Эталон единицы массы. Масса вариантов

Что такое килограмм? Детский вопрос! Это же масса литра воды. Чтобы получить его в домашних условиях, достаточно иметь водопроводный кран и литровую банку. Но вот «настоящее и полновесное» эталонное кило в последнее время стремительно теряет в весе.

Увы, всемирный эталон килограмма, как явствует из New York Times, стал жертвой загадочной и продолжительной болезни. Заглянем в анамнез.

В XVIII веке килограмм был определён как масса кубического дециметра воды при температуре её наибольшей плотности (4 o С). Как оказалось, такое определение не вполне конструктивно: нужен очень точный кубический дециметр, совершенно чистая вода и абсолютно правильный термометр.

За дополнительными сведениями о заболевшем обратимся в Книгу Судеб - БСЭ.

«Килограмм, единица массы, одна из семи основных единиц Международной системы единиц (СИ). Он равен массе международного прототипа, хранимого в Международном бюро мер и весов. Прототип в 1799 году был выполнен в виде цилиндрической гири из платины.

Масса прототипа килограмма оказалась приблизительно на 0,028 грамма больше массы одного кубического дециметра воды.

Самый главный на сегодняшний день килограмм - просто кусок железа (фото bipm.org).

В 1889 году было принято существующее определение килограмма и в качестве международного прототипа была утверждена гиря со знаком К („К“ готическое заглавное), изготовленная из платиноиридиевого сплава (10% Ir) и имеющая форму цилиндра диаметром и высотой 39 мм».

Оказывается, сработанный английским ювелиром платиноиридиевый килограмм - единственная основная единица СИ, доблестно хранящая своё определение аж с позапрошлого века. И сама хранящаяся в виде материального артефакта.

Метр, например, поначалу соотнесённый с длиной земной окружности, теперь приравнен к расстоянию, проходимому светом за одну 299792458-ю долю секунды. А собственно секунда - это время, за которое атом цезия совершает 9192631770 колебаний.

Мало того, что эти единицы определены с подобающей квантовой точностью, они ещё могут быть адекватно воспроизведены в любой точке мира. Клонировать килограмм куда сложнее, вдобавок для этого требуется сложная бюрократическая процедура.

Видимо, долгое время такое уникальное положение килограмма всех устраивало, раз не было достаточных побудительных оснований к созданию его скрупулёзной формулы.

Но переменчивый килограмм тянет за собой в дрейфующее плавание и Ватт, и другие смежные единицы измерения.

А в изменчивости килограмма не осталось никаких сомнений, несмотря на все меры предосторожности: эталон хранится под тремя герметичными стеклянными колпаками в сейфе охраняемого замка в окрестностях Парижа, а ключи от сейфа имеют лишь три особо приближенных бюрократа из Международного бюро мер и весов (Bureau International des Poids et Mesures — BIPM).

Килограмм и 6 его приспешников хранятся в постоянно запертом сейфе (фото bipm.org).

Вместе с главным килограммом в сейфе располагаются 6 преемников, а всего за время правления по его образу и подобию было изготовлено более 80 копий.

Для освидетельствования престарелого килограмма, происходящего раз в год, он торжественно извлекается из своего хранилища. И каждый раз обнаруживается микроскопическое уменьшение веса.

Килограмм чахнет. Об этом ясно говорят сравнения с другими обитателями сейфа. Природа болезни загадочна, но все симптомы налицо: за сто лет килограмм теряет около 0,00000003-й части своей драгоценной массы.

А ведь даже похудение всего на 50 микрограмм (меньше веса соляной крупинки) может серьёзно исказить результаты сложных научных вычислений. Не вызывает сомнений необходимость замены уникального килограмма на абстрактный килограмм.

Международная команда исследователей из Германии, Австралии, Италии и Японии под эгидой Немецкой лаборатории стандартов (German standards laboratory) хочет переопределить килограмм как массу определённого числа атомов. В лаборатории сделан совершенно круглый килограммовый шар из чистого кристаллического кремния.

Если точно известно, какие атомы составляют кристалл и на каком расстоянии они находятся друг от друга, то, измерив размер шара, можно вычислить число атомов кремния, его составляющих. Это число и будет определением килограмма.

Для производства шара необходимо было получить изотоп кремния очень высокой степени очистки. Помощь в этом начинании оказала Россия - на старых, ещё советских ядерных оружейных фабриках имеются центрифуги, использовавшиеся для выработки высокообогащённого урана.

Возможно, этот кремниевый шар станет новым килограммом. Но только в виде числа составляющих его атомов (фото nytimes.com).

Полученный шар потребовалось измерить на «круглость». Кристалл был педантично замерен в полумиллионе точек. Вывод: шар - самое круглое творение рук человеческих. Если увеличить шар до размеров Земли, высота Эвереста составит всего четыре метра.

Интригующая особенность шара: совершенно невозможно на глаз определить, покоится он или вращается. Только если на поверхность упадёт пылинка, взгляду будет за что зацепиться.

Хотя число атомов кремния, составляющих уникальный объект, ещё не подсчитано, методика уже вызывает критику из другого лагеря, сплотившего учёных из США, Англии, Франции и Швейцарии.

По их мнению, с сегодняшними технологиями невозможно точно сосчитать число атомов, поэтому килограмм легче и надёжнее вычислить, используя электрическое напряжение. Измерение энергии, дескать, проще подсчёта атомов. Может и проще, но только не на словах.

В работе используется сложный механизм, называемый балансом Ватта. В основу методики положена эквивалентность механической и электрической мощности.

Следует создать электромагнитное поле, поместить в него эталонный килограмм, и замерить параметры эксперимента. Поскольку гравитационное поле постоянно и детерминировано местоположением трёхэтажной установки, через эталонный килограмм можно связать значения механических и электрических величин.

