активности и истощение симпатоадреналовой и гипофизарнонадпочечниковой систем. В ишемизированных в эректильную стадию шока органах возникает гипоксия и начинают образовываться биологически активные вещества, вызывающие расширение сосудов. Снижение активности симпатоадреналовой и гипофизарно-надпочечниковой систем в сочетании с вазодилятацией в торпидную стадию шока вызывает угнетение центрального

кровообращения и дыхания (брадикардия, снижение артериального давления, увеличение депонированной фракции крови, уменьшение ОЦК, брадипноэ, альвеолярная гиповентиляция). Возникающая недостаточность кровообращения и дыхания приводит к развитию смешанной гипоксии, выраженность которой и определяет тяжесть и последствия шока.

Нарушения функции системы кровообращения закономерно вызывают расстройства микроциркуляции. Они возникают уже в эректильную стадию шока вследствие перераспределения и редукции кровотока в печени, почках, кишечнике и других органах. В торпидную стадию нарушения микроциркуляции приобретают все более распространенный характер. Кровоток замедляется, уменьшается количество активно функционирующих капилляров с заполнением части из них агрегатами форменных элементов, а части свободных от клеток крови плазмой. Агрегация форменных элементов при шоке начинается в посткапиллярных венулах, затем распространяется на капилляры и мелкие вены. В поздних стадиях шока этот процесс выявляется и в артериолах. Наиболее существенные изменения микроциркуляции развиваются в легких, почках, печени, брыжейке и менее всего они выражены в пиальных сосудах головного мозга. Установлено, что даже

в торпидную стадию тяжелого шока при катастрофических нарушениях микроциркуляции практически во всех органах биоэлектрическая активность подкорковых структур сохраняется. В легких развивается картина, характерная для так называемого "шокового легкого". Она заключается

в синдроме шунтирования крови, интерстициальном отеке и замедлении диффузии газов через альвеолярно-капиллярную мембрану. Возникает и прогрессирует гипоксическая гипоксия, проявлениями которой служат одышка, цианоз, снижение Р02 артериальной крови. Нарушения почечной микроциркуляции вызывают развитие синдрома "шоковой почки", и формированию в дальнейшем почечной недостаточности.

Нарушения микроциркуляции проявляются не только снижением уровня перфузии микрососудов, но и ухудшением реологических свойств крови, повышением проницаемости капилляров, периваскулярным отеком. Увеличение проницаемости микрососудов способствует появлению в крови разнообразных токсических веществ, развитию токсемии. Вследствие нарушения обмена веществ в кровь поступают образующиеся в клетках метаболиты (лактат, пируват, кетоны, жирные кислоты, липоперекиси, продукты белкового обмена и др.). Токсическое действие оказывают физиологически активные вещества, усиленно высвобождающиеся и поступающие в кровь при шоке (ацетилхолин, гистамин, серотонин. кинины, простагландины и др.). Вследствие нарушения микроциркуляции в сосудах кишечника нарушается его барьерная функция. Это приводит к появлению в крови токсинов, образующихся в кишечнике (скатол, фенол), продуктов жизнедеятельности кишечной микрофлоры. Усиление бродильных и гнилостных процессов может происходить и в результате ослабления моторной и секреторной функции желудочно-кишечного факта, которые закономерно отмечаются при шоке.

Возникающие в результате интоксикации, гипоксии и расстройств микроциркуляции нарушения функции печени и ночек замыкают порочный круг в развитии токсемии при шоке.

В процессе развития шока возникают и другие порочные круги, когда первоначальные нарушения деятельности органов и систем могут потенцироваться. Например, расстройства

деятельности ЦНС приводят к нарушению центральной регуляции кровообращения и дыхания. Угнетение этих жизненно важных функций вызывает гипоксию, а последняя усугубляет нарушения деятельности нервной системы.

Выраженность и конкретное значение выделенных патогенетических факторов могут колебаться в широких пределах в зависимости от вида шока, ею стадии и тяжести.

В возникновении и развитии шока существенное значение принадлежит реактивным свойствам организма. Шок протекает тяжелее у маленьких детей и пожилых людей. В молодом возрасте особенно ярко выражены признаки эректильной стадии шока. Имеется определенная зависимость тяжести шока от пола. Известно, что кардиогенный шок в одинаковой степени часто встречается и у женщин, и у мужчин, но клиническое его течение тяжелее у женщин. Травматический шок чаще встречается у мужчин. Развитие кардиогенного шока связано также с сезонными изменениями реактивности организма.

2.2. Особенности патогенеза отдельных видов шока.

Травматический шок - стадийно развивающийся патологический процесс, возникающий при тяжелых механических повреждениях.

При воздействии на организм механического агента значительной силы в зоне поражения раздражению подвергаются все виды рецепторов, нервные волокна, проходящие в тканях, и волокна, входящие в состав нервных стволов.

Раздражение нервных элементов в зоне травмы продолжается и после прекращения воздействия повреждающего агента. Оно поддерживается сдавлением нервных волокон, их отеком, действием на рецепторы продуктов тканевого распада и нарушенного обмена веществ. Мощный поток патологической афферентной импульсации из зоны травмы вызывает генерализованное возбуждение ЦHC (эректильная стадия шока), которое довольно быстро сменяется угнетением нейрональной активности (торпидная стадия). Классический вариант клинических проявлений шока в торпидную стадию описал в 1865 году хирург П.И. Пирогов. "С оторванной рукою или ногою лежит такой окоченелый на перевязочном пункте неподвижно; он не кричит, не вопит, не жалуется, не принимает ни в чем участия и ничего не требует; тело его холодно, лицо бледно, как у трупа; взгляд неподвижен и обращен вдаль; пульс как нитка, едва заметен под пальцем и с частыми премежками. На вопросы окоченелый или вовсе не отвечает, или только про себя, чуть слышным шепотом; дыхание также едва приметно. Рана и кожа почти вовсе не чувствительны, но если большой нерв, висящий из раны, будет чем-нибудь раздражен, то больной одним легким сокращением личных мускулов обнаруживает признаки чувства. Окоченение нельзя объяснить большой потерей крови и слабостью от анемии... Окоченелый не потеря; совершенно сознания, он не то что вовсе не сознает своего страдания, он как будто бы весь в него погрузился, как будто затих и окоченел в нем".

