Эритропоэз и образование гемоглобина. Какие органы входят в состав этой жизнеобеспечивающей системы. Различают два вида кроветворения

Одной из наиболее важных и сложных проблем гематологии является вопрос о генезе клеток крови.

За период существования учения о крови сменилось несколько теорий кроветворения. Впервые кровь, как отдельная ткань организма, была выделена в 1839 г. Schwann. Первое деление клеток крови – белых кровяных телец – на клетки лимфы и лейкоциты было предпринято в 1845 г. немецким патологом Рудольфом Вирховым. Однако уже к концу 19 века стало известно, что в крови находятся не 2, а 3 типа клеток: лейкоциты, эритроциты и тромбоциты. В связи с этим возник вопрос об их происхождении.

Итак, теории кроветворения:

    Полифелитическая теория . Ее основоположником является немецкий ученый, нобелевский лауреат Пауль Эрлих, который в 1878 году изобрел способ дифференциальной окраски клеток крови и выявил зернистость в лейкоцитах. Учитывая морфологические различия клеток, он описал 8 видов лейкоцитов:

Незернистые лейкоциты

    Лимфоциты,

    Мононуклеары,

    Переходные клетки;

Зернистые лейкоциты

      Нейтрофилы,

      Эозинофилы,

      Мелкозернистые базофилы,

      Крупнозернистые базофилы,

      β-амфифильные («амфи» – с обеих сторон, «филия» – наклонность) лейкоциты.

Обращаясь к вопросу о генезе этих клеток, Эрлих предположил, что незернистые лейкоциты происходят из лимфоидной ткани, а зернистые лейкоциты (которые он выделил в систему миелоидных клеток) берут начало в КМ. Таким образом, согласно его суждениям, существует 2 системы кроветворения – лимфоидная и миелоидная. При этом каждая из описанных им 8 клеток имеет своего предшественника. То есть, суть полифилетической теории состоит в том, что каждый росток кроветворения имеет свою родоначальную клетку.

    Триалистическая теория предложена Schilling (1919 г.) и Aschoff (1924 г.). Согласно их убеждениям, эритроциты, гранулоциты и тромбоциты входят в состав миелоидной ткани и имеют 1 клетку-предшественницу, которая находится в КМ. Лимфоидные клетки входят в состав лимфоидной ткани. Моноциты происходят из ретикулоэндотелиальной системы.

    Дуалистическая теория , согласно которой существуют 2 родоначальные клетки - отдельно для миелоидного и лимфоидного ростков кроветворения. Её предложил Nehely (1900 г.) и Schridde (1923 г.). Она по существу является подтверждением 1-ой теории.

Что общего у этих 3-х теорий?

    Утверждение того, что в периферической крови находятся конечные клетки,

    Разделение кроветворной ткани на лимфоидную и миелоидную,

    Отсутствие допущения о существовании одной родоначальной клетки, единой для всех ростков гемопоэза.

    Умеренно-унитарная теория (1920 г., Александр Николаевич Крюков – основоположник отечественной гематологии).Суть теории - между материнскими клетками миелоидного и лимфоидного ряда существуют лишь функциональные различия. Анатомически она едина – это (по Крюкову) «лимфоидоцит» (или гемоцитобласт), образующийся из ретикулярной клетки, отделившейся от синцития (гемогистобласта). Т.е. ретикулярная клетка → гемогистобласт → гемоцитобласт → цитобласт.

    В настоящее время находит свое подтверждение унитарная теория кроветворения, высказанная еще в начале 19 века (в 1916 г.) русским ученым Александром Александровичем Максимовым. Суть теории – все клетки крови образуются из одной стволовой клетки .

Согласно современной схеме кроветворения , предложенной в 1973 г. А.И. Воробьевым и И.Л. Чертковым все клетки крови подразделяются на 3 больших класса:

    Родоначальные (или стволовые) клетки. Они составляют 1-2%;

    Созревающие клетки – 25-40%;

    Зрелые клетки – 60-75%.

В пределах этих 3-х групп все гемопоэтические клетки (в зависимости от функциональных и морфологических особенностей) разделены на 6 классов:

I класс: ПСКК - полипотентные стволовые кроветворные клетки. Находятся в КМ и (возможно) в селезенке, могут циркулировать в периферической крови. В тимусе и лимфоузлах их нет.

Первые научные доказательства существования стволовых клеток появились в 60-х годах прошлого века. Так, в 1960 г. в лаборатории культуры тканей Университета в Торонто два канадских исследователя – J.E. Till и E.A. McCulloch обнаружили свойство кроветворных клеток образовывать колонии в селезенке у летально облученных мышей. Они облучали животных в смертельной дозе 6-7 Гр, затем в/в вводили им клетки КМ интактного (необлученного) животного. После трансплантации КМ в селезенке облученных мышей обнаруживались очаги кроветворения в виде макроскопических колоний клеток: гранулоцитарных, эритроидных, мегакариоцитарных и смешанных. Однако колонии из лимфоидных клеток при этом не образовывались. При последующем введении одной из подобных колоний другой смертельно облученной мыши в ее селезенке вновь развивались колонии с трехростковым кроветворением. Позднее было доказано, что каждая такая колония – потомство 1 клетки. Как? Вводимые костномозговые клетки «метили» облучением в низкой дозе (2 Гр). Эта «метка» (кольцевая хромосома) обнаруживалась в клетках всех колониальных линий. Эта родоначальная клетка получила название – КОЕ с – колониеобразующая единица в селезенке. КОЕ с относят к категории более зрелых ПСКК. Кроме того, с помощью хромосомного маркера также была обнаружена способность КОЕ с дифференцироваться в лимфоциты, поскольку кольцевая хромосома выявлялась не только в клетках селезеночных колоний, но и в лимфоцитах лимфатических узлов, тимуса и костного мозга облученных животных. Наконец было показано, что культура КМ на агаре приводит к образованию гранулоцитов и моноцитов.

Свойства ПСКК:

    Обладают высоким (но не безграничным) пролиферативным потенциалом - могут проделывать не более 100 митозов.

    Обладают способностью дифференцироваться в направлении всех ростков кроветворения.

    Дифференцировка ПСКК (на путь которой вступает не более 40% клеток) регулируется сугубо локально, не зависит от внешних воздействий и потребностей организма.

    % тимидинового самоубийства равняется 10. Это означает, что 90% ПСКК находятся вне митотического цикла (в стадии G 0) и лишь 10% - в делении.

II класс: Полустволовые (частично детерминированные) кроветворные клетки . К ним относятся:

    КОЕ-ГЭММ – общая клетка-предшественница миело- и эритропоэза, дающая смешанные колонии из гранулоцитов, эритроцитов, мегакариоцитов и макрофагов, которая дифференцируется в:

    КОЕ-ГМ – клетки, дающие колонии из гранулоцитов и моноцитов,

    КОЕ-ГЭ – клетки, дающие колонии из гранулоцитов и эритроцитов,

    КОЕ-МегЭ - клетки, дающие колонии из мегакариоцитов и эритроцитов,

    Общая клетка-предшественница лимфопоэза - ?

Наличие общей клетки-предшественницы для миелопоэза и эритропоэза было доказано в 1971 г. учеными Nowell и Ford на примере хронического миелолейкоза. Учеными было сделано любопытное открытие: у 95% больных с данной патологией во всех клетках крови (за исключением лимфоцитов) обнаруживалась филадельфийcкая (Рh) хромосома. Это позволило сделать заключение о существовании клетки-родоначальницы, единой для трех ростков миелопоэза – гранулоцитов, эритроцитов и мегакариоцитов, и отдельно от этого – клеток-предшественниц лимфоцитов.

Свойства клеток :

    Сниженный пролиферативный потенциал и более высокая пролиферативная активность по сравнению с ПСКК. % тимидинового самоубийства равняется 30. Т.е. 30% клеток находятся в делении, 70% - в покое.

    Дифференцировка клеток регулируется ростовыми факторами, секреция которых зависит от существующего запроса организма. Т.е. это уже не стохастический, а детерминированный процесс.

III класс: Коммитированные (унипотентные) клетки - родоначальницы отдельных ростков гемопоэза. К ним относятся:

А) клетки-предшественницы лимфопоэза:

    преТ – родоначальница Т-лимфоцитов,

    преВ – родоначальница В-лимфоцитов.