Правда, надо ещё учесть приливно-отливные воздействия, а прочие проявления внешней среды можно исключить, поместив установку в глубокий вакуум.

Кремниевая сфера, созданная в Австралийской Национальной лаборатории измерений (Australia’s National Measurement Laboratory — NML).

Измерив значения длины, времени, электрического тока и сопротивления (а все они могут быть вычислены на основе фундаментальных и инвариантных квантовых явлений) можно квантовым же способом оцифровать и основную единицу - килограмм. Подобным образом была уже определена масса электрона.

О точности изощрённого и окольного способа вычисления килограмма говорить пока рано, учёные поглощены устранением колебаний напряжения в электрических цепях. Однако они уверены, что победа будет за ними, а не за конструкторами кремниевых шаров.

По информации New York Times, секция массы BIMP - инстанция, в конечном счёте, определяющая судьбу килограмма - склоняется к последнему подходу, но сделать окончательный выбор пока что очень сложно. Но выбирать хотят между этим двумя, хотя существуют и другие варианты.

Например, как и всё в нашем мире купли-продажи, пресловутый килограмм может иметь точное ценовое выражение.

Для его исчисления надо узнать количество атомов в килограмме чистого золота. По сегодняшним прикидкам, в таком числе должно быть порядка 25 цифр, но ничего более определённого сказать о нём нельзя.

Новое определение килограмма , основанное на фиксации численного значения постоянной Планка . Решение вступит в силу 20 мая 2019 года. При этом с практической точки зрения величина килограмма не изменится, но существующий «прототип» (эталон) более не будет определять килограмм, а станет очень точной гирькой с потенциально измеримой погрешностью.

Прототип килограмма

Килограмм и постоянная Планка

Эти две формулы, найденные в начале XX века, устанавливают теоретическую возможность измерения массы через энергию индивидуальных фотонов , но практические эксперименты, позволяющие связать массу и постоянную Планка, появились лишь в конце XX века.

U 1 I 2 = m g v 1 , {\displaystyle U_{1}I_{2}=mgv_{1},}

где U 1 I 2 {\displaystyle U_{1}I_{2}} - произведение электрического тока во время балансирования массы и напряжения в процессе калибровки, - произведение ускорения свободного падения g {\displaystyle g} и скорости катушки v 1 {\displaystyle v_{1}} во время калибровки весов. Если g v 1 {\displaystyle gv_{1}} независимо замерено с высокой точностью (практические особенности эксперимента также требуют высокоточного замера частоты ), предыдущее уравнение по сути определяет килограмм в зависимости от величины ватта (или наоборот). Индексы у U 1 {\displaystyle U_{1}} и I 2 {\displaystyle I_{2}} введены с тем, чтобы показать, что это виртуальная мощность (замеры напряжения и тока делаются в разное время), избегая эффектов от потерь (которые могли бы быть вызваны, например, наведёнными токами Фуко) .

Связь между ваттом и постоянной Планка использует эффект Джозефсона и квантовый эффект Холла :

Поскольку I 2 = U 2 R {\displaystyle I_{2}={\frac {U_{2}}{R}}} , где R {\displaystyle R} - электрическое сопротивление , U 1 I 2 = U 1 U 2 R {\displaystyle U_{1}I_{2}={\frac {U_{1}U_{2}}{R}}} ; эффект Джозефсона: U (n) = n f (h 2 e) {\displaystyle U(n)=nf\left({\frac {h}{2e}}\right)} ; квантовый эффект Холла: R (i) = 1 i (h e 2) {\displaystyle R(i)={\frac {1}{i}}\left({\frac {h}{e^{2}}}\right)} ,

где n {\displaystyle n} и i {\displaystyle i} - целые числа (первое связано со ступенькой Шапиро , второе - фактор заполнения плато квантового эффекта Холла), f {\displaystyle f} - частота из эффекта Джозефсона, e {\displaystyle e} - заряд электрона . После подстановки выражений для U {\displaystyle U} и R {\displaystyle R} в формулу для мощности и объединения всех целочисленных коэффициентов в одну константу C {\displaystyle C} , масса оказывается линейно связанной с постоянной Планка:

m = C f 1 f 2 h g v 1 {\displaystyle m=Cf_{1}f_{2}{\frac {h}{gv_{1}}}} .

Поскольку все остальные величины в этом уравнении могут быть определены независимо от массы, оно может быть принято за определение единицы массы после фиксации значения 6,62607015×10 −34 для постоянной Планка.

Этимология и употребление

Слово «килограмм» произошло от французского слова «kilogramme », которое в свою очередь образовалось из греческих слов «χίλιοι » (chilioi ), что означает «тысяча» и «γράμμα » (gramma ), что означает «маленький вес» Слово «kilogramme » закреплено во французском языке в 1795 году . Французское написание слова перешло в Великобританию, где впервые оно было использовано в 1797 году , в то время как в США слово стало использоваться в форме «kilogram », позднее ставшее популярным и в Великобритании Положение о мерах и весах (англ. Weights and Measures Act ) в Великобритании не запрещает использование обоих написаний .

В XIX веке французское сокращение «kilo » было заимствовано в английский язык, где стало применяться для обозначения как килограммов , так и километров .

Природа массы

Измерение массы через вес тела - действие силы тяжести на измеряемый объект вызывает деформацию пружины.

Измерение гравитационной массы - действие силы тяжести на измеряемый объект уравновешено действием силы тяжести на противовес.