Стадийные изменения системного кровообращения и микроциркуляции, нарушения обмена веществ и других физиологических функций, в основном, соответствуют типовым при шоке. Однако, при травматическом шоке наиболее выражена редукция (централизация, перераспределение) кровообращения. Из-за централизации кровообращения изменяется региональная микроциркуляция.

Наиболее выражены микроциркуляторные расстройства в ночках, печени, скелетных мышцах, коже, кишечнике. При тяжелом течении шока может развиваться почечная недостаточность ("шоковая почка"). Изменения вентиляционноперфузионных отношений вызывают нарушение газообменной и метаболической функции легких ("шоковое легкое"). Нарушение кровотока в печени может вызывать ее функциональную недостаточность, способствуя нарастанию токсемии. Токсемия усиливается и за счет кишечного эндотоксикоза, возникающего вследствие микроциркуляторных расстройств в кишечнике и снижения его барьерной функции.

Часто травматическое повреждение сопровождается кровотечением. Если травма минимальна, а объем кровопотери более 800-1000 мл, обычно говорят о развитии геморрагического шока.

Геморрагический шок (гиповолемический) - патологический процесс, развивающийся вследствие массивного кровотечения, характеризующийся в торпидную стадию длительной гипотензией на фоне сохранения сознания. Геморрагический шок может продолжаться в течение многих часов.

При острой массивной кровопотере патологическая афферентация возникает одновременно во всех органах и тканях вследствие резкого снижения перфузии и развития гипоксии. Гипоксическое и метаболическое возбуждение огромного количества хеморецепторов вызывает необычно мощный, аварийный поток сигналов о развитии опасной ситуации. Однако, при острой массивной кровопотере в силу крайне быстрого темпа развития событий не успевает сформироваться обычная болевая реакция с внешними вегетативными компонентами. Это обстоятельство является основанием для выделения из травматического шока понятия геморрагический шок.

Пусковым звеном патогенеза геморрагического шока является резкое, быстрое уменьшение ОЦК. Поэтому наряду с общими для всех видов шока механизмами развития, преобладают механизмы, направленные на быстрое восстановление ОЦК. При геморрагическом шоке выражена редукция кровообращения, за счет спазма емкостных сосудов печени, кожи, кишечника. Возникающее снижение гидростатического давления в капиллярах обеспечивает поступление межтканевой жидкости в сосуды. Особенно интенсивно этот процесс протекает в скелетной мускулатуре, которая содержит самые большие в организме запасы интерстициальной жидкости.

Афферентная импульсация от волюмо- и барорецепторов сосудов почек при гиповолемии вызывает возбуждение системы ренин-ангиотензин-альдостерон. Усиление вагусной афферентации стимулирует выработку в гипоталамусе вазопрессина. Возбуждение ангиотензином питьевого центра гипоталамуса вызывает типичную для геморрагического шока сильную жажду.

Включение механизмов, направленных на восстановление ОЦК. в ряде случаев, предотвращает дальнейшее развитие геморрагического шока. Однако, необходимо учесть, что тяжесть геморрагического шока определяется объемом кровопотери и темпом кровотечения. Причем, эти кровотечения и быстрое падение артериального давления следует считать определяющими факторами в патогенезе геморрагического коллапса. Дело в том, что скорость развития отрицательных последствий острой кровопотери может быть намного выше, чем темп развертывания приспособительных реакций. Именно в таких условиях и развивается коллапс. Он отличается от геморрагического шока неуклонным критическим падением артериального давления, утратой

сознания. Терминальное состояние наступает быстро и продолжительность течения такою коллапса исчисляется минутами.

Ожоговый шок.

При обширных ожогах поверхности тела в организме развивается комплекс общих и местных патологических процессов, приводящий к ожоговой болезни. Первичная реакция организма при термической травме может развиваться в виде шокового процесса.

Частота и тяжесть ожогового шока определяются площадью поверхности тела, на которой кожа повреждается па всю глубину. Клинические наблюдения свидетельствуют, что шок развивается при повреждении 15-20% поверхности тела. У детей первых двух лет жизни - при ожоге 5-10% поверхности тела.

В эректильную стадию ожогового шока в ЦНС одномоментно поступает мощный поток афферентной импульсации (прежде всего болевой) от экстерорецепторов обоженной поверхности тела. Крайняя степень возбуждения нейронов довольно быстро сменяется распространенным угнетением их активности.

Главной особенностью патогенеза ожогового шока является быстрое развитие тяжелой токсемии. После прекращения действия высокой температуры, вызывающей первичную альтерацию, повреждение продолжает развиваться. Вторичная альтерация обусловлена широким спектром БАВ, освобождающихся из поврежденных клеток кожи, слизистых оболочек, нервных окончаний, тканевых макрофагов. Активные ферменты, выходя из лизосом поврежденных клеток, усиливают протеолиз, глико- и липолитические процессы. Первичная и вторичная альтерация нарушают барьерную функцию кожи. Происходит инфицирование обожженной поверхности микроорганизмами, их бурное размножение и выделение токсинов. Повышение сосудистой проницаемости способствует быстрому всасыванию токсинов хорошо развитой капиллярной сетью кожи, развитию токсемии. Проникновение в общий кровоток токсинов, БАВ, ферментов вызывает распространенное повышение сосудистой проницаемости для воды и белка. Повреждение эндотелия капилляров токсинами, ухудшение реологических свойств крови способствует процессу агрегации форменных элементов, образованию микротромбов, нарушению микроциркуляции (ДВС-синдром).

Сгущение крови и увеличение ее вязкости связано с выходом плазмы через ожоговую поверхность (плазморрея). При обширных ожогах объем циркулирующей плазмы может уменьшаться на 25-40% от нормального, а содержание альбуминов в плазме снижается на 40-50% от исходного за сутки. Вследствие потери большого количества жидкости развивается внеклеточная дегидратация. По мере развития шока присоединяется внутриклеточная гипергидратация. Она обусловлена накоплением в клетках Na, H+ анионов органических кислот. Калий, наоборот, выходит из поврежденных клеток. В крови отмечается гипонатриемия и гиперкалиемия, которые в сочетании

с гипопротеинемией, усиливают изменения ее осмотических и онкотический свойств. В ряде случаев, изменения физико-химических свойств крови, токсемия обусловливают гемолиз эритроцитов.

В последующие периоды течения ожоговой болезни возможно развитие аутоаллергического повреждения микрососудов и паренхиматозных органов. Антигенные свойства приобретают измененные термическим воздействием белки и продукты нарушенного белкового обмена.