Б) клетки-предшественницы миелопоэза:

    КОЕ-Г – родоначальница гранулоцитов (нейтрофилов),

    КОЕ-ЭО – родоначальница эозинофилов,

    КОЕ-Б – родоначальница базофилов,

    КОЕ-М – родоначальница моноцитов,

    КОЕ-Мег – родоначальница мегакариоцитов.

В) клетки-предшественницы эритропоэза:

    Незрелая и зрелая БОЕ-Э - бурстобразующие единицы, нечувствительные к эритропоэтину (ЭП),

    КОЕ-Э – ЭП-чувствительный продукт дифференцировки БОЕ-Э.

Свойства клеток:

    Имеют ограниченную способность к самоподдрежанию (10-15 митозов), но более высокую (по сравнению с предыдущим классом клеток) пролиферативную активность (% тимидинового самоубийства равен 60, т.е. 60% клеток находятся в делении, а 40% в покоящемся состоянии).

    Дифференцировка клеток контролируется гуморальными факторами – поэтинами строго по запросу организма.

Кроветворение (гемоцитопоэз)процесс образования форменных элементов крови.

Различают два вида кроветворения:

миелоидное кроветворение:

  • эритропоэз;
  • гранулоцитопоэз;
  • тромбоцитопоэз;
  • моноцитопоэз.

лимфоидное кроветворение:

  • Т-лимфоцитопоэз;
  • В-лимфоцитопоэз.

Кроме того, гемопоэз подразделяется на два периода:

  • эмбриональный;
  • постэмбриональный.

Эмбриональный период гемопоэза приводит к образованию крови как ткани и потому представляет собой гистогенез крови . Постэмбриональный гемопоэз представляет собой процесс физиологической регенерации крови как ткани.

Эмбриональный период гемопоэза осуществляется поэтапно, сменяя разные органы кроветворения. В соответствии с этим эмбриональный гемопоэз подразделяется на три этапа:

  • желточный;
  • гепато-тимусо-лиенальный;
  • медулло-тимусо-лимфоидный.

Наиболее важными моментами желточного этапа являются:

  • образование стволовых клеток крови;
  • образование первичных кровеносных сосудов.

Несколько позже (на 3-ей неделе) начинают формироваться сосуды в мезенхиме тела зародыша, однако они являются пустыми щелевидными образованиями. Довольно скоро сосуды желточного мешка соединяются с сосудами тела зародыша, по этим сосудам стволовые клетки мигрируют в тело зародыша и заселяют закладки будущих кроветворных органов (в первую очередь печень), в которых затем и осуществляется кроветворение.

Гепато-тимусо лиенальный

этап гемопоэза осуществляется в начале в печени, несколько позже в тимусе (вилочковой железе), а затем и в селезенке. В печени происходит (только экстраваскулярно) в основном миелоидное кроветворение, начиная с 5-ой недели и до конца 5-го месяца, а затем постепенно снижается и к концу эмбриогенеза полностью прекращается. Тимус закладывается на 7-8-й неделе, а несколько позже в нем начинается Т-лимфоцитопоэз, который продолжается до конца эмбриогенеза, а затем в постнатальном периоде до его инволюции (в 25-30 лет). Процесс образования Т-лимфоцитов в этот момент носит название антиген независимая дифференцировка . Селезенка закладывается на 4-й неделе, с 7-8 недели она заселяется стволовыми клетками и в ней начинается универсальное кроветворение, то есть и миелоилимфопоэз. Особенно активно кроветворение в селезенке протекает с 5-го по 7-ой месяцы внутриутробного развития плода, а затем миелоидное кроветворение постепенно угнетается и к концу эмбриогенеза (у человека) оно полностью прекращается. Лимфоидное же кроветворение сохраняется в селезенке до конца эмбриогенеза, а затем и в постэмбриональном периоде.

Следовательно, кроветворение на втором этапе в названных органах осуществляется почти одновременно, только экстраваскулярно, но его интенсивность и качественный состав в разных органах различны.

Медулло-тимусо-лимфоидный этап кроветворения

Закладка красного костного мозга начинается со 2-го месяца, кроветворение в нем начинается с 4-го месяца, а с 6-го месяца он является основным органом миелоидного и частично лимфоидного кроветворения, то есть является универсальным кроветворным органом. В то же время в тимусе, в селезенке и в лимфатических узлах осуществляется лимфоидное кроветворение. Если красный костный мозг не в состоянии удовлетворить возросшую потребность в форменных элементах крови (при кровотечении), то гемопоэтическая активность печени, селезенки может активизироваться - экстрамедуллярное кроветворение.

Постэмбриональный период кроветворения - осуществляется в красном костном мозге и лимфоидных органах (тимусе, селезенке, лимфатических узлах, миндалинах, лимфоидных фолликулах).

Сущность процесса кроветворения заключается в пролиферации и поэтапной дифференцировке стволовых клеток в зрелые форменные элементы крови.

Теории кроветворения

  • унитарная теория (А. А. Максимов, 1909 г.) - все форменные элементы крови развиваются из единого предшественникастволовой клетки;
  • дуалистическая теория предусматривает два источника кроветворения, для миелоидного и лимфоидного;
  • полифилетическая теория предусматривает для каждого форменного элемента свой источник развития.

В настоящее время общепринятой является унитарная теория кроветворения, на основании которой разработана схема кроветворения (И. Л. Чертков и А. И. Воробьев, 1973 г.).

В процессе поэтапной дифференцировки стволовых клеток в зрелые форменные элементы крови в каждом ряду кроветворения образуются промежуточные типы клеток, которые в схеме кроветворения составляют классы клеток.

Всего в схеме кроветворения различают 6 классов клеток:

  • 1 класс - стволовые клетки;
  • 2 класс - полустволовые клетки;
  • 3 класс - унипотентные клетки;
  • 4 класс - бластные клетки;
  • 5 класс - созревающие клетки;
  • 6 класс - зрелые форменные элементы.

1 класс - стволовая полипотентная клетка, способная к поддержанию своей популяции.

По морфологии соответствует малому лимфоциту, является полипотентной , то есть способной дифференцироваться в любой форменный элемент крови. Направление дифференцировки стволовой клетки определяется уровнем содержания в крови данного форменного элемента, а также влиянием микроокружения стволовых клеток - индуктивным влиянием стромальных клеток костного мозга или другого кроветворного органа. Поддержание численности популяции стволовых клеток обеспечивается тем, что после митоза стволовой клетки одна из дочерних клеток становится на путь дифференцировки, а другая принимает морфологию малого лимфоцита и является стволовой. Делятся стволовые клетки редко (1 раз в полгода), 80 % стволовых клеток находятся в состоянии покоя и только 20 % в митозе и последующей дифференцировке. В процессе пролиферации каждая стволовая клетка образует группу или клон клеток и потому стволовые клетки в литературе нередко называются колоние-образующие единицы - КОЕ.

2 класс - полустволовые

ограниченно полипотентные (или частично коммитированные) клетки-предшественницы миелопоэза и лимфопоэза. Имеют морфологию малого лимфоцита. Каждая из них дает клон клеток, но только миелоидных или лимфоидных. Делятся они чаще (через 3-4 недели) и также поддерживают численность своей популяции.

3 класс - унипотентные поэтин-чувствительные клетки

Предшественницы своего ряда кроветворения. Морфология их также соответствует малому лимфоциту. Способны дифференцироваться только в один тип форменного элемента. Делятся часто, но потомки этих клеток одни вступают на путь дифференцировки, а другие сохраняют численность популяции данного класса. Частота деления этих клеток и способность дифференцироваться дальше зависит от содержания в крови особых биологически активных веществ - поэтинов , специфичных для каждого ряда кроветворения (эритропоэтины, тромбопоэтины и другие).

Первые три класса клеток объединяются в класс морфологически неидентифицируемых клеток, так как все они имеют морфологию малого лимфоцита, но потенции их к развитию различны.

4 класс - бластные

(молодые) клетки или бласты (эритробласты, лимфобласты и так далее). Отличаются по морфологии как от трех предшествующих, так и последующих классов клеток. Эти клетки крупные, имеют крупное рыхлое (эухроматин) ядро с 2 4 ядрышками, цитоплазма базофильна за счет большого числа свободных рибосом. Часто делятся, но дочерние клетки все вступают на путь дальнейшей дифференцировки. По цитохимическим свойствам можно идентифицировать бласты разных рядов кроветворения.