Килограмм является единицей массы , величины , которая соотносится с общим представлением людей о том, насколько тяжела та или иная вещь. В терминах физики, масса характеризует два различных свойства тела: гравитационное взаимодействие с другими телами и инертность . Первое свойство выражается законом всемирного тяготения : гравитационное притяжение прямо пропорционально произведению масс. Инертность находит отражение в первом (скорость объектов остаётся неизменной до тех пор, пока на них не воздействует внешняя сила) и втором законе Ньютона: a = F/m ; то есть объект массой m в 1 кг получит ускорение a в 1 метр в секунду за секунду (около одной десятой ускорения свободного падения , вызванного притяжением Земли) , когда на этот объект действует сила (или равнодействующая всех сил) в 1 ньютон . По современным представлениям, гравитационная и инертная массы эквивалентны .

Поскольку торговля и коммерция обычно имеют дело с предметами, чья масса намного значительней одного грамма, и поскольку стандарт массы, изготовленный из воды, был бы неудобен в обращении и сохранении, было предписано отыскать способ практической реализации такого определения. В связи с этим был изготовлен временный эталон массы в виде металлического предмета в тысячу раз тяжелее, чем грамм, - 1 кг.

Временный эталон был изготовлен из латуни и постепенно покрылся бы патиной , что было нежелательно, поскольку его масса не должна была меняться. В 1799 году под руководством Лефёвра-Жено и Фабброни был изготовлен постоянный эталон килограмма из пористой платины , которая химически инертна. С этого момента масса эталона стала основным определением килограмма. Сейчас этот эталон известен как kilogramme des Archives фр.  -  «архивный килограмм») .

Копия эталона 1 кг, хранится в США.

За XIX век технологии измерения массы значительно продвинулись. В связи с этим, а также в преддверии создания в 1875 году Международного бюро мер и весов , специальная международная комиссия запланировала переход к новому эталону килограмма. Этот эталон, называемый «международный прототип килограмма», был изготовлен из платиново-иридиевого сплава (более прочного, чем чистая платина) в виде цилиндра высотой и диаметром 39 мм , и с тех пор он хранится в Международном бюро мер и весов. В 1889 году было принято международное определение килограмма как массы международного прототипа килограмма ; это определение продолжит действовать до мая 2019 года.

Были изготовлены также копии международного прототипа килограмма: шесть (на данный момент) официальных копий; несколько рабочих эталонов, используемых, в частности, для отслеживания изменения масс прототипа и официальных копий; и национальные эталоны, калибруемые по рабочим эталонам . Две копии международного эталона были переданы России , они хранятся во ВНИИ метрологии им. Менделеева .

За время, прошедшее с изготовления международного эталона, его несколько раз сравнивали с официальными копиями. Измерения показали рост массы копий относительно эталона в среднем на 50 мкг за 100 лет . Хотя абсолютное изменение массы международного эталона не может быть определено с помощью существующих методов измерения, оно определённо должно иметь место . Для оценки величины абсолютного изменения массы международного прототипа килограмма приходилось строить модели, учитывающие результаты сравнений масс самого прототипа, его официальных копий и рабочих эталонов (при этом, хотя обычно участвующие в сравнении эталоны обычно предварительно промывали и чистили, но не всегда), что дополнительно усложнялось отсутствием полного понимания причин изменений масс. Это привело к пониманию необходимости ухода от определения килограмма на основе материальных предметов .

В 2011 году XXIV Генеральная конференция по мерам и весам приняла Резолюцию, в которой предложено в будущей ревизии Международной системы единиц (СИ) продолжить переопределение основных единиц таким образом, чтобы они были основаны не на созданных человеком артефактах, а на фундаментальных физических постоянных или свойствах атомов . В частности предлагалось, что «килограмм останется единицей массы, но его величина будет установлена путём фиксации численного значения постоянной Планка в точности равным 6,626 06X⋅10 −34 , когда она выражается единицей СИ м 2 ·кг·с −1 , которая равна Дж·с». В Резолюции отмечается, что сразу после предполагаемого переопределения килограмма масса его международного прототипа будет равна 1 кг, но это значение приобретёт погрешность и впоследствии будет определяться экспериментально. Такое определение килограмма стало возможным благодаря прогрессу физики в XX веке.

В 2014 году было проведено внеочередное сравнение масс международного прототипа килограмма, его официальных копий и рабочих стандартов; на результатах этого сравнения основаны рекомендованные значения фундаментальных постоянных CODATA 2014 и 2017 годов, на которых, в свою очередь, основывается новое определение килограмма.

Рассматривалось также альтернативное определение килограмма, основанное на результатах работы The Avogadro Project. Команда проекта, создав сферу из изотопа кремния 28 Si массой 1 кг и рассчитав количество атомов в ней, предполагает описать килограмм как определённое количество атомов данного изотопа кремния . Однако Международное бюро мер и весов не стало использовать такой вариант определения килограмма .

XXVI Генеральная конференция по мерам и весам в ноябре 2018 года одобрила новое определение килограмма, основанное на фиксации численного значения постоянной Планка . Решение вступит в силу во Всемирный день метрологии 20 мая 2019 года.

Интересно, что масса 1 м³ дистиллированной воды при 4 °C и атмосферном давлении, принятая за ровно 1000 килограммов в историческом определении 1799 года, и согласно современному определению составляет приблизительно 1000,0 килограммов .

Кратные и дольные единицы

По историческим причинам, название «килограмм» уже содержит десятичную приставку «кило», поэтому кратные и дольные единицы образуют, присоединяя стандартные приставки СИ к названию или обозначению единицы измерения «грамм» (которая в системе СИ сама является дольной: 1 г = 10 −3 кг).

Вместо мегаграмма (1000 кг), как правило, используют единицу измерения «тонна ».