Аллергическое повреждение почек в сочетании с обтурацией канальцев нефрона белком и гемоглобином вызывают развитие почечной недостаточности, значительно усиливающей тяжесть ожоговой болезни.

Гемотрансфузионный шок - наиболее тяжелая форма осложнений, возникающая при переливании серологически несовместимой крови. Несовместимость крови реципиента и донора бывает по системе АВО, Rh-фактору, или индивидуальным антигенам (Даффи, Лютеран, Келл), другим антигенам системы резус (rhC, rhE и др.).

При групповой несовместимости крови клинические признаки шока появляются уже во время трансфузии. При резус несовместимости - через несколько часов.

Основным патогенетическим фактором в развитии шока при групповой и резус несовместимости является процесс массивной агглютинации эритроцитов и внутрисосудистый гемолиз. Происходит активация протеолиза и фибринолитической системы, высвобождение БАВ (кинины, простагландины, серотонин, гистамин и др.).

В крови увеличивается содержание калия, снижается рН. Указанные процессы приводят к развитию токсемии. Изменения физико-химических свойств крови и токсемия вызывают усиление патологической афферентации и ЦНС за счет возбуждения большой площади рецепторов сосудистого русла. Возникают фазные изменения деятельности ЦНС с типичным для шока нарушением центральных механизмов регуляции кровообращения. Как следствие - возникают расстройства микроциркуляции с развитием циркуляторной гипоксии. При этом усиливается повреждающее действие уже сформировавшейся в результате гемолиза гемической формы гипоксии. Продолжительность гемолиза зависит от объема перелитой несовместимой крови и составляет ос 1 до 7 дней.

Тяжесть гемотрансфузионного шока в значительной мере определяется нарушением функции почек, проявляющейся в первые сутки после гемотрансфузии. В таких случаях токсемия отягощается гиперазотемией и другими сдвигами гомеостаза, характерными для почечной недостаточности.

Анафилактический шок - одна из наиболее тяжелых форм аллергии немедленного типа. Возникновение шока часто связано с парентеральным введением в сенсибилизированный организм вакцин, сывороток, лекарств (антибиотиков, сульфаниламидов, анестетиков и т.д.). Гораздо реже - при попадании в организм яда жалящих насекомых, а иногда и при ингаляционном или энтеральном попадании аллергена (особенно, у детей). Аллерген взаимодействует с антителами реагинами, фиксированными на рецепторах тканевых и кровяных базофилов. В большом количестве тканевые базофилы находятся в рыхлой соединительной ткани, окружающей сосуды, их особенно много в коже, легких, органах желудочно-кишечного тракта. Этим обстоятельством определяется максимальная степень повреждения при анафилактическом шоке соответствующих органов и систем. Образование комплексов антиген-антитело вызывает синтез и освобождение широкого спектра БАВ, производных арахидоновой кислоты, ферментов (медиаторов аллергии).

Анафилактический шок развивается молниеносно с короткой эректильной стадией, возникает двигательное возбуждение, чувство беспокойства, спастические боли в области живота, кожный зуд.

Возбуждение ЦНС связано с гиперафферетацией от рецепторов сосудистого русла, кожи,

Поскольку главным патогенетическим механизмом шокового состояния является снижение перфузии органов и тканей, можно ожидать примерно одинаковое развитие патофизиологических реакций при различных вариантах шока. Частные компоненты этой реакции в отдельных случаях могут несущественно разли­чаться, однако общая направленность их бывает обычно при­мерно одинаковой.

Нейроэндокринные реакции. Комплекс нейроэндокринных изменений при шоке может рассматриваться двояко: с одной стороны, это механизм запуска всех последующих ответов ор­ганизма на патологический инцидент, вызывающий снижение минутного объема кровообращения, с другой - это приспособ­ление организма к новым условиям существования, вызванным снижением тканевой перфузии .

Феномен снижения объема перфузии в организме улавли­вается рецепторами низкого давления, локализующимися в пра­вом предсердии, и барорецепторами высокого давления в аорте и в зоне каротидного синуса. Это является пусковым механиз­мом увеличения секреции АКТГ, АДГ и гормона роста, проду­цируемых гипофизом. Одновременно происходит активация надпочечникового секреторного аппарата через периферические симпатические пути, в результате которой в кровь выделяется большое количество адреналина и норадреналина. Увеличение продукции АКТГ и ишемическая активация ренин-ангиотензиновой системы стимулирует освобождение надпочечниками кортизола и альдостерона. Центральным «пультом», воспринимаю­щим патологическую периферическую шоковую- афферентацию, является, по-видимому, гипоталамус, откуда эфферентная ком­пенсирующая импульсация распространяется через ретикуляр­ную формацию ствола мозга, вентролатеральные и вентромедиальные ядра и гипофиз.

В целом нейроэндокринные ответы на остро возникшее шо­ковое состояние можно разделить на немедленные и отсрочен­ные. Высвобождение катехоламинов из адреналовой системы и симпатических нервных ганглиев, которое обеспечивает оптими­зацию гемодинамики, а также последующее освобождение АДГ, альдостерона и кортизола, приводящие к задержке Na + и воды и обеспечивающие поддержание волемии, являются выражени­ем такой немедленной компенсации. Происходит также актива­ция гликогенового пула в связи с дефицитом О 2 и усилением анаэробного метаболизма. Гипергликемия, частично обуслов­ленная катехоламинемией, высвобождением глюкагона, корти­зола и гормона роста, связана главным образом с угнетением секреции инсулина. Хотя катаболический характер метаболизма не выгоден для организма, он позволяет кратковременно улуч­шить условия гемодинамики и оптимизировать метаболизм углеводов в миокарде.


Отсроченный ответ на шоковое состояние реализуется уве­личением секреции тироксина, а также усилением антагонизма между андрогенами и катехоламинами, что позволяет сберечь быстро истощающиеся источники глюкозы.

Нейроэндокринная стимуляция лимбической системы вызывает беспокойство и возбуждение больного. Иногда возникает страх смерти. Особенно выражен он при развитии острого ин­фаркта миокарда, сопровождающегося болевым синдромом и гипотензией, а также при острой кровопотере. Проявлению нейроэндокринных реакций при шоке способствуют также снижение температуры тела и общее охлаждение. Дополнитель­ным фактором в развитии нейроэндокринной реакции на шок является активация хеморецепторных механизмов аорты и каротидного синуса, которые реагируют на снижение концентра­ции Рао 2 изменения Ра СО2 и рН. Таким образом, конечным эффектом гормональных пертурбаций является повышение тонуса периферических сосудов, т. е. повышение периферического сосудистого сопротивления, перераспределение общего кровото­ка, увеличение работы миокарда, задержка воды и солей поч­ками и повышение уровня глюкозы в крови.