5 класс - класс созревающих клеток

Характерных для своего ряда кроветворения. В этом классе может быть несколько разновидностей переходных клеток - от одной (пролимфоцит, промоноцит), до пяти в эритроцитарном ряду. Некоторые созревающие клетки в небольшом количестве могут попадать в периферическую кровь (например, ретикулоциты, юные и палочкоядерные гранулоциты).

6 класс - зрелые форменные элементы крови

Однако следует отметить, что только эритроциты, тромбоциты и сегментоядерные гранулоциты являются зрелыми конечными дифференцированными клетками или их фрагментами. Моноцитыне окончательно дифференцированные клетки. Покидая кровеносное русло, они дифференцируются в конечные клетки - макрофаги . Лимфоциты при встрече с антигенами, превращаются в бласты и снова делятся.

В Т- и в В-лимфоцитопоэзе выделяют три этапа:

  • костномозговой этап;
  • этап антиген-независимой дифференцировки, осуществляемый в центральных иммунных органах;
  • этап антиген-зависимой дифференцировки, осуществляемый в периферических лимфоидных органах.

Первый этап Т-лимфоцитопоэза осуществляется в лимфоидной ткани красного костного мозга, где образуются следующие классы клеток:

  • 1 класс - стволовые клетки;
  • 2 класс - полустволовые клетки-предшественницы лимфоцитопоэза;
  • 3 класс - унипотентные Т-поэтинчувствительные клетки-предшественницы Т-лимфоцитопоэза, эти клетки мигрируют в кровеносное русло и с кровью достигают тимуса.

Второй этап - этап антигеннезависимой дифференцировки осуществляется в корковом веществе тимуса. Здесь продолжается дальнейший процесс Т-лимфоцитопоэза. Под влиянием биологически активного вещества тимозина , выделяемого стромальными клетками, унипотентные клетки превращаются в Т-лимфобласты - 4 класс, затем в Т-пролимфоциты - 5 класс, а последние в Т-лимфоциты - 6 класс.

Третий этап - этап антигенезависимой дифференцировки осуществляется в Т-зонах периферических лимфоидных органов - лимфоузлов, селезенки и других, где создаются условия для встречи антигена с Т-лимфоцитом (киллером, хелпером или супрессором), имеющим рецептор к данному антигену.

Первый этап В-лимфоцитопоэза осуществляется в красном костном мозге, где образуются следующие классы клеток:

  • 1 класс - стволовые клетки;
  • 2 класс - полустволовые клетки-предшественницы лимфопоэза;
  • 3 класс - унипотентные В-поэтинчувствительные клетки-предшественницы В-лимфоцитопоэза.

Второй этап антигеннезависимой дифференцировки у птиц осуществляется в специальном центральном лимфоидном органе - фабрициевой сумке.

Третий этап - антигензависимая дифференцировка осуществляется в В-зонах периферических лимфоидных органов (лимфатических узлов, селезенки и других) где происходит встреча антигена с соответствующим В-рецепторным лимфоцитом, его последующая активация и трансформация в иммунобласт.

КРОВЕТВОРЕНИЕ (ГЕМОПОЭЗ)

КРОВЕТВОРЕНИЕ (ГЕМОПОЭЗ)

Гемопоэзом (haemopoesis) называют развитие крови. Различают эмбриональный гемопоэз, который происходит в эмбриональный период и приводит к развитию крови как ткани, и постэмбриональный гемопоэз, который представляет собой процесс физиологической регенерации крови.

Развитие эритроцитов называют эритропоэзом, развитие гранулоцитов - гранутоцитопоэзом, тромбоцитов - тромбоцитопоэзом, развитие моноцитов - моноцитопоэзом, развитие лимфоцитов и иммуноцитов - лимфоцито-и иммуноцитопоэзом.

7.4.1. Эмбриональный гемопоэз

В развитии крови как ткани в эмбриональный период можно выделить три основных этапа, последовательно сменяющих друг друга: 1) мезобластический, когда начинается развитие клеток крови во внезаро-дышевых органах - мезенхиме стенки желточного мешка и хориона (с 3-й по 9-ю нед развития зародыша человека) и появляется первая генерация стволовых клеток крови; 2) печеночный, который начинается в печени с 5-6-й нед развития зародыша, когда печень становится основным органом гемопоэза, в ней образуется вторая генерация СКК. Кроветворение в печени достигает максимума через 5 мес и завершается перед рождением. СКК печени заселяют вилочковую железу (здесь, начиная с 7-8-й нед, развиваются Т-лимфоциты), селезенку (гемопоэз начинается с 12-й нед) и лимфатические узлы (гемопоэз отмечается с 10-й нед); 3) медуллярный (костномозговой) - появление третьей генерации СКК в костном мозге, где гемопоэз начинается с 10-й нед и постепенно нарастает к рождению, а после рождения костный мозг становится центральным органом гемопоэза.

Кроветворение в стенке желточного мешка. У человека оно начинается в конце 2-й - начале 3-й нед эмбрионального развития. В мезенхиме стенки желточного мешка обособляются зачатки сосудистой крови, или

кровяные островки. В них мезенхимные клетки теряют отростки, округляются и преобразуются в стволовые клетки крови. Клетки, ограничивающие кровяные островки, уплощаются, соединяются между собой и образуют эндотелиальную выстилку будущего сосуда. Часть СКК дифференцируются в первичные клетки крови (бласты), крупные клетки с базофиль-ной цитоплазмой и ядром, в котором хорошо заметны крупные ядрышки (рис. 7.14). Большинство первичных кровяных клеток митотически делятся и превращаются в первичные эритробласты, характеризующиеся крупным размером (мегалобласты). Это превращение совершается в связи с накоплением эмбрионального гемоглобина в цитоплазме бластов, при этом сначала образуются полихроматофильные эритробласты, а затем ацидофильные эри-тробласты с большим содержанием гемоглобина. В некоторых первичных эритробластах ядра подвергаются кариорексису и удаляются из клеток, в других клетках ядра сохраняются. В результате образуются безъядерные и ядросодержащие первичные эритроциты, отличающиеся большим размером от ацидофильных эритробластов и поэтому получившие название мегало-цитов. Такой тип кроветворения называется мегалобластическим. Он характерен для эмбрионального периода, но может появляться в постнатальном периоде при некоторых заболеваниях (злокачественное малокровие).

Наряду с мегалобластическим в стенке желточного мешка начинается нормобластическое кроветворение, при котором из бластов образуются вторичные эритробласты; сначала по мере накопления в их цитоплазме гемоглобина они превращаются в полихроматофильные эритробласты, далее в нормобласты, из которых образуются вторичные эритроциты (нормоци-ты); размеры последних соответствуют эритроцитам (нормоцитам) взрослого человека (см. рис. 7.14, а). Развитие эритроцитов в стенке желточного мешка происходит внутри первичных кровеносных сосудов, т. е. интраваску-лярно. Одновременно экстраваскулярно из бластов, расположенных вокруг сосудов, дифференцируется небольшое количество гранулоцитов - ней-трофилов и эозинофилов. Часть СКК остается в недифференцированном состоянии и разносится током крови по различным органам зародыша, где происходит их дальнейшая дифференцировка в клетки крови или соединительной ткани. После редукции желточного мешка основным кроветворным органом временно становится печень.