Кратные Дольные
величина название обозначение величина название обозначение
10 1 г декаграмм даг dag 10 −1 г дециграмм дг dg
10 2 г гектограмм гг hg 10 −2 г сантиграмм сг cg
10 3 г килограмм кг kg 10 −3 г миллиграмм мг mg
10 6 г мегаграмм Мг Mg 10 −6 г микрограмм мкг µg
10 9 г гигаграмм Гг Gg 10 −9 г нанограмм нг ng
10 12 г тераграмм Тг Tg 10 −12 г пикограмм пг pg
10 15 г петаграмм Пг Pg 10 −15 г фемтограмм фг fg
10 18 г эксаграмм Эг Eg 10 −18 г аттограмм аг ag
10 21 г зеттаграмм Зг Zg 10 −21 г зептограмм зг zg
10 24 г иоттаграмм Иг Yg 10 −24 г иоктограмм иг yg
применять не рекомендуется не применяются или редко применяются на практике

См. также

Примечания

Комментарии

  1. Написание kilogram является современной формой, используемой Международным бюро мер и весов, (NIST), Национальным метрологическим бюро (англ. National Measurement Office ) Великобритании, Национальным научно-исследовательским советом Канады , и (англ. ) Австралии.
  2. В профессиональной метрологии ускорение, вызванное притяжением Земли, принимается как стандартное ускорение свободного падения (обозначается символом g ), которое определяется как точно 9,80665 м/с². Выражение 1 м/с² означает, что каждую секунду скорость изменяется на 1 метр в секунду.
  3. В соответствии с теорией относительности и использовавшейся в первые десятилетия после её создания терминологией, масса тела m возрастает при увеличении скорости его движения согласно формуле m = γm 0 , где m 0 - масса покоящегося тела, а γ - Лоренц-фактор , значение которого определяется отношением скорости тела к скорости света . Этот эффект пренебрежимо мал, когда тела движутся с обычными для земных условий скоростями, которые на много порядков меньше скорости света, и с высокой точностью выполняется γ = 1 . В современной физике используется другая терминология: массой принято называть только не зависящую от скорости движения тела величину m 0 , а зависящей от скорости величине γm 0 специального наименования не присваивают и самостоятельного физического смысла не придают .
  4. Эта же директива определила литр как «единицу измерения объёма как для жидкостей, так и для твёрдых тел, которая равна объёму куба [со стороной] в десятую часть метра». Оригинальный текст: «Litre , la mesure de capacité, tant pour les liquides que pour les matières sèches, dont la contenance sera celle du cube de la dixièrne partie du mètre. »
  5. Современные измерения показывают, что температура, при которой вода имеет наибольшую плотность, составляет 3,984 °C. Однако учёные конца XVIII века использовали значение 4 °C.
  6. Временный эталон килограмма был изготовлен в соответствии с единственным неточным измерением плотности воды, сделанным ранее Антуаном Лавуазье и Рене Жюст Гаюи , которое показало, что один кубический дециметр дистиллированной воды при 0 °C имеет массу в 18 841 гран согласно французской системе мер (англ. Units of measurement in France ), которой скоро предстояло исчезнуть. Более новое и аккуратное измерение, проведённое Лефёвром-Жино и Фабброни показало, что масса кубического дециметра воды при температуре 4 °C составляет 18 827,15 гран

Источники

  1. Деньгуб В. М. , Смирнов В. Г. Единицы величин. Словарь-справочник. - М. : Издательство стандартов, 1990. - С. 61. - 240 с. - ISBN 5-7050-0118-5 .
  2. Unit of mass (kilogram) (англ.) . SI Brochure: The International System of Units (SI) . BIPM . Проверено 11 ноября 2015.
  3. Положение о единицах величин, допускаемых к применению в Российской Федерации (неопр.) . Федеральный информационный фонд по обеспечению единства измерений . Росстандарт . Проверено 28 февраля 2018.
  4. Historic Vote Ties Kilogram and Other Units to Natural Constants
  5. Verifications (англ.) . Resolution 1 of the 25th CGPM (2014) . BIPM . Проверено 8 октября 2015.

Наверное, многие читатели помнят телевизионную рекламу одного сотового оператора, в которой появился знаменитый слоган "Скока вешать в граммах?" "Точность никогда не бывает лишней", - резюмировал свой вопрос один из героев ролика . На самом деле, он лукавил - точно отвесить, скажем, 200 граммов чего-либо невозможно. И дело не только в том, что существующие способы взвешивания плохи - просто у людей нет надежного эталона килограмма, а значит, и грамма.

Потребность в разработке стандартов, ориентируясь на которые можно определять значения массы, времени, длины и температуры (а после появления физики еще силы света, силы тока и единицы вещества) возникла у человечества давно. Потребность эта вполне объяснима - для того чтобы строить дороги и дома, путешествовать и торговать, необходимы были неизменные единицы, используя которые два строителя или торговца могли бы понимать, что нарисовано в чертежах друг друга и о каких количествах товара идет речь.

Свои собственные единицы измерения были у каждой цивилизации: например, в Древнем Египте массу измеряли в кантарах и киккарах, в Древней Греции - в талантах и драхмах, а на Руси - в пудах и золотниках. Как любят говорить ученые, при создании каждой из этих единиц люди как бы договаривались , что отныне масса, длина или температура чего-либо будут сравниваться с одной единицей массы, длины или температуры соответственно. Число тех, кто непосредственно участвовал в этих договоренностях, было очень невелико - у двух торговцев из разных концов страны пуды вполне могли отличаться на треть.