Системное кровообращение. На первоначальных этапах раз­вития каждый из вариантов шока имеет собственную гемодинамическую характеристику. Так, гиповолемический шок ха­рактеризуется низкой преднагрузкой, которая и обусловливает синдром малого выброса. При кардиогенном шоке синдром ма­лого выброса возникает вследствие миокардиальной несостоя­тельности при достаточной преднагрузке. При септическом шоке даже на ранних стадиях его развития могут иметь место сни­жение преднагрузки, постнагрузки и угнетение сократительной функции миокарда. В поздних стадиях развития практически всех вариантов шоковых состояний наблюдаются многообраз­ные сочетающиеся формы поражения кровообращения, обуслов­ленные периферическим сосудистым параличом, потерей жидко­сти в интерстициальное пространство, наконец, токсической де­прессией миокарда. Рассмотрим эти факторы более подробно.

Гиповолемия . При потере объема крови из замкнутого сосудистого пространства компенсация возможна двумя путя­ми: укорочением времени кругооборота крови благодаря тахи­кардии с сохранением сердечного выброса, близкого к норме, и мобилизацией всей депонированной крови. Острая гиповолемия, возникшая в результате кровопотери, ведет к снижению венозного возврата. Поскольку снижение ударного объема, сердечного выброса и артериальная гипотензия уменьшают ба-рорецепторную стимуляцию, вазомоторный центр отвечает на это мобилизацией адренергического компонента. В результате частота сердечных сокращений и сократимость миокарда уве­личиваются, более экономно (в пользу жизненно важных орга­нов) начинает распределяться ОЦК. Одним из важнейших элементов компенсации потерянного ОЦК является перемещение жидкости из интерстициального пространства в капиллярное. Этому способствует снижение капиллярного гидростатического давления. В острой фазе, т. е. немедленно после кровопотери, прирост ОЦК за счет интерстициальной жидкости может соста­вить 1 л/ч. В результате гемодилюции снижается также кон­центрация белка в плазме.

Сердечный выброс, который является принципиальной детерминантой адекватного периферического кровообращения, зависит от венозного возврата . Компенсаторный механизм, который приводит к увеличению венозного возврата при шоке и обеспечивает необходимое увеличение преднагрузки, может быть реализован при шоке снижением емкости венозного русла. На первых по­рах этот механизм способен поддерживать адекватное крово­обращение. Периферическая вазоконстрикция, венозная и арте­риальная, обеспечивается комплексом возникающих при шоке реакций. Главными из них являются симпатическая активация, циркуляция в крови катехоламинов, ангиотензина-II, появляю­щегося в результате активации ренин-ангиотензиновой системы и секреции вазопрессина (АДГ).

В описываемых условиях всеобщей периферической вазоконстрикции, включая и венозные емкостные сосуды, как правило, наблюдается дилатация сосудов сердца, мозга, надпочечников и гипофиза. Кровообращение в коже, скелетных мышцах, со­судах органов брюшной полости резко снижается. Этот фено­мен перераспределения кровотока, получивший название «централизация кровообращения», в меньшей степени выражен в сосудах печени и почек. В этих органах он зависит от абсо­лютного объема кровопотери: при массивном кровотечении вместе с уменьшением общего спланхнического кровообращения и, следовательно, с уменьшением портального кровообращения об­щий кровоток в печени также уменьшается.

Однако при большой кровопотере механизмы поддержания адекватного кровообращения в сердце и мозге постепенно исто­щаются и наступает также обеднение кровотока в этих ор­ганах.

Артериальный тонус. Повышение системного арте­риального сопротивления является следствием артериолярной констрикции и реализуется также путем симпатической акти­вации, через повышение циркулирующих катехоламинов, ангио­тензина-II и вазопрессина. Возникающее вследствие этого по­вышение постнагрузки приводит к снижению сердечного вы­броса. Однако кровообращение в сердце и легких в силу механизмов централизации кровообращения, описанных выше, длительно остается достаточно высоким. Компенсаторная вазо­констрикция наиболее характерна для острой массивной крово­потери. Но она может наблюдаться также при кардиогенном шоке и в гиподинамической фазе септического шока.

В ранних фазах развития септического шока, характеризующихся циркуляторной гипердинамией, как правило, имеет место снижение периферического сосудистого сопротивления. Возмож­но, это связано с прямым влиянием быстро накапливающейся бактериальной флоры и эндотоксинов на сердечно-сосудистую систему и клеточный метаболизм . Клинические различия во влия­нии грамположительной и грамотрицательной флоры на пери­ферический сосудистый тонус установить невозможно . Непосредственной причиной снижения периферической сосудистой резистентности являются открытие низкорезистент­ных артериовенозных шунтов и непосредственный сброс крови через них. Неизбежным следствием этого является развиваю­щаяся тканевая гипоксия. У больных в связи со сниженной экс­тракцией О 2 тканями артериовенозная разность по О 2 уменьша­ется. В ряде случаев коэффициент экстракции О 2 [ДЭО 2 = = (С ао -C vo)/Са 0 ] составляет 0,1-0,15, что в 1,5-2 раза ниже нормы . Для поддержания достаточ­ного уровня тканевой оксигенации в подобных условиях необ­ходимо увеличение объемного кровотока в 2-3 раза. В позд­них фазах развития шока, несмотря на продолжительную вазо-констрикцию и перераспределение крови на периферии, наблю­дается снижение преднагрузки, объясняемое опустошением капиллярного функционирующего русла и, главное, жидкостной экстравазацией. Этим и определяется вторичный гиповолемический синдром при септическом шоке. Вместе с миокардиодепрессией гиповолемия формирует синдром малого выброса .

Сердечный выброс. Важнейшими составляющими эле­ментами СВ являются сократимость миокарда и частота сердеч­ных сокращений. Усиление этих функций как вместе, так и раз­дельно приводит к увеличению СВ. Однако усиливающие ре­зервы этих механизмов ограничены. При тахикардии, близкой к 170-180 мин -1 , наступает обратный эффект - снижение СВ, поскольку уменьшается время диастолического наполнения сердца. Оба эффекта могут быть обусловлены симпатической стимуляцией и циркуляцией катехоламинов.