Кроветворение в печени. Печень закладывается примерно на 3-4-й нед эмбрионального развития, а с 5-й нед она становится центром кроветворения. Кроветворение в печени происходит экстраваскулярно, по ходу капилляров, врастающих вместе с мезенхимой внутрь печеночных долек. Источником кроветворения в печени служат стволовые клетки крови, из которых образуются бласты, дифференцирующиеся во вторичные эритроциты. Процесс их образования повторяет описанные выше этапы образования вторичных эритроцитов. Одновременно с развитием эритроцитов в печени образуются зернистые лейкоциты, главным образом нейтрофильные и ацидофильные. В цитоплазме бласта, становящейся более светлой и менее базофильной, появляется специфическая зернистость, после чего ядро приобретает неправильную форму. Кроме гранулоцитов, в печени формируют-

Рис. 7.14. Эмбриональный гемопоэз (по А. А. Максимову):

а - кроветворение в стенке желточного мешка зародыша морской свинки: 1 - мезенхимальные клетки; 2 - эндотелий стенки сосудов; 3 - первичные кровяные клетки-бласты; 4 - митотически делящиеся бласты; б - поперечный срез кровяного островка зародыша кролика 8,5 сут: 1 - полость сосуда; 2 - эндотелий; 3 - интра-васкулярные кровяные клетки; 4 - делящаяся кровяная клетка; 5 - формирование первичной кровяной клетки; 6 - энтодерма; 7 - висцеральный листок мезодермы; в - развитие вторичных эритробластов в сосуде зародыша кролика 13,5 сут: 1 - эндотелий; 2 - проэритробласты; 3 - базофильные эритробласты; 4 - поли-хроматофильные эритробласты; 5 - оксифильные (ацидофильные) эритробласты (нормобласты); 6 - оксифильный (ацидофильный) эритробласт с пикнотическим ядром; 7 - обособление ядра от оксифильного (ацидофильного) эритробласта (нор-мобласта); 8 - вытолкнутое ядро нормобласта; 9 - вторичный эритроцит; г - кроветворение в костном мозге зародыша человека с копчиково-теменной длиной тела 77 мм. Экстраваскулярное развитие клеток крови: 1 - эндотелий сосуда; 2 - бласты; 3 - нейтрофильные гранулоциты; 4 - эозинофильный миелоцит

ся гигантские клетки - мегакариоциты. К концу внутриутробного периода кроветворение в печени прекращается.

Кроветворение в тимусе. Вилочковая железа закладывается в конце 1-го мес внутриутробного развития, и на 7-8-й нед ее эпителий начинает заселяться стволовыми клетками крови, которые дифференцируются в лимфоциты тиму-

са. Увеличивающееся число лимфоцитов тимуса дает начало Т-лимфоцитам, заселяющим Т-зоны периферических органов иммунопоэза.

Кроветворение в селезенке. Закладка селезенки происходит в конце 1-го мес внутриутробного развития. Из вселяющихся в нее стволовых клеток происходит экстраваскулярное образование всех видов форменных элементов крови, т. е. селезенка в эмбриональном периоде представляет собой универсальный кроветворный орган. Образование эритроцитов и гранулоци-тов в селезенке достигает максимума на 5-м мес внутриутробного развития. После этого в ней начинает преобладать лимфоцитопоэз.

Кроветворение в лимфатических узлах. Первые закладки лимфатических узлов у человека появляются на 7-8-й нед эмбрионального развития. Большинство лимфатических узлов развиваются на 9-10-й нед. В этот же период начинается проникновение в лимфатические узлы стволовых клеток крови, из которых дифференцируются эритроциты, гранулоциты и мегака-риоциты. Однако формирование этих элементов быстро подавляется образованием лимфоцитов, составляющих основную часть клеток лимфатических узлов. Появление единичных лимфоцитов происходит уже на 8-15-й нед развития, однако массовое «заселение» лимфатических узлов предшественниками Т- и В-лимфоцитов начинается с 16-й нед, когда формируются посткапиллярные венулы, через стенку которых осуществляется процесс миграции клеток. Из клеток-предшественников дифференцируются лим-фобласты (большие лимфоциты), а далее средние и малые лимфоциты. Дифференцировка Т- и В-лимфоцитов происходит в Т- и В-зависимых зонах лимфатических узлов.

Кроветворение в костном мозге. Закладка костного мозга осуществляется на 2-м мес внутриутробного развития. Первые гемопоэтические элементы появляются на 12-й нед развития; в это время основную их массу составляют эритробласты и предшественники гранулоцитов. Из СКК в костном мозге формируются все форменные элементы крови, развитие которых происходит экстраваскулярно (см. рис. 7.14, г). Часть СКК сохраняются в костном мозге в недифференцированном состоянии, они могут расселяться по другим органам и тканям и являться источником развития клеток крови и соединительной ткани. Таким образом, костный мозг становится центральным органом, осуществляющим универсальный гемопоэз, и остается им в течение постнатальной жизни. Он обеспечивает стволовыми кроветворными клетками тимус и другие органы гемопоэза.

7.4.2. Постэмбриональный гемопоэз

Постэмбриональный гемопоэз представляет собой процесс физиологической регенерации крови (клеточное обновление), который компенсирует физиологическое разрушение дифференцированных клеток. Миелопоэз происходит в миелоидной ткани (textus myeloideus), расположенной в эпифизах трубчатых и полостях многих губчатых костей (см. главу 14). Здесь развиваются форменные элементы крови: эритроциты, гранулоциты, моноциты, кровяные пластинки, предшественники лимфоцитов. В миелоид-

ной ткани находятся стволовые клетки крови и соединительной ткани. Предшественники лимфоцитов постепенно мигрируют и заселяют такие органы, как тимус, селезенка, лимфатические узлы и др.

Лимфопоэз происходит в лимфоидной ткани (textus lymphoideus), которая имеет несколько разновидностей, представленных в тимусе, селезенке, лимфатических узлах. Она выполняет основные функции: образование Т- и В-лимфоцитов и иммуноцитов (плазмоцитов и др.).

СКК являются плюрипотентными (полипотентными) предшественниками всех клеток крови и относятся к самоподдерживающейся популяции клеток. Они редко делятся. Впервые представление о родоначальных клетках крови сформулировал в начале XX в. А. А. Максимов, который считал, что по своему строению они сходны с лимфоцитами. В настоящее время это представление нашло подтверждение и дальнейшее развитие в новейших экспериментальных исследованиях, проводимых главным образом на мышах. Выявление СКК стало возможным при применении метода коло-ниеобразования.

Экспериментально (на мышах) показано, что при введении смертельно облученным животным (утратившим собственные кроветворные клетки) взвеси клеток красного костного мозга или фракции, обогащенной СКК, в селезенке появляются колонии клеток - потомков одной СКК. Пролиферативную активность СКК модулируют колониестимулирующие факторы (КСФ), интерлейкины (ИЛ-3 и др.). Каждая СКК в селезенке образует одну колонию и называется селезеночной колониеобразующей единицей (КОЕ-С). Подсчет колоний позволяет судить о количестве стволовых клеток, находящихся во введенной взвеси клеток. Таким образом, было установлено, что у мышей на 105 клеток костного мозга приходится около 50 стволовых клеток. Исследование очищенной фракции стволовых клеток с помощью электронного микроскопа позволяет сделать вывод, что по ультраструктуре они очень близки к малым темным лимфоцитам.

Исследование клеточного состава колоний выявляет две линии их диф-ференцировки. Одна линия дает начало мультипотентной клетке - родоначальнику гранулоцитарного, эритроцитарного, моноцитарного и мега-кариоцитарного дифферонов гемопоэза (КОЕ-ГЭММ). Вторая линия дает начало мультипотентной клетке - родоначальнику лимфопоэза (КОЕ-Л) (рис. 7.15). Из мультипотентных клеток дифференцируются олигопотент-ные (КОЕ-ГМ) и унипотентные родоначальные (прогениторные) клетки. Методом колониеобразования определены родоначальные унипотентные клетки для моноцитов (КОЕ-М), нейтрофилов (КОЕ-Гн), эозинофилов (КОЕ-Эо), базофилов (КОЕ-Б), эритроцитов (БОЕ-Э и КОЕ-Э), мегака-риоцитов (КОЕ-МГЦ), из которых образуются клетки-предшественники (прекурсорные). В лимфопоэтическом ряду выделяют унипотентные клетки - предшественники В-лимфоцитов и соответственно Т-лимфоцитов. Полипотентные (плюрипотентные и мультипотентные), олигопотентные и унипотентные клетки морфологически не различаются.

Все приведенные выше стадии развития клеток составляют четыре основных компартмента: I - стволовые клетки крови (плюрипотентные, полипо-

Рис. 7.15. Постэмбриональный гемопоэз, окраска азуром II-эозином (по Н. А. Юриной).

Стадии дифференцировки крови: I-IV - морфологически неидентифицируе-мые клетки; V, VI - морфологически идентифицируемые клетки. Б - базофил;

БОЕ - бурстобразующая единица; Г - гранулоциты; Гн - гранулоцит нейтрофильный; КОЕ - колониеобразующие единицы; КОЕ-С - селезеночная колониеобразующая единица; Л - лимфоцит; Лск - лимфоидная стволовая клетка; М - моноцит; Мег - мегакариоцит; Эо - эозинофил; Э - эритроцит. Ретикулоцит окрашен суправитально

тентные); II - коммитированные родоначальные клетки (мультипотентные); III - коммитированные родоначальные (прогенторные) олигопотентные и унипотентные клетки; IV - клетки-предшественники (прекурсорные).