Как бы договоренности прекрасно работали до тех пор, пока люди не начали всерьез заниматься наукой и осваивать инженерное дело. Оказалось, что для описания законов природы или создания парового котла приближенных значений недостаточно, особенно если в работе принимают участие люди из разных стран. Осознав этот факт, ученые со всего мира занялись разработкой единых точных стандартов, или эталонов, для основных единиц измерения. 20 мая 1875 года во Франции было подписано соглашение об установлении этих единиц - Метрическая конвенция. Все страны, подписавшие этот документ, обязались использовать в качестве эталонов специально созданные стандарты. Для обеспечения государств-подписантов самыми точными эталонами была создана Международная палата мер и весов (или Международное бюро мер и весов). В задачи этой организации входит регулярное сравнение национальных эталонов между собой и курирование работ по созданию более точных способов измерения.

В России введение метрической системы связано с именем Дмитрия Ивановича Менделеева, создавшего в 1893 году Главную палату мер и весов и вообще немало сделавшего для развития метрологии. Свой интерес к точным измерениям он объяснял так: "Наука начинается с тех пор, как начинают измерять. Точная наука немыслима без меры". Благодаря усилиям Менделеева, с первого января 1900 года в России наряду с национальными были разрешены к применению метрические меры.

После подписания Метрической конвенции специалисты занялись разработкой единых эталонов метра и килограмма (эти единицы измерения существовали и до 1875 года, однако эталонов, которые бы признавались во всем мире, не существовало). Эталон метра был установлен после знаменитой экспедиции по измерению длины дуги Парижского меридиана и представлял собой линейку из сплава платины и иридия в соотношении 9 к 1, длина которой равнялась одной сорокамиллионной части меридиана. По месту хранения его стали называть "метр архива" или "архивный метр". Эталон килограмма был отлит из того же сплава, и его масса соответствовала массе одного кубического дециметра (литра) чистой воды при температуре 4 градуса Цельсия (когда вода имеет максимальную плотность) и стандартном атмосферном давлении на уровне моря. В 1889 году в ходе первой Генеральной конференции по мерам и весам была принята система мер, основанная на только что изготовленных эталонах метра и килограмма, а также на эталоне секунды. Стандартом секунды стала считаться 1/86400 часть продолжительности средних солнечных суток (позже эталон привязали к тропическому году - секунду приравняли к 1/31556925,9747 его части). Страны, признавшие новую систему мер, получили копии этих эталонов, а прототипы отправились на хранение в Палату мер и весов.

Через некоторое время к этим трем эталонам добавились эталоны канделы (сила света), ампера (сила тока) и кельвина (температура). В 1960 году одиннадцатая Генеральная конференция по мерам и весам приняла систему мер и весов, основанную на использовании этих шести единиц и моля (единица количества вещества - его эталона не существует) - новая система получила название Международная система единиц, или СИ. Казалось бы, на этом история эталонов должна была завершиться, однако, в действительности, она только начиналась.

Все, что может испортиться…

По мере совершенствования технологий измерения стало ясно, что все хранящиеся в Париже эталоны не идеальны. Постепенно ученые приходили к мысли, что за стандарты основных единиц стоит брать не рукотворные предметы, а гораздо более совершенные образцы, уже созданные природой. Так, за стандарт секунды приняли интервал времени, равный 9192631770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного (квантового) состояния атома цезия-133 в покое при 0 кельвинов при отсутствии возмущения внешними полями, а за стандарт метра - расстояние, которое проходит свет в вакууме за промежуток времени, равный 1/299792458 секунды. В отличие от старых, новые стандарты являются атомными или квантовыми, то есть в них "работают" самые "базовые" законы природы.

Постепенно шесть из семи основных единиц СИ получили способы воспроизведения, для которых не нужен уникальный эталон, хранящийся где-то в одном месте. Теоретически, любой ученый, который захочет точно (очень точно) узнать, например, сколько длится секунда, может взять миллиграмм-другой изотопа цезия-133 и отсчитать, когда произойдут 9192631770 периодов излучения (кстати, свои атомные стандарты времени установлены, например, на всех спутниках GPS). "В девушках" остался только килограмм - его эталон все еще пылится в глубоком подвале под Парижем.

Слово "пылится" в предыдущем абзаце вовсе не является стилистическим украшением - пыль на самом деле постепенно скапливается на эталоне килограмма, несмотря на все контрмеры. Достать платино-иридиевый цилиндр и протереть нельзя - во-первых, при извлечении на нем опять же осядет пыль, а во-вторых, протирка или даже обмахивание щеточкой неминуемо приведет к "отскакиванию" нескольких молекул. Иными словами, независимо от того, что делают или не делают с эталоном, его масса со временем изменяется. Долгое время считалось, что эти изменения незначительны, однако проведенная несколько лет назад проверка показала, что за последнее время эталон "похудел" на 50 микрограммов, а это уже внушительные потери.

Моль, кремний и золото

Возможный выход из этого печального положения (за какой-нибудь миллиард лет эталон станет легче на треть) предложили в 2007 году два американских ученых из Технологического института Джорджии. Вместо переменчивого цилиндра они предложили считать стандартом массы куб из углерода, который будет содержать строго определенное количество атомов. Так как масса каждого отдельного атома постоянна, то и масса их совокупности также не будет меняться. Исследователи рассчитали, что куб массой ровно один килограмм будет состоять из 2250 х 28148963 3 атомов (50184513538686668007780750 атомов), а его грань составит 8,11 сантиметра. За три года ученые уточнили некоторые детали и представили свои соображения в статье, препринт которой можно найти на сайте arXiv.org.