В качестве активаторов кровообращения при шоке могут рассматриваться также кинины, серотонин, гистамин, энкефалины, эндорфины и метаболиты арахидоновой кислоты. Однако физиологическое значение всех этих субстанций, их роль в генезе компенсаторных и патологических реакций при шоковых состояниях окончательно не ясны.

Снижение постнагрузки, различные компенсирующие изме­нения преднагрузки довольно долго компенсируют нарастаю­щую депрессию миокарда, и СВ длительно остается удовлетво­рительным для обеспечения жизненно важных органов. Относительно значения изменений СВ у больных в шоковых состояниях имеются различные точки зрения. Однако преобладает мнение, что высокий СВ является достаточно благоприятным прогностическим признаком . По общим оценкам, сердечный индекс более 3,1 л/(мин-м 2) при шоке кор­релирует с выживанием больных (r=0,86). L. D. McLean и соавт. (1967) при наблюдении за 28 больными в состоянии септи­ческого шока установили, что способность организма повы­шать сердечный индекс на 1 л/(мин-м 2) при соответствующей инфузионной терапии свидетельствует о высокой вероятности выживания.

В отсутствие каких-либо причин, например действия миокардиальных депрессантов, снижение сократительной функции миокарда (его инотропизма) зависит от снабжения сердца кислородом. Следует отметить, что в норме экстракция О 2 сердцем из крови весьма высока в отличие от остальных тканей и составляет около 0,65. Повышение экстракции до 0,75-0,8 свидетельствует о гипоксии миокарда . Таким образом, снабжение сердца кислородом зависит от сте­пени кровоснабжения миокарда. Снижение коронарного крово­обращения, развивающееся при любом варианте шока, сущест­венно ухудшает сократительную функцию миокарда. Гипоксическое поражение метаболизма миокарда у больных в состоянии шока является одним из важнейших факторов формирования необратимого шока.

Вторичное повышение постнагрузки в ответ на снижение сердечного выброса при септическом шоке в настоящее время не доказано. Первичные изменения периферических сосудистых реакций и, следовательно, изменения преднагрузки и постна­грузки происходят при септическом шоке обычно в связи с интоксикацией. Депрессия миокарда, возникающая, как прави­ло, в ранних стадиях септического шока, но мало заметная, связана со снижением чувствительности адренергических ре­цепторов к катехоламинам (норадреналину и адреналину).

Физиологическая компенсация дефицита внутрисосудистого объема. Физиологическая компенсация может быть удовлетво­рительной даже при 50% снижении сердечного выброса и поте­ре 35% ОЦК. С клинических позиций важно отметить, что уменьшение ОЦК на 25% может протекать без гипотензии . Тем не менее поддержание адекват­ного объема плазмы является одним из важнейших условий обеспечения удовлетворительного кровообращения и предупреждения циркуляторной гипоксии. Длительная физиологиче­ская ишемия всегда опасна развитием необратимости микроциркуляторных расстройств и необратимости критического со­стояния в целом.

Компенсаторные реакции в условиях массивной кровопотери могут быть эффективными лишь в случае достаточно скорого восстановления ОЦК. Компенсаторное восстановление потерян­ного объема крови имеет две фазы: сначала восстанавливается водная часть плазмы, позже происходит восстановление про­теинов . В первой фазе сни-

жение гидростатического давления в капиллярах, возникающее в результате прекапиллярного спазма, способствует быстрому перемещению жидкости из интерстициального пространства в капиллярное русло. Подобные внеклеточные перемещения жидкостей способствуют восстановлению до 50% объема по­терянной крови. При этом развивается компенсаторная гемодилюция со снижением гематокрита.

Вторая фаза восстановления объема потерянной плазмы начинается с повышения ее осмоляльности, преимущественно за счет глюкозы.

Повышение осмоляльности плазмы происходит пропорцио­нально степени кровопотери и вскоре ведет к гипертоничности интерстициального пространства. В результате образуются осмо­тические градиенты между клеточным и внеклеточным прост­ранством, которые приводят к перемещению жидкости из клеток в интерстициальное пространство. В свою очередь повышение водного объема интерстициального пространства вызывает транскапиллярное перемещение альбумина из внеклеточного в сосудистое пространство. Полное восстановление потерянного объема крови зависит не только от описанного процесса воз­мещения объема плазмы, но и от скорости репарации эритро­цитов и других клеточных компонентов крови.

Расстройства микроциркуляции. Как ни странно, расстрой­ства микроциркуляции оказались наиболее трудно изучаемой частью проблемы шока. Это связано с тем, что при шоке изме­нения микроциркуляции в различных частях организма, его тка­нях и органах неодинаковы и неоднозначны.

Поскольку все нейрогуморальные реакции при шоке вызы­вают изменения различных гемодинамических параметров (та­хикардия, изменения периферического сосудистого сопротивле­ния и др.), которые потенциально опасны для одних органов (например, для почек и кишечника) и играют охранительную роль для других (сердце и мозг), соответствующие расстройства микроциркуляции тоже могут быть протективными для одних органов и разрушающими для других. Катехоламины, напри­мер, суживают сосуды почек и кишечника и, следовательно, ухудшают кровообращение в них, но расширяют сосуды сердца и мозга, увеличивая тем самым объемное кровообращение в этих органах.

Состояние микроциркуляции зависит от характера работы и чувствительности гладкой мускулатуры сосудов, контролирую­щей их способность к дилатации и констрикции. В ранних фа­зах кардиогенного и гиповолемического шока имеет место высо­кий симпатический тонус. Развитие в этом периоде ишемии, приводящей к образованию большого количества побочных про­дуктов метаболизма, приводит к преобладанию артериального тонуса, его доминированию и компенсаторному открытию ка­пиллярной сосудистой сети . Кровоток становится пассивным, зависящим от абсолютного системного давления. Однако сосудистая ауторегуляция сохраняется лишь в ранних стадиях шока, а с наступлением характерной для любого шока фазы токсичности артериолярный тонус исчезает и тканевой кровоток становится практически неуправляемым. Весьма уязвимым оказывается мозговое кровообращение, осо­бенно у людей пожилого возраста .