Дифференцировка полипотентных клеток в унипотентные определяется действием ряда специфических факторов - эритропоэтинов (для эритро-бластов), гранулопоэтинов (для миелобластов), лимфопоэтинов (для лим-фобластов), тромбопоэтинов (для мегакариобластов) и др.

Из каждой клетки-предшественника образуется конкретный вид клеток. Клетки каждого вида при созревании проходят ряд стадий и в совокупности образуют компартмент созревающих клеток (V). Зрелые клетки представляют последний компартмент (VI). Все клетки V и VI компартментов морфологически можно идентифицировать (рис. 7.15).

Эритроцитопоэз

Родоначальником эритроидных клеток человека, как и других клеток крови, является полипотентная стволовая клетка крови, способная формировать в культуре костного мозга колонии. Полипотентная СКК в результате дивергентной дифференцировки дает два типа мультипотентных частично коммитированных кроветворных клеток: 1) коммитированные к лимфо-идному типу дифференцировки (Лск, КОЕ-Л); 2) КОЕ-ГЭММ - единицы, образующие смешанные колонии, состоящие из гранулоцитов, эритроцитов, моноцитов и мегакариоцитов (аналог КОЕ-С in vitro). Из второго типа мультипотентных кроветворных клеток дифференцируются унипотентные единицы: бурстобразующая (БОЕ-Э) и колониеобразующая (КОЕ-Э) эри-троидные клетки, которые являются коммитированными родоначальными клетками эритропоэза.

БОЕ-Э - взрывообразующая, или бурстобразующая, единица (burst - взрыв) по сравнению с КОЕ-Э является менее дифференцированной. БОЕ-Э может при интенсивном размножении быстро образовать крупную колонию клеток. БОЕ-Э в течение 10 сут осуществляет 12 делений и образует колонию из 5000 эритроцитарных клеток с незрелым фетальным гемоглобином (HbF). БОЕ-Э малочувствительна к эритропоэтину и вступает в фазу размножения под влиянием интерлейкина-3 (бурстпромоторная активность), вырабатываемого моноцитами - макрофагами и Т-лимфоцитами. Интерлейкин-3 (ИЛ-3) является гликопротеином с молекулярной массой 20-30 килодальтон. Он активирует ранние полипотентные СКК, обеспечивая их самоподдержание, а также запускает дифференцировку полипотент-ных клеток в коммитированные клетки. ИЛ-3 способствует образованию клеток (КОЕ-Э), чувствительных к эритропоэтину.

КОЕ-Э по сравнению с БОЕ-Э - более зрелая клетка. Она чувствительна к эритропоэтину, под влиянием которого размножается (в течение 3 сут делает 6 делений), формирует более мелкие колонии, состоящие примерно из 60 эри-троцитарных элементов. Количество эритроидных клеток, образуемых в сутки из КОЕ-Э, в 5 раз меньше аналогичных клеток, образуемых из БОЕ-Э.

Таким образом, БОЕ-Э содержат клетки-предшественники эритроцитов, которые способны генерировать тысячи эритроидных прекурсоров

Рис. 7.16. Последовательные стадии дифференцировки проэритробласта в эритроцит: А - проэритробласт; Б - базофильный эритробласт; В - полихроматофильный эритробласт; Г - ацидофильный эритробласт (нормобласт); Д - выталкивание ядра из ацидофильного эритробласта; Е - ретикулоцит; Ж - пикнотичное ядро; З - эритроцит. 1 - ядро; 2 - рибосомы и полирибосомы; 3 - митохондрии; 4 - гранулы гемоглобина

(предшественников). Они содержатся в малом количестве в костном мозге и крови благодаря частичному самоподдержанию и миграции из компарт-мента мультипотентных кроветворных клеток. КОЕ-Э является более зрелой клеткой, образующейся из пролиферирующей БОЕ-Э.

Эритропоэтин - гликопротеиновый гормон, образующийся в юкста-гломерулярном аппарате (ЮГА) почки (90 %) и печени (10 %) в ответ на снижение парциального давления кислорода в крови (гипоксия) и запускающий эритропоэз из КОЕ-Э. Под его влиянием КОЕ-Э дифференцируются в проэритробласты, из которых образуются эритробласты (базофиль-ные, полихроматофильные, ацидофильные), ретикулоциты и эритроциты. Образующиеся из КОЕ-Э эритроидные клетки морфологически идентифицируются (рис. 7.16). Сначала образуется проэритробласт.

Проэритробласт - клетка диаметром 14-18 мкм, имеющая большое круглое ядро с мелкозернистым хроматином, одно-два ядрышка, слабобазо-фильную цитоплазму, в которой содержатся свободные рибосомы и полисомы, слаборазвитые комплекс Гольджи и гранулярная эндоплазматическая сеть. Базофильный эритробласт - клетка меньшего размера (13-16 мкм). Его ядро содержит больше гетерохроматина. Цитоплазма клетки обладает хорошо выраженной базофильностью в связи с накоплением в ней рибосом, в которых начинается синтез Нb. Полихроматофильный эритробласт - клетка размером 10-12 мкм. Ее ядро содержит много гетерохроматина. В цитоплазме клетки накапливается синтезируемый на рибосомах НЬ, окрашивающийся эозином, благодаря чему она приобретает серовато-фиолетовый цвет. Проэритробласты, базофильные и полихроматофильные эритробла-сты способны размножаться путем митоза, поэтому в них часто видны фигуры деления.

Следующая стадия дифференцировки - образование ацидофильного (оксифилия) эритробласта (нормобласта). Это клетка небольшого размера (8-10 мкм), имеющая маленькое пикнотичное ядро. В цитоплазме эритро-

бласта содержится много НЬ, обеспечивающего ее ацидофилию (оксифи-лию) - окрашивание эозином в ярко-розовый цвет. Пикнотическое ядро выталкивается из клетки, в цитоплазме сохраняются лишь единичные органеллы (рибосомы, митохондрии). Клетка утрачивает способность к делению.

Ретикулоцит - постклеточная структура (безъядерная клетка) с небольшим содержанием рибосом, обусловливающих наличие участков базофи-лии, и преобладанием НЬ, что в целом дает многоцветную (полихромную) окраску (поэтому эта клетка получила название «полихроматофильный эритроцит»). При выходе в кровь ретикулоцит созревает в эритроцит в течение 1-2 сут. Эритроцит - это клетка, образующаяся на конечной стадии дифференцировки клеток эритроидного ряда. Период образования эритроцита, начиная со стадии проэритробласта, занимает 7 сут.

Таким образом, в процессе эритропоэза происходят уменьшение размера клетки в 2 раза (см. рис. 7.16); уменьшение размера и уплотнение ядра и его выход из клетки; уменьшение содержания РНК, накопление НЬ, сопровождаемые изменением окраски цитоплазмы - от базофильной до полихро-матофильной и ацидофильной; потеря способности к делению клетки. Из одной СКК в течение 7-10 сут в результате 12 делений образуется около 2000 зрелых эритроцитов.

Эритропоэз у млекопитающих и человека протекает в костном мозге в особых морфофункциональных ассоциациях, получивших название эри-тробластических островков, впервые описанных французским гематологом М. Бесси (1958). Эритробластический островок состоит из макрофага, окруженного одним или несколькими слоями эритроидных клеток, развивающихся из унипотентной КОЕ-Э, вступившей в контакт с макрофагом КОЕ-Э. Образующиеся из нее клетки (от проэритробласта до ретикулоцита) удерживаются в контакте с макрофагом его рецепторами (сиалоадгезинами и др.) (рис. 7.17, 7.18).

У взрослого организма потребность в эритроцитах обычно обеспечивается за счет усиленного размножения полихроматофильных эритробластов (гомопластический гемопоэз). Однако, когда потребность организма в эритроцитах возрастает (например, при потере крови), эритробласты начинают развиваться из предшественников, а последние - из стволовых клеток (гетеропластический эритропоэз).