Американские физики озаботились проблемой стандарта килограмма и выбрали в качестве "эталонного" элемента углерод неспроста - до этого они занимались уточнением числа Авогадро - одной из фундаментальных констант, определяющей, сколько атомов содержится в одном моле любого вещества. Хотя это число и является одним из самых главных в химии, его точного значения не существует (в числе прочих вопросов ученые, например, решали, четное оно или нет). Число Авогадро подобрано так, чтобы масса моля в граммах равнялась массе молекулы (атома) в атомных единицах массы. Атом углерода имеет массу 12 атомных единиц массы, а значит, масса моля углерода должна составлять12 граммов. Уточнив число Авогадро и приняв его равным 84446886 3 (602214098282748740154456), исследователи смогли рассчитать необходимое число атомов углерода в эталоне.

Не исключено, что новая работа будет рассмотрена на очередной Генеральной конференции по мерам и весам, которая пройдет в 2011 году. Однако у ученых из Джорджии есть конкуренты. Например, в Вашингтонском национальном институте стандартов и технологии очень активно работают над концепцией электронного килограмма. Вкратце суть предлагаемого ими метода такова: эталон определяется через силу тока, которая необходима для создания магнитного поля, способного уравновесить груз в один килограмм. Этот способ очень хорош, так как позволяет добиться высокой точности (он основан на использовании еще одной фундаментальной константы - постоянной Планка), однако сам эксперимент чрезвычайно сложен.

Еще один вариант нового эталона – кремниевая сфера, параметры которой рассчитаны таким образом, что она будет содержать строго определенное количество атомов (этот расчет можно провести, так как ученым известно расстояние между отдельными атомами, а сам процесс производства чистого кремния очень хорошо налажен). Такая сфера даже была создана, но с ней немедленно возникли сложности, напоминающие сложности нынешнего эталона - со временем сфера теряет часть своих атомов и, кроме того, на ней образуется пленка оксида кремния.

Третий подход к созданию эталона предполагает, что он будет каждый раз производиться de novo . Для получения стандарта массы необходимо накапливать ионы висмута и золота до тех пор, пока их суммарный заряд не достигнет определенного значения. Этот метод уже признали неудовлетворительным: он требует слишком много времени, а результаты плохо воспроизводятся. Вообще, с высокой вероятностью, все описанные способы получения нового эталона килограмма, кроме способа, основанного на использовании числа Авогадро, останутся только в памяти историков науки, так как в отличие от остальных, эталон килограмм в виде куба из изотопа углерода-12 основан на прямом использовании одного из фундаментальных атомных понятий.

Пока неясно, станет ли углеродный эталон общепризнанным или же ученые придумают новый, более удобный способ. Но тот факт, что хранящийся в Париже цилиндр, верой и правдой служивший людям 120 лет, скоро отправится на пенсию, сомнений не вызывает.

Килограмм определяется как масса международного эталона килограмма, хранящегося в Международном бюро мер и весов и представляющего собой цилиндр диаметром и высотой 39 мм из платино-иридиевого сплава (90% платины, 10% иридия). Первоначально в качестве единицы массы химик Антуан Лавуазье и кристаллограф Рене Жюст Айи предложили в 1793 году французской Комиссии мер и весов использовать грамм - массу одного кубического сантиметра чистой воды при температуре плавления льда. Для удобства практического использования уже упоминавшийся Ленуар изготовил эталонную медную гирю массой в 1000 грамм. С 1795 года новую единицу массы стали называть килограммом. Через четыре года было принято предложение физика Луи Лефевра-Гиньо взвешивать воду при температуре ее максимальной плотности (4°С). Новый эталон килограмма был изготовлен из платины и помещен на хранение в Архив Республики. Были также сделаны несколько его копий для использования в качестве образцов при изготовлении гирь. Однако произведенные в XIX веке измерения показали, что масса 1 дм 3 воды на 0,028 г меньше массы архивного эталона. Чтобы не допустить в будущем никаких разночтений, Международная комиссия по эталонам метрической системы в 1872 году решила принять в качестве единицы массы массу прототипа - Архивного килограмма.

В 1880 году увидел свет международный эталон килограмма из сплава, состоящего из платины и иридия, тогда же были изготовлены и четыре из шести ныне существующих официальных копий этого эталона.

Все они сейчас хранятся под двумя герметичными стеклянными колпаками в сейфе, расположенном в подвале Международного бюро мер и весов (Bureau International des Poids et Mesures - BIPM) в Севре неподалеку от Парижа. В 1889 году 1-я Генеральная конференция по мерам и весам приняла определение килограмма как равного массе международного эталона. Это определение действительно и в наше время.К сведению - Международное бюро мер и весов, МБМВ (фр. Bureau International des Poids et Mesures, BIMP) - постоянно действующая международная организация со штаб-квартирой, расположенной в городе Севр (предместье Парижа, Франция). Учреждено в 1875г., вместе с подписанием Метрической конвенции. Основная задача Бюро заключается в обеспечении существования единой системы измерений во всех странах-участницах этой конвенции. В МБМВ хранятся международные эталоны основных единиц и выполняются международные метрологические работы, связанные с разработкой и хранением международных эталонов и сличением национальных эталонов с международными и между собой.

Копия международного эталона хранятся также и в Российской Федерации, во ВНИИ метрологии им. Менделеева. Примерно раз в 10 лет национальные эталоны сравниваются с международным. Эти сравнения показывают, что точность национальных эталонов составляет примерно 2 мкг. Так как они хранятся в тех же условиях, нет никаких оснований считать, что международный эталон точнее. По разным причинам, за сто лет международный эталон теряет 0,00000003-ую часть своей массы. Однако, по определению, масса международного эталона в точности равна одному килограмму. Поэтому любые изменения действительной массы эталона приводят к изменению величины килограмма.