В ранних и обратимых стадиях шока, когда работают ком­пенсаторные механизмы и поддержание волемии обеспечивает­ся инфузионной терапией, кровоснабжение тканей и органов остается удовлетворительным. Необратимость начинается с то­го момента, когда кровеносные сосуды, включая капиллярную сеть, прекращают реагировать на к.онстрикторные факторы и постоянно остаются открытыми. Переполнение капиллярного сосудистого русла приводит к уменьшению венозного возврата, что впоследствии способствует формированию малого выброса. Возникновение гиперкоагуляции и присоединение ДВС-синдрома содействуют аккумуляции значительных количеств крови и плазмы в периферических сосудах. В результате симпатической вазоконстрикции, проявляющейся первоначально как ответ на гипотензию, нарушаются функции прекапиллярных артериол. В меньшей степени подобные функциональные расстройства ка­саются посткапиллярных венул. В результате гидростатическое давление в капилляре повышается. В условиях повышенной капиллярной проницаемости это способствует переходу значи­тельной части плазмы в периваскулярное пространство; так раз­вивается интерстициальный отек.

Сосудистые медиаторы, освобождающиеся при шоке, такие как ангиотензин-II, метаболиты арахидоновой кислоты и кинины, оказывают селективное воздействие на систему афферент­ных артериол и систему эфферентных венул. В частности, эти вещества могут вызывать образование артериовенозных шунтов при сопутствующей окклюзии капиллярного русла и тем самым менять взаимоотношения между давлением и потоком в капиллярной системе. Это в конечном счете извращает перифе­рическую микроциркуляцию, снижает эффективную, доставку О 2 тканям и отрицательно влияет на потребление тканями кис­лорода. Одновременно описанные микрососудистые аберрации способствуют агрегации тромбоцитов и микрососудистому тромбированию. Образовавшиеся внутрикапиллярные сгустки высво­бождают в последующем вазоактивные субстанции (простаноиды и серотонин), которые в комплексе с непосредственным гипоксическим фактором оказывают повреждающее влияние на сосудистый эндотелий, вызывая повышение капиллярной проницаемости. Конечным физиологическим результатом рас­стройств микроциркуляции являются образование интерстици­ального отека, дальнейшее перераспределение кровотока и до­полнительная потеря ОЦК.

Хотя окончательно не ясно, какие из описанных элементов сосудистых расстройств наиболее важны в патогенезе шокового состояния, известно, что гипоксия играет главную роль в генезе расстройств капиллярной проницаемости . Подобно другим клеткам, капиллярный эндотелий и его функция в значительной степени зависят от кислород­ного снабжения, и его проницаемость резко увеличивается в условиях гипоксии. При накоплении жидкости в интерстициальном пространстве увеличиваются межклеточные расстояния, что отрицательно сказывается на ходе клеточных метаболиче­ских процессов. Описанные изменения микроциркуляции ха­рактерны практически для всех органов, но особенно отчетливо выражены в капиллярах легких при септическом шоке. Именно вследствие подобного процесса формируется так называемый синдром капиллярного просачивания, в значительной степени зависящий от этиологии шока .

Однако окончательно вопрос о генезе синдрома капиллярно­го просачивания пока не решен. Имеются сведения о том, что сама по себе гипоксия не усиливает капиллярное просачивание. Этот процесс скорее может быть связан с высвобождением кислородобусловленных свободных радикалов, возникающим в ре­зультате быстрого возмещения объема потерянной плазмы, а также использования высоких концентраций О 2 во вдыхаемой смеси во время первичных восстановительных мероприятий в ходе лечения шока. Известно, например, что перекисный анион, являющийся главным компонентом системы кислородного ра­дикала, оказывает непосредственное повреждающее влияние на клетки и клеточные мембраны . Пока неясно, как можно избежать влияния этих токсических анионов на микроциркуляцию в организме, при шоке и, в частности, на микроциркуляцию в легких.

Расстройства метаболизма. Развивающаяся в результате гипоперфузии тканевая гипоксия приводит к усилению анаэроб­ного гликолиза в ходе метаболических процессов. Вместо вклю­чения в цикл лимонной кислоты через СоА пируват превраща­ется в лактат (L -). Повышение концентрации l- в крови пред­ставляет собой явление, наиболее характерное для шоковых состояний. Каждый миллимоль L - высвобождает 1 ммоль Н + , что снижает буферную емкость и приводит к системному аци­дозу. Если ацидоз глубокий, то он существенно изменяет все сосудистые реакции организма, ухудшает кровообращение и может вести к необратимости шока и смерти.

Нормальной реакцией на развитие шокового состояния явля­ется также гипергликемия. При шоке, как уже указывалось, имеет место также повышение продукции инсулина [Гельфанд Б. Р. и др., 1988]. Однако эта нормальная реакция, на­правленная на поддержание анаболического компонента мета­болизма, не в состоянии противостоять катаболической направ­ленности, вызванной гиперпродукцией катехоламинов, кортизола и глюкагона , и у больного развивается ги­пергликемия. Бесспорно, что биологическое значение гипергликемии при шоке сугубо положительно, так как она поддержи­вает возможность покрытия высокого метаболизма миокарда и мозга.

Основными источниками глюкозы в этих ситуациях явля­ются мобилизация гликогена преимущественно из печени, а так­же из мышц и стимуляция глюконеогенеза с образованием зна­чительного количества глюкозы при распаде мышечных белков с последующим их метаболизмом в печени до образования свободной глюкозы.

Высокий уровень катехоламинов способен селективно ингибировать секрецию инсулина, что также приводит к гипергли­кемии. Описанный метаболический ответ способствует поддер­жанию метаболизма мозга, поскольку утилизация глюкозы в нем осуществляется с минимальным участием инсулина. Таким образом, перестройка метаболизма углеводов при шоке осу­ществляется в ущерб периферическим тканям, но в пользу це­ребрального и частичного миокардиального метаболизма. Сни­жение интенсивности использования глюкозы в периферических тканях также способствует поддержанию высокого уровня гли­кемии.

При шоке повышается концентрация триглицеридов и жир­ных кислот в крови [Гельфанд Б.Р. и др., 1988], образование которых стимулируется катаболическими гормонами . Этот липолитический эффект, антагонистичный действию инсулина, также направлен на поддержание достаточного энер­гетического пула организма для покрытия резко возросших, но не обеспеченных метаболических потребностей.

Высвобождается также большое количество других метабо­лически и гемодинамически активных факторов. В крови можно обнаружить повышенный уровень эндорфинов и других опиатоподобных факторов, которые могут способствовать гипотензии и депрессии миокарда, особенно при тех формах шока, когда гиповолемия не является основным этиологическим фактором .