В норме из костного мозга в кровь поступают только эритроциты и рети-кулоциты.

Гранулоцитопоэз

Источниками гранулоцитопоэза являются также СКК и мультипотент-ные КОЕ-ГЭММ (см. рис. 7.15). В результате дивергентной дифференци-ровки через ряд промежуточных стадий в трех различных направлениях образуются гранулоциты трех видов: нейтрофилы, эозинофилы и базофилы. Клеточные диффероны для гранулоцитов представлены следующими формами: СКК → КОЕ-ГЭММ → КОЕ-ГМ → унипотентные предшественники (КОЕ-Б, КОЕ-Эо, КОЕ-Гн) → миелобласт → промиелоцит → миелоцит →

Рис. 7.17. Динамика развития эритробластического островка (по М. Бесси и соавт., с изменениями):

а - схема: 1 - цитоплазма макрофага; 2 - отростки макрофага; 3 - базофильные эритробласты; 4 - полихроматофильные эритробласты; 5 - ацидофильный эритро-бласт; 6 - ретикулоцит; б - срез эритроидного островка: 1 - макрофаг; 2 - эритроциты; 3 - митотически делящийся эритробласт. Электронная микрофотография по Ю. М. Захарову. Увеличение 8000

Рис. 7.18. Развитие эритроцитов в печени плода человека:

а, б - 15-недельный плод (увеличение 6000); в - 20-недельный плод (увеличение 15 000). 1 - эксцентрично расположенное ядро эритробласта; 2 - обособление пикнотического ядра ацидофильного эритробласта; 3 - отделение пикнотического ядра с узким ободком цитоплазмы от ацидофильного эритробласта; 4 - ретикулоцит с единичными органеллами (указано стрелками). Электронная микрофотография (по Замбони)

Рис. 7.19. Дифференцировка нейтрофильного гранулоцита в костном мозге (по Д. Байнтону, М. Фарквару, Дж. Элиоту, с изменениями):

А - миелобласт; Б - промиелоцит; В - миелоцит; Г - метамиелоцит; Д - палоч-коядерный нейтрофильный гранулоцит (нейтрофил); Е - сегментоядерный нейтрофильный гранулоцит. 1 - ядро; 2 - первичные (азурофильные) гранулы; 3 - комплекс Гольджи; 4 - вторичные - специфические гранулы

метамиелоцит → палочкоядерный гранулоцит → сегментоядерный гранулоцит.

По мере созревания гранулоцитов клетки уменьшаются в размерах, изменяется форма их ядер от округлой до сегментированной, в цитоплазме накапливается специфическая зернистость (рис. 7.19).

Миелобласты (myeloblastus), дифференцируясь в направлении того или иного гранулоцита, дают начало промиелоцитам (promyelocytus) (см. рис. 7.15). Это крупные клетки, содержащие овальное или круглое светлое ядро, в котором имеется несколько ядрышек. Около ядра располагается ясно выраженная центросома, хорошо развиты комплекс Гольджи, лизосомы. Цитоплазма слегка базофильна. В ней накапливаются первичные (азуро-фильные) гранулы, которые характеризуются высокой активностью мие-лопероксидазы, а также кислой фосфатазы, т. е. относятся к лизосомам. Промиелоциты делятся митотически. Специфическая зернистость отсутствует.

Нейтрофильные миелоциты (myelocytus neutrophilicus) имеют размер от 12 до 18 мкм. Эти клетки размножаются митозом. Цитоплазма их становится диффузно ацидофильной, в ней появляются наряду с первичными вторичные (специфические) гранулы, характеризующиеся меньшей электронной плотностью. В миелоцитах обнаруживаются все органеллы. Количество митохондрий невелико. Эндоплазматическая сеть состоит из пузырьков. Рибосомы располагаются на поверхности мембранных пузырьков, а также диффузно в цитоплазме. По мере размножения нейтрофильных миелоцитов круглое или овальное ядро становится бобовидным, начинает окрашиваться темнее, хроматиновые глыбки становятся грубыми, ядрышки исчезают.

Такие клетки уже не делятся. Это метамиелоциты (metamyelocytus) (см. рис. 7.19). В цитоплазме увеличивается число специфических гранул. Если метамиелоциты встречаются в периферической крови, то их называют юными формами. При дальнейшем созревании их ядро приобретает вид изогнутой палочки. Подобные формы получили название палочкоядерных гранулоцитов. Затем ядро сегментируется, и клетка становится сегментоядер-ным нейтрофильным гранулоцитом. Полный период развития нейтрофильного гранулоцита составляет около 14 сут, при этом период пролиферации продолжается около 7,5 сут, а постмитотический период дифференцировки - около 6,5 сут.

Эозинофильные (ацидофильные) миелоциты (см. рис. 7.15) представляют собой клетки округлой формы диаметром (на мазке) около 14-16 мкм. По характеру строения ядра они мало отличаются от нейтрофильных миелоци-тов. Цитоплазма их заполнена характерной эозинофильной зернистостью. В процессе созревания миелоциты митотически делятся, а ядро приобретает подковообразную форму. Такие клетки называются ацидофильными мета-миелоцитами. Постепенно в средней части ядро истончается и становится двудольчатым, в цитоплазме увеличивается количество специфических гранул. Клетка утрачивает способность к делению.

Среди зрелых форм различают палочкоядерные и сегментоядерные эозино-фильные гранулоциты с двудольчатым ядром.

Базофильные миелоциты (см. рис. 7.15) встречаются в меньшем количестве, чем нейтрофильные или эозинофильные миелоциты. Размеры их примерно такие же, как и эозинофильных миелоцитов; ядро округлой формы, без ядрышек, с рыхлым расположением хроматина. Цитоплазма базофильных миелоцитов содержит в широко варьирующих количествах специфические базофильные зерна неодинаковых размеров, которые проявляют мета-хромазию при окрашивании азуром и легко растворяются в воде. По мере созревания базофильный миелоцит превращается в базофильный метамиелоцит, а затем в зрелый базофильный гранулоцит.

Все миелоциты, особенно нейтрофильные, обладают способностью фагоцитировать, а начиная с метамиелоцита, приобретают подвижность.

У взрослого организма потребность в лейкоцитах обеспечивается за счет размножения миелоцитов. При кровопотерях, например, миелоциты начинают развиваться из миелобластов, а последние из унипотентных и поли-потентных СКК.

Мегакариоцитопоэз. Тромбоцитопоэз

Кровяные пластинки образуются в костном мозге из мегакариоцитов - гигантских по величине клеток, которые дифференцируются из СКК, проходя ряд стадий. Последовательные стадии развития можно представить следующим клеточным диффероном: СКК → КОЕ-ГЭММ → КОЕ-МГЦ → мегакариобласт → промегакариоцит → мегакариоцит → тромбоциты (кровяные пластинки). Весь период образования пластинок составляет около 10 сут (см. рис. 7.15).

Мегакариобласт (megacaryoblastus) - клетка диаметром 15-25 мкм, имеет ядро с инвагинациями и относительно небольшой ободок базофильной цитоплазмы. Клетка способна к делению митозом, иногда содержит два ядра. При дальнейшей дифференцировке утрачивает способность к митозу и делится путем эндомитоза, при этом увеличиваются плоидность и размер ядра.

Промегакариоцит (promegacaryocytus) - клетка диаметром 30-40 мкм, содержит полиплоидные ядра - тетраплоидные, октаплоидные (4 n, 8 n), несколько пар центриолей. Объем цитоплазмы возрастает, в ней начинают накапливаться азурофильные гранулы. Клетка также способна к эндоми-тозу и дальнейшему увеличению плоидности ядер.