Килограмм - одна из семи основных величин международной системы единиц СИ. Остальные - метр, секунда, ампер, кельвин, моль и кандела - не привязаны к конкретным материальным носителям. Платиново-иридиевый эталон метра был отменен в 1960 году. Единственный в настоящее время оставшийся «механический» эталон - это килограмм. Но даже масса главного международного эталона со временем меняется - к настоящему времени считается, что он «похудел» на 50 мкг за счет микропереноса вещества на поверхность подставки во время хранения, а также на поверхность захватов, которыми его перемещают при сверке с национальными эталонами.

Всё это может искажать результаты сверхточных научных расчетов, поэтому ученые задумываются о необходимости дать новое определение килограмму. В 1975 году доктор Брайан Киббл из Национальной физической лаборатории (NPL) Великобритании предложил идею так называемых ватт-весов. Это устройство позволяет связать между собой единицы электрической и механической мощности. «Эта связь - основа метрологии, - объясняет «Популярной механике» ведущий научный сотрудник Всероссийского НИИ метрологии им. Д. И. Менделеева Эдмунд Француз. - Весы состоят из двух катушек, взаимодействующих между собой при протекании электрического тока. В отличие от токовых весов, здесь используется дополнительная калибровка при движении катушки с известной скоростью в эталонном магнитном поле. За счет этого удается существенно уменьшить ошибку измерения силы взаимодействия, обусловленную геометрией катушки. Таким образом, можно выразить килограмм через электрические единицы, измеренные на основе квантовых эффектов, то есть через фундаментальные константы, - это позволит избавиться от «механического» эталона. Пока что работающие ватт-весы реализованы в США в NIST и в NPL, но на данный момент наименьшая погрешность их измерений составляет 3,6×10 –8 , что минимум в два раза хуже, чем необходимо для эталона».

Другой способ переопределить килограмм предложила группа ученых из Германии, Австралии, Италии и Японии под руководством исследователей из Физико-технического института Германии. Они намерены использовать «метод Авогадро», то есть определить килограмм как энное число атомов. «Основные трудности этого метода в том, что нужно построить идеальную кристаллическую решетку, - говорит Эдмунд Француз, - без единого дефекта, и притом из одного изотопа - кремния-28. Относительная погрешность этого метода пока еще слишком велика - 3,1×10 –7 . Кстати, было еще одно направление, которое разрабатывалось у нас во ВНИИМ и в Японии, - метод левитирующей сверхпроводниковой массы, который обеспечивал точность порядка 4×10 –6 . Но по различным причинам исследования не были завершены ни в одной из стран».

Так что килограмм пока остается последним чисто механическим эталоном.

К сведению - допустимая абсолютная погрешность широко распространенной гири массой 1 килограмм составляет 0,5 грамма.

По материалам сайтов:www.omedb.ru; www.russianamerica.com; wikipedia.org.

Средства измерений, обеспечивающие воспроизведение и (или) хранение единицы с целью передачи ее размера нижестоящим по поверочной схеме средствам измерений и предназначенные для обеспечения единства измерений, являются эталонами единиц физических величин .

В зависимости от подчиненности национальные эталоны подразделяются на первичные (исходные) и вторичные (подчиненные).

  1. Первичные эталоны воспроизводят и (или) хранят единицы и передают их размеры с наивысшей точностью, достижимой в настоящее время в соответствующих областях измерений.
  2. Специальные эталоны воспроизводят единицы в условиях, при которых прямая передача размера единицы от первичного эталона с требуемой точностью технически неосуществима.

Первичные и специальные эталоны являются исходными для страны и поэтому утверждаются в качестве государственных эталонов .

Вторичные эталоны подразделяются на:

  • эталоны-копии,
  • эталоны сравнения,
  • рабочие эталоны.

Эталоны-копии являются связующими звеньями для передачи размера единицы от первичных к рабочим эталонам. Эталоны сравнения предназначены для взаимного сличения первичных эталонов, рабочие эталоны - для поверки образцовых и рабочих средств высшей и высокой точности.

В зависимости от состава технических средств, входящих в эталон, различают:

  • одиночные эталоны,
  • групповые,
  • эталонные наборы,
  • эталонные комплексы.

Одиночный состоит из одного средства измерений (меры, измерительного прибора, измерительной установки), обеспечивающего воспроизведение и (или) хранение единицы самостоятельно, без участия других средств измерений того же типа.

Групповой эталон - это совокупность однотипных средств измерений, применяемых как одно целое для повышения точности и метрологической надежности эталона. Размер единицы, хранимой групповым эталоном, определяют как среднее арифметическое из значений, найденных с помощью отдельных средств измерений, входящих в состав группового эталона.

Эталонный набор - совокупность средств измерений (мер или измерительных приборов), каждое из которых позволяет воспроизводить и хранить значения физической величины в определенном диапазоне. Иными словами, каждое отдельное средство измерений, входящее в состав эталона, имеет свои номинальные значения или диапазоны измерений. Совокупность средств измерений эталонного набора дает возможность расширить границы диапазона кратных и (или) дольных значений воспроизводимой физической величины.

Эталонный комплекс средств измерений - совокупность неоднотипных технических средств, необходимых для воспроизведения и хранения единицы. Именно к таким эталонам принадлежит государственный первичный эталон единицы массы .

Из чего состоит эталон массы

Он состоит из комплекса следующих средств измерений:

  1. национального прототипа килограмма - копии № 12 Международного прототипа килограмма, представляющего собой гирю из платиноиридиевого сплава, предназначенную для передачи размера единицы массы гире R1;
  2. национального прототипа килограмма - копии № 26 Международного прототипа килограмма, представляющего собой гирю из платиноиридиевого сплава, предназначенную для проверки неизменности размера единицы массы, воспроизводимой национальным прототипом килограмма № 12 и для замены его в период сличений 11 в МБМВ (международный банк мер и весов);
  3. гири R1 и набора гирь, изготовленных из платиноиридиевого сплава, предназначенных для передачи размера единицы массы эталонам-копиям;
  4. двух компараторов (эталонных весов).