В последние годы обращают особое внимание на повыше­ние уровня метаболитов арахидоновой кислоты при шоке, глав­ным образом на, тромбоксан А 2 и простациклин, которые спо­собствуют усилению сердечно-легочной недостаточности . Эти субстанции, являющиеся антагонистами по физиологическому эффекту (тромбоксан А 2 вызывает агре­гацию тромбоцитов и является вазоконстриктором, а простацик­лин ингибирует агрегацию тромбоцитов и приводит к вазодила-тации), в значительной степени определяют «качество» шока в зависимости от того, какой из них преобладает по концент­рации.

В метаболических пертурбациях при шоке существенную роль играют также гормоны щитовидной и паращитовидной желез. Поскольку тироксин участвует в регуляции потребления кислорода, его дефицит, развивающийся при снижении базального кровоснабжения щитовидной железы, сам по себе ухудша­ет тканевый метаболизм при шоке. Нарушения кальциевого метаболизма, развивающиеся вследствие изменений синтеза или высвобождения паратгормона или тирокальцитонина, играют важную роль в изменениях клеточных функций.

Суммируя метаболические расстройства, развивающиеся при шоке, следует выделить важнейшие из них: 1) гипергликемию; 2) мобилизацию жиров, выражающуюся в повышении в крови уровня свободных жирных кислот; 3) катаболизм белков с по­вышением синтеза мочевины и ароматических аминокислот, яв­ляющихся «сырьем» для нейромедиаторов (в том числе лож­ных), в частности адреналина, норадреналина, серотонина, до­фамина и др.; 4) повышение внеклеточной осмоляльности.

Гипоксия клеток. Важнейшим для функционирования клеток является полноценное снабжение их кислородом. Аэробный метаболизм наиболее эффективно восстанавливает высокоэнер­гетические фосфаты, необходимые для нормального хода мета­болических процессов. В условиях дефицита кислородного снаб­жения клеточный метаболизм частично или полностью перехо­дит на анаэробный путь. Большая часть высокоэнергетических связей нарушается, эффективность клеточной деятельности сни­жается. Нарастающий внутриклеточный ацидоз отрицательно влияет на кинетику ферментов .

Преходящая гипоксия клеток - нормальное явление в ор­ганизме. Примером является гипоксия мышц в процессе рабо­ты или после нее. Сама по себе гипоксия побуждает организм к усилению кровоснабженя зоны напряженной работы. Однако если такого усиления кровоснабжения не происходит, в част­ности при шоке, то гипоксия приобретает патологический, по­вреждающий характер. Чувствительность различных органов и тканей к повреждающему воздействию гипоксии неодинакова. Астроциты, например, переносят гипоксию без серьезных по­следствий не более 15 с, но печень может нормально функцио­нировать в условиях гипоксии (практически в анаэробных усло­виях) более 1 ч . Лишь скелетные мышцы имеют некоторый запас О 2 (в виде соединения с миогемоглобином) для «экстренных нужд» и могут переносить гипоксию около 30 мин . В целом резистентность к гипоксии зависит от снабжения органа О 2 и со­держания гликогена в клетке.

В условиях гипоксии повышается проницаемость клеточной мембраны для глюкозы и начинаются катехоламинобусловленные процессы анаэробного гликолиза, обеспечивающие минимум энергетических субстратов для продолжения жизни клетки и поддержания ее специфической функции. В нормальных усло­виях анаэробный гликолиз способствует усилению кровоснабже­ния и кислородного обеспечения заинтересованной зоны (или организма в целом). При гиповолемии или ухудшении насосной функции сердца, т. е. в условиях шока, этот механизм компен­сации гипоксии становится невозможным.

Сущность гипоксического повреждения клетки заключается в прекращении высокоэнергетических реакций в связи со сни­жением содержания АТФ. На экспериментальных моделях шо­ковых состояний показано, что перфузия организма растворама дтф-MgCl 2 снижала смертность животных со 100 до 27% . Основную протективную роль в клетке играет ее билипидная мембрана , которая хорошо прони­цаема для К+ и плохо проницаема для Na+. Недостаточная про-тективная функция мембраны в конце концов приводит к ги­бели клетки.

В результате гипоксии нарушается деятельность внутрикле­точного натриевого насоса, возникает внутриклеточный отек, который поражает внутриклеточные органеллы, главным обра­зом митохондрии и лизосомы. Из-за ускоренной диссоциации АТФ на АДФ и фосфат кальций покидает органеллы. Внутри­клеточное дыхание определяет запасы кальция в клетке. Пере­мещению кальция из органелл во внутриклеточное пространство-способствует снижение проницаемости мембран. Таким обра­зом, кальций накапливается в клетке. Это имеет некоторое по­ложительное значение, так как внутриклеточный кальций (Ca i)-тормозит действие АТФ-транслоказы.

Центральная роль, которую играет кальций в обмене мио­карда, в настоящее время достаточно точно документирована. Кальций принимает участие как в процессах возбуждения сердечной мышцы, так и в процессах сокращения. Оно заклю­чается в постоянном медленном движении Са 2+ через каналы а сарколемме, обеспечивающем сердечный потенциал действия. стоянно высокая концентрация Са 2+ в клетке приводит к уко­рочению периода мышечной релаксации; при этом возможна остановка сердца в систоле. Циклические АМФ и АТФ прини­мают участие в осуществлении медленных передвижений Са 2 + по каналам путем фосфорилирования связанных с мембранам» белков, которые облегчают продвижение кальция в обоих на­правлениях .

Циклический АМФ (цАМФ), возможно, играет особую роль в общих путях регуляции кальция. Высказано предположение, что контроль за энергетическими функциями клетки (возбуждение, сократимость) может осуществляться с помощью АТФ, концентрация которого всегда определяет число открытых каль­циевых каналов, а следовательно, сократимость клетки и рас­ходование энергии .

В условиях гипоксии наряду со снижением концентрации внутриклеточного цАМФ происходит снижение чувствительно­сти клеток бета-адренергической стимуляции. Как известно, регио­нальная ишемия может снизить рН до 6,8; полная блокада (инактивация) медленных кальциевых каналов наступает при рН 6,4 . Установлено, что отрицательный инотропизм и периферическая вазодилатация, развивающаяся под влиянием некоторых эндотоксинов, возни­кают в результате значительного и непосредственного повреж­дения АТФазы, зависящей от потребления Са 2 + саркопластическим ретикулумом. Положительный инотропизм, возникающий при инфузии Са 2 + (а также дексаметазона), обусловлен повы­шением скорости перемещения Са 2 + и АТФ в митохондрии .