Мегакариоцит (megacaryocytus) - дифференцированная форма. Среди мегакариоцитов различают резервные клетки, не образующие пластинок, и зрелые активированные клетки, образующие кровяные пластинки. Резервные мегакариоциты диаметром 50-70 мкм, имеют очень большое, дольчатое ядро с набором хромосом 16-32 n; в их цитоплазме имеются две зоны - околоядерная, содержащая органеллы и мелкие азурофильные гранулы, и наружная (эктоплазма) - слабобазофильная, в которой хорошо развиты элементы цитоскелета. Зрелый, активированный мегакариоцит - крупная клетка диаметром 50-70 мкм (иногда даже до 100 мкм). Содержит очень крупное, сильно дольчатое полиплоидное ядро (до 64 n). В ее цитоплазме накапливается много азурофильных гранул, которые объединяются в группы. Прозрачная зона эктоплазмы также заполняется гранулами и вместе с плазмолеммой формирует псевдоподии в виде тонких отростков, направленных к стенкам сосудов. В цитоплазме мегакариоцита наблюдается скопление линейно расположенных пузырьков, которые разделяют зоны цитоплазмы с гранулами. Из пузырьков формируются демаркационные мембраны, разделяющие цитоплазму мегакариоцита на участки диаметром 1-3 мкм, содержащие по 1-3 гранулы (будущие кровяные пластинки). В цитоплазме можно выделить три зоны - перинуклеарную, промежуточную и наружную. В наружной зоне цитоплазмы наиболее активно идут процессы демаркации, формирования протромбоцитарных псевдоподий, проникающих через стенку синусов в их просвет, где и происходит отделение кровяных пластинок (рис. 7.20). После отделения пластинок остается клетка, содержащая дольчатое ядро, окруженное узким ободком цитоплазмы, - резидуальный мегакариоцит, который затем подвергается разрушению. При уменьшении числа кровяных пластинок в крови (тромбоцитопения), например после кровопотери, отмечается усиление мегакариоцитопоэза, приво-

Рис. 7.20. Ультрамикроскопическое строение мегакариоцита (по Н. А. Юриной, Л. С. Румянцевой):

1 - ядро; 2 - гранулярная эндоплазматическая сеть; 3 - гранулы; 4 - комплекс Гольджи; 5 - митохондрии; 6 - гладкая эндоплазматическая сеть; 7 - альфа-гранулы; - лизосомы; 8 - инвагинация плазмолеммы; 9 - демаркационные мембраны; 10 - формирующиеся кровяные пластинки

дящее к увеличению количества мегакариоцитов в 3-4 раза с последующей нормализацией числа тромбоцитов в крови.

Моноцитопоэз

Образование моноцитов происходит из стволовых клеток костного мозга по схеме: СКК → КОЕ-ГЭММ → КОЕ-ГМ → унипотентный предшественник моноцита (КОЕ-М) → монобласт (monoblastus) → промоноцит → моноцит (monocytus). Моноциты из крови поступают в ткани, где являются источником развития различных видов макрофагов.

Лимфоцитопоэз и иммуноцитопоэз

Лимфоцитопоэз проходит следующие стадии: СКК → КОЕ-Л (лимфоидная родоначальная мультипотентная клетка) → унипотентные предшественники лимфоцитов (пре-Т-клетки и пре-В-клетки)→ лимфобласт (lymphoblastus) пролимфоцит → лимфоцит. Особенность лимфоцитопоэ-за - способность дифференцированных клеток (лимфоцитов) дедифферен-цироваться в бластные формы.

Процесс дифференцировки Т-лимфоцитов в тимусе приводит к образованию из унипотентных предшественников Т-бластов, из которых формируются эффекторные лимфоциты - киллеры, хелперы, супрессоры.

Дифференцировка унипотентных предшественников В-лимфоцитов в лимфоидной ткани ведет к образованию плазмобластов (plasmoblastus), затем проплазмоцитов, плазмоцитов (plasmocytus). Более подробно процессы образования иммунокомпетентных клеток описаны в главе 14.

Регуляция гемопоэза

Кроветворение регулируется факторами роста, обеспечивающими пролиферацию и дифференцировку СКК и последующих стадий их развития, факторами транскрипции, влияющими на экспрессию генов, определяющих направление дифференцировки гемопоэтических клеток, а также витаминами, гормонами.

Факторы роста включают колониестимулирующие факторы, интерлей-кины и ингибирующие факторы. Они являются гликопротеинами с молекулярной массой около 20 килодальтон. Гликопротеины действуют и как циркулирующие гормоны, и как местные медиаторы, регулирующие гемопоэз и развитие клеточных дифферонов. Они почти все действуют на СКК, КОЕ, коммитированные и зрелые клетки. Однако отмечаются индивидуальные особенности действия этих факторов на клетки-мишени.

Например, фактор роста стволовых клеток влияет на пролиферацию и миграцию СКК в эмбриогенезе. В постнатальном периоде на гемопоэз оказывают влияние несколько КСФ, среди которых наиболее изучены факторы, стимулирующие развитие гранулоцитов и макрофагов (ГМ-КСФ, Г-КСФ, М-КСФ), а также интерлейкины.

Как видно из табл. 7.1, мульти-КСФ и интерлейкин-3 действуют на поли-потентную стволовую клетку и большинство КОЕ. Некоторые КСФ могут действовать на одну или более стадий гемопоэза, стимулируя деление, диф-ференцировку клеток или их функцию. Большинство указанных факторов выделено и применяется для лечения различных болезней. Для получения их используются биотехнологические методы.

Большая часть эритропоэтина образуется в почках (интерстициальные клетки), меньшая - в печени. Его образование регулируется содержанием в крови О2, которое зависит от количества циркулирующих в крови эритроцитов. Снижение числа эритроцитов и соответственно парциального давления кислорода (Ро2) является сигналом для увеличения продукции эритропоэтина. Эритропоэтин действует на чувствительные к нему КОЕ-Э, стимулируя их пролиферацию и дифференцировку, что в конечном итоге приводит к повышению содержания в крови эритроцитов. К факторам роста для эритроидных клеток, кроме эритропоэтина, относится фактор бурст-промоторной активности (БПА), который влияет на БОЕ-Э. БПА образуется клетками ретикулоэндотелиальной системы. В настоящее время считают, что он является интерлейкином-3.

Тромбопоэтин синтезируется в печени, стимулирует пролиферацию КОЕ-МГЦ, их дифференцировку и образование тромбоцитов.

Ингибирующие факторы дают противоположный эффект, т. е. тормозят гемопоэз. К ним относятся липопротеины, блокирующие действие КСФ (лактофер-рин, простагландины, интерферон, кейлоны). Гормоны также влияют на гемопоэз. Например, гормон роста стимулирует эритропоэз, глюкокортикоиды, напротив, подавляют развитие клеток-предшественников.

Таблица 7.1. Гемопоэтические факторы роста (стимуляторы)

1 Нейтрофилы, эозинофилы, базофилы.

Витамины необходимы для стимуляции пролиферации и дифференцировки гемо-поэтических клеток. Витамин В12 потребляется с пищей и поступает с кровью в костный мозг, где влияет на гемопоэз. Нарушение процесса всасывания при различных заболеваниях может служить причиной дефицита витамина В12 и нарушений в гемопоэ-зе. Фолиевая кислота участвует в синтезе пуриновых и пиримидиновых оснований.

Таким образом, развитие кроветворных клеточных дифферонов протекает в неразрывной связи с микроокружением. Миелоидная и лимфоидная ткани являются разновидностями соединительной ткани, т. е. относятся к тканям внутренней среды. Ретикулоцитарный, адипоцитарный, тучнокле-точный и остеобластический диффероны вместе с межклеточным веществом (матриксом) формируют микроокружение для гемопоэтических диф-феронов. Гистологические элементы микроокружения и гемопоэтические клетки функционируют в неразрывной связи. Микроокружение оказывает воздействие на дифференцировку клеток крови (при контакте с их рецепторами или путем выделения специфических факторов). В миелоидной и лимфоидной тканях стромальные ретикулярные и гемопоэтические элементы образуют единое функциональное целое. В тимусе имеется сложная строма, представленная как соединительнотканными, так и ретикулоэпи-телиальными клетками. Эпителиальные клетки секретируют особые вещества - тимозины, оказывающие влияние на дифференцировку из СКК Т-лимфоцитов. В лимфатических узлах и селезенке специализированные ретикулярные клетки создают микроокружение, необходимое для пролиферации и дифференцировки в специальных Т- и В-зонах Т- и В-лимфоцитов и плазмоцитов.

Контрольные вопросы

1. Гемограмма, лейкоцитарная формула: определение, количественные и качественные характеристики у здорового человека.

2. Основные положения унитарной теории кроветворения А. А. Максимова. Перечислить свойства стволовой кроветворной клетки.

3. Эритропоэз, стадии, роль клеточного микроокружения в дифферен-цировке клеток эритробластического дифферона.

4. Агранулоциты: морфологические и функциональные характеристики.