Номинальное значение массы, воспроизводимое эталоном, составляет 1 кг. Государственный первичный эталон обеспечивает воспроизведение единицы со средним квадратическим отклонением результата измерений при сличении с Международным прототипом килограмма, не превышающим 2*10(-3) мг. Гирю R1 с номинальным значением массы 1 кг и набор гирь с номинальными значениями массы от 1*10(-6) до 5*10(-1) кг сличают с номинальным прототипом килограмма - копией № 12 - со средним квадратическим отклонением результата измерений, не превышающим 8*10(-3) мг для гири R1 и 2*10(-4) - 1,6*10(-2) мг - для набора гирь.

В качестве компараторов применяют эталонные весы однорычажного равноплечего исполнения, имеющие наибольшие пределы взвешивания 1 кг (НмПВ- 2*10(-3) мг), среднее квадратическое отклонение результатов наблюдений которых от 5*10(-4) до 3*10(-2) мг. Цена деления весов составляет от 1*10(-4) до 4*10(-2) мг. Вторичными эталонами единицы массы являются эталоны-копии и рабочие эталоны. В качестве эталонов-копий применяют гири с номинальным значением массы 1 кг, изготовленные из немагнитной нержавеющей стали и компаратор (весы). Среднее квадратическое отклонение результатов сличения эталонов-копий с государственным не должно превышать 1*10(-2) мг.

Эталонные весы, используемые в качестве компаратора, с наибольшим пределом взвешивания 1 кг имеют среднее квадратическое отклонение результата наблюдений, не превышающее 3*10(-2) мг. Цена деления весов, не должна превышать 4*10(-2) мг. Нестабильность эталонов-копий v за межповерочный срок не должна превышать 3*10(-2) мг. Эталоны-копии применяют для передачи размера единицы массы рабочим эталонам сличения с помощью компаратора. В качестве рабочих эталонов применяют одиночные гири, номинальной массы 1 кг и наборы гирь массой от 1 до 500 г, изготовленные из немагнитной нержавеющей стали, и компараторы (весы).

Среднее квадратическое отклонение результатов сличения рабочих эталонов с эталонами-копиями должно лежать в пределах от 8*10(-4) до 2*10(-2) мг.

Эталонные весы (компараторы), имеющие диапазон измерений от 2*10(-3) до 1 кг, обеспечивают значение среднего квадратического отклонения результатов наблюдений на весах от 5*10(-4) до 5*10(-2) мг. Цена деления эталонных весов составляет от 1*10(-4) до 4*10(-2) мг. Нестабильность рабочих эталонов v за межповерочный интервал составляет от 16*10(-4) до 4*10(-2) мг.

Рабочие эталоны применяют для поверки образцовых гирь Iа и I разрядов и рабочих гирь 1-го класса сличением на компараторе. Средства, входящие в состав вторичных эталонов, выполняют следующие функции:

  • хранение единицы,
  • контроль условий хранения,
  • передача размера единицы массы образцовым и рабочим средствам измерений.

Средства, методы и точность передачи размера единицы от эталона рабочим средствам измерений регламентируются документами, утвержденными в установленном порядке, называемыми поверочными схемами. Различают государственные и локальные поверочные схемы.

Государственные поверочные схемы утверждаются в качестве государственных стандартов. Приведенные в поверочных схемах названия эталонных, образцовых и рабочих средств измерений сопровождаются числовыми значениями рабочих диапазонов воспроизведения (для мер) или измерения (для измерительных приборов) воспроизводимых или измеряемых физических величин, а также значениями пределов допускаемой погрешности всех средств измерений, входящих в поверочную схему.

Методы поверки

Важное значение для четкой регламентации и ранжирования взаимосвязи средств измерений, входящих в ту или иную поверочную схему, имеют методы, применяемые при поверке. Методы поверки, указанные в поверочной схеме, отражают специфику поверки данного вида средств измерений. Они должны соответствовать одному из следующих общих методов:

  1. непосредственное (без компаратора) сличение поверяемого средства измерений с образцовым средством измерений того же вида, т. е. меры с мерой или измерительного прибора с измерительным прибором;
  2. прямое измерение поверяемым измерительным прибором величины, воспроизведенной образцовой мерой;
  3. прямое измерение образцовым измерительным прибором величины, воспроизведенной мерой, подвергаемой поверке;
  4. косвенные измерения величины, воспроизводимой мерой или измеряемой прибором, подвергаемым поверке;
  5. независимая поверка, т. е. поверка средств измерений относительных (безразмерных) величин, не требующая передачи размера единиц от эталонов или образцовых средств измерений рабочим средствам измерений, градуированным в единицах измеряемых величин.

Специфика средств измерений, входящих в приведенную на рис.1 схему, позволяет использовать и регламентировать только два из шести перечисленных методов поверки:

  • сличение поверяемого средства измерений с образцовым средством измерений того же вида с помощью компаратора;
  • прямое измерение поверяемым измерительным прибором величины, воспроизведенной образцовой мерой.

Для раскрытия взаимосвязей средств измерений, имеющих место при передаче размера единицы массы от эталона рабочим мерам и приборам ниже приведены основные параметры и нормированные значения погрешности образцовых и рабочих средств измерений, входящих в названную поверочную схему, а также указаны методы, применяемые при поверке каждого средства измерений.



Понравилась статья? Поделитесь ей
Наверх