При сепсисе, кроме непосредственного влияния гипоксии, имеет значение первичное нарушение клеточного метаболическо­го процесса, например изменений метаболизма аминокислот, жиров и углеводов. Окончательно механизмы этих нарушений метаболизма не ясны, хотя известно, что основное проявление этих сдвигов заключается в повышении концентрации пирувата .

Помимо гипоксии, целость и функция клеточной мембраны могут нарушаться под влиянием эндотоксинов и других, воз­можно, неидентифицированных факторов, которые могут накап­ливаться в организме при шоке.

Нарушения водно-электролитных взаимоотношений, влияю­щие на интегрированную деятельность самой клетки и ее мем­браны, изменяют также характер ответа клетки на воздействие дополнительных субстанций, появляющихся в ходе шока, таких как катехоламины, кортизол, глюкагон и инсулин. Реакция клетки на эти субстанции может стать ослабленной или усилен­ной в зависимости от состояния внутриклеточной энзимной активности и выраженности шока.

Следует подчеркнуть, что все расстройства клеточного ме­таболизма, нарушения функции клеточной мембраны и рас­стройства ответа клетки на нормальные медиаторные факторы при шоке являются вторичными по отношению к расстройствам микроциркуляции и находятся в пропорциональной зависимости от них.

Эндотоксемия. В условиях тканевой ишемии (гипоксии) об­разуется значительное количество различных вазоактивных веществ. Наиболее известные из них - лизосомные ферменты - в избытке образуются в печени, почках, селезенке, других орга­нах. Стимулом к их высвобождению являются ишемия, гипо­ксия, ацидоз и сепсис . Их концентрация в крови повышается с увеличением длительности шока, а дейст­вие может быть несколько уменьшено применением ингибиторов лротеаз- трасилола или контрикала. Лизосомные ферменты, помимо того, что дают прямой цитотоксический эффект, небла­гоприятно влияют на сократимость миокарда и вызывают коро­нарную вазоконстрикцию. Лизосомные ферменты разрушают эндогенные протеины, главным образом а 2 -глобулины, и способ­ствуют превращению кининогена в кинин.

Известно множество различных кининов, сходных по эффекту с брадикинином. Их объединяют главным образом четы­ре общих эффекта: способность вызывать глубокую вазодилатацию, повышать капиллярную проницаемость, угнетать сокра­тимость миокарда, тесно взаимодействовать с фактором XII (Хагемана) и таким образом активировать процесс превраще­ния протромбина в тромбин, т. е. активировать систему сверты­вания крови . Особенно велика роль кини­нов в механизмах развития эндотоксинового шока в тех случа­ях, когда преимущественный путь возникновения его связан с кишечником .

Легкие во время шока также могут быть вовлечены в кининовую активность организма. Известно, что они могут быть как местом образования кининов, так и местом их инактивации . Роль кининов в генезе эндотоксинового шока до конца не ясна. Возможно, существуют еще не изученные кинины и кининоподобные факторы, прини­мающие участие в формировании шока . Роль гистамина как «соучастника» инициации гемодинамических расстройств, особенно в ранних (гипотензив­ных) стадиях шока, известна довольно давно и подтверждена в более позднее время .

Важное значение в качестве вазоактивных субстанций, опре­деляющих характер и направленность микро- и макрососудистых сдвигов при шоке, имеет разнородная группа карбоксиловых кислот под общим названием «простагландины». Среди них наиболее изучены простациклин (PGI 2) и тромбоксан А 2 (PGAs). Спектр действия простагландинов выражен вазоконстрикторным (PGA 2 и PGF 2 a), вазодилатирующим (PGE 2 и PGI 2) эффектом, усилением мембранной проницаемости (PGD 2 и PGE 2), усилением агрегационных свойств тромбоцитов (PGA 2 и PGE 2) и торможением их агрегации (PGD 2 , PGE, и PGI 2). Группы простагландинов Е и F дают противоположно направ­ленные вазомоторные эффекты. При общей оценке вазомотор­ных реакций организма в условиях септического шока имеют значения количественные взаимоотношения этих субстратов. Простагландины могут быть обнаружены в очень малых коли­чествах в артериальной крови, так как метаболизируются пре­имущественно в легких (хотя возможен и обычный - печеноч­ный - путь их метаболизма) . При экспериментальном эндотоксиновом шоке отмечен высокий уровень простагландинов в крови. Простагландин PGF 2 cc в зна­чительной степени обусловливает раннюю легочную гипертен-зию при эндотоксиновом шоке .

Важнейшим фактором, от которого зависит течение эндоток­синового шока, является непосредственное влияние токсинов. Главным объектом их воздействия является также микроцирку­ляция. Различия в эффектах между грамположительной и грамотрицательной флорой в настоящее время во внимание не при­нимаются, и рассматриваются как архаизм . Обе группы микроорганизмов продуцируют токсины. Стафилококки, например, в дополнение к локальной коагулазе выделяют альфа-токсин, который является вазоконстриктором. Однако он же вызывает повреждение эндотелия, усиливает агрегацию тромбоцитов, повышает мембранную про­ницаемость, ведет к разобщению окислительного фосфорилиро-вания . Классическим эндотоксином, высво­бождающимся при распаде грамотрицательных бактерий, явля­ется липид А. Эндотоксины дают множество различных эффектов, главными из которых являются их влияние на сосудистый то­нус и непосредственное повреждение клеток.

При септическом шоке под влиянием эндотоксинов (при уча­стии катехоламинов) снижается периферическая сосудистая резистентность и уменьшается среднее время циркуляции: в кро­вообращение включаются артериовенозные шунты, через кото­рые идет сброс оксигенированной крови непосредственно в венозную систему.

Как уже указывалось, эндотоксин обладает выраженными цитотоксическими свойствами. Главными мишенями являются митохондриальные и клеточные мембраны, в которые оказыва­ется «встроенным» липид А. Возможно, в этом заключается суть механизма разобщения окислительного фосфорилирования .

Эндотоксины оказывают также непосредственное влияние на сосудистый эндотелий и ретикулоэндотелиальную систему, раз­рушая ее и высвобождая при этом нейтрофильные прокоагулянты и тромбогенные фибриногеновые комплексы. Существенно снижается под влиянием эндотоксинов функция фагоцитоза.



Понравилась статья? Поделитесь ей
Наверх