КРОВЕТВОРЕНИЕ (син. гемопоэз ) - процесс, заключающийся в серии клеточных дифференцировок, которые приводят к образованию зрелых клеток периферической крови. В значительной части этот процесс был изучен у зародышей, в организме взрослого его можно проследить при восстановлении К. после тяжелых цитостатических воздействий.

В изучении К. большую роль сыграли работы А. А. Максимова, А. Н. Крюкова, А. Д. Тимофеевского, Н. Г. Хлопина, А. А. Заварзина, Паппенгейма (A. Pappenheim). Важнейшее значение в исследовании процессов клеточных дифференцировок имело применение специальных методов окраски клеток в мазках, разработанных П. Эрлихом и Д. Л. Романовским в 70-х гг. 19 в.

Наиболее распространенной в СССР была схема кроветворения И. А. Кассирского и Г. А. Алексеева (1967), к-рая подвела итог морфол, этапа изучения этого процесса. Она отражала гипотезу А. А. Максимова об унитарном происхождении всех клеток крови - из одного типа клеток (гемоцитобластов). При этом допускалось, что тесное соседство стромальных элементов (фибробластов), образующих ячейки костного мозга, и самих кроветворных клеток служит отражением их гистогенетического родства. Это предположение оказалось ошибочным. Наряду с унитарным представлением о К. имела место и дуалистическая гипотеза, допускавшая раздельное происхождение лимфоцитов и всех остальных элементов крови. Полифилетическая теория К., представлявшая происхождение многих рядов кроветворных клеток независимо друг от друга, имеет лишь исторический интерес.

Длительное сосуществование различных гипотез о происхождении клеток крови объясняется тем, что визуально проследить самые начальные стадии К. было невозможно из-за морф, сходства родоначальных клеток всех ростков К., а функц, методов не существовало.

В 1961 г. Тилл и Мак-Каллок (J. Е. Till, E. A. McCulloch) предложили метод, основанный на том, что после введения смертельно облученным мышам донорского костного мозга в их селезенках развиваются макроскопически видимые очаги (колонии) кроветворных клеток. С помощью метода хромосомных маркеров (стабильно измененных после облучения хромосом) Беккером (А. j. Becker, 1963) было показано, что каждая такая колония представляет собой клон - потомство одной клетки, названной колониеобразующей единицей в селезенке (КОЕс). При образовании колонии одна КОЕс продуцирует несколько миллионов дифференцированных клеток-потомков, одновременно поддерживая собственную линию колониеобразующих клеток, которые при ретрансплантации следующей облученной мыши снова дают кроветворные колонии в ее селезенке. Т. о., было продемонстрировано существование во взрослом организме специальных клеток, обладающих способностью к длительному самоподдержанию и дифференцировке в зрелые клетки крови. Новые клональные методы исследования позволили изучить потомство отдельной колониеобразующей клетки и непосредственно выявить кроветворные клетки - предшественницы разных классов, оценить их дифференцировочные и пролиферативные возможности (см. Культуры клеток и тканей).

Лимфоцитарные колонии в селезенках облученных мышей после введения костного мозга не образуются, поэтому вопрос о происхождении лимфоцитов из общей полипотентной клетки - предшественницы как кроветворных, так и лимфоидных клеток - долгое время был предметом дискуссий. Используя метод селезеночных колоний в сочетании с методом радиационных маркеров, удалось показать, что лимфоциты несут те же маркеры, что и кроветворные клетки селезеночных колоний. Т. о., экспериментально было подтверждено наличие полипотентной клетки, общей для всех ростков К., в т. ч. и для лимфоцитов. Эти клетки, названные стволовыми, оказались способными и к самоподдержанию, и к дифференцировкам по всем рядам К. (цветн. табл.).

Концентрация стволовых клеток в кроветворных органах (см.) сравнительно невелика - в костном мозге мышей их ок. 0,5%. Морфологически они неотличимы от лимфоцитов. Дифференцировка исходной полипотентной стволовой клетки в первые морфологически распознаваемые клетки того или иного ряда представляет собой многостадийный процесс, ведущий к значительному расширению численности каждого из рядов. На этом пути происходит постепенное ограничение способности клеток-предшественниц (этим термином обозначают всю совокупность морфологически сходных клеток верхних трех рядов схемы К.) к различным дифференцировкам и постепенное снижение их способности к самоподдержанию. Стволовые полипотентные клетки обладают очень высокой способностью к самоподдержанию - число проделываемых каждой клеткой митозов может достигать 100; большая их часть пребывает в состоянии покоя, одновременно в цикле находится ок. 20% клеток.

После того как было доказано существование стволовых клеток с помощью метода культуры костного мозга для гранулоцитарно-моноцитарного ростка, а затем и для эритроцитарного и мегакариоцитарного, были обнаружены поэтиночувствительные клетки-предшественницы. Разработка методов культивирования этих ростков позволила оценить и морфол., и функц, особенности соответствующих поэтиночувствительных клеток. Абсолютное большинство их находится в стадии активной пролиферации. Морфологически поэтиночувствительные клетки, так же как и стволовые, неотличимы от лимфоцитов. Принципиальной особенностью поэтиночувствительного ряда клеток является их способность отвечать на гуморальные регулирующие воздействия. Именно на уровне этих клеток реализуются механизмы количественной регуляции К., к-рое отвечает конкретным потребностям организма в клетках того или иного ряда. В агаровой культуре костного мозга происходит последовательное развитие гранулоцитов, сменяемых затем моноцитами, превращающимися в макрофаги. Моноциты появляются на смену гранулоцитам, нуждаясь, как и последние, в так наз. колониестимулирующем факторе - предполагаемом специфическом гормональном регуляторе.

Колонии фибробластов никогда не дают роста кроветворных клеток, и никогда не происходит трансформации кроветворных клеток в фибробласты.

Существенным дополнением к представлению о лимфоцитопоэзе явилось открытие двух типов лимфоцитов - В- и Т-клеток, первые из которых ответственны за гуморальный иммунитет, т. е. выработку антител, а вторые осуществляют клеточный иммунитет, участвуют в реакции отторжения чужеродной ткани (см. Иммунокомпетентные клетки). Оказалось, что В-лимфоциты в результате антигенной стимуляции могут из морфологически зрелой клетки превращаться в бластную форму и дальше дифференцироваться в клетки плазматического ряда. Под влиянием антигенной стимуляции трансформируются в бластную форму и Т-лимфоциты. Т. о., ранее казавшийся единым лимф, ряд представлен тремя рядами клеток: В-, Т-лимфоцитами и тесно связанными с В-лимфоцитами плазматическими клетками. Кроме того, привычное представление о бластной клетке (бластом называется клетка, имеющая обычно неширокую цитоплазму, нежноструктурное ядро, к-рое отличается равномерностью калибра и окраски хроматиновых нитей, часто содержит нуклеолы) как о родоначальнице ряда оказалось не совсем точным для лимфоцитов: зрелые лимфоциты при воздействии на них специфических антигенов вновь способны трансформироваться в бластные клетки. Этот феномен получил название реакции бластотрансформации лимфоцитов (см.). Трансформированные под действием антигенов лимфоциты называют иммунобластами. В схему К. пришлось ввести стрелки, указывающие на возможность перехода морфологически зрелых лимфоцитов в соответствующие бластные формы.

Между стволовыми и поэтиночувствительными клетками находятся клетки-предшественницы миелопоэза и лимфоцитопоэза. Существование этих клеток строго не доказано, однако обнаружен целый ряд лейкозов, прежде всего хрон, миелолейкоз, а также сублейкемический миелоз, эритромиелоз, при которых единственным источником опухолевой пролиферации могут быть клетки более молодые (менее дифференцированные), чем поэтиночувствительные, но более зрелые, чем стволовые. Показано также существование лимф, лейкозов, представленных и В- и Т-лимфоцитами одновременно, т. е. возникших из их общего предшественника.

В схеме К. стволовая клетка и клетки 2-го и 3-го рядов взяты в рамки и даны в двух морфологически разных вариантах, в которых они способны находиться: лимфоцитоподобном и бластном.

На уровне поэтиночувствительных клеток происходит дальнейшее ограничение дифференцировочных возможностей клеток. На этой и следующих морфологически распознаваемых стадиях дифференцировки подавляющее большинство клеток находится в состоянии пролиферации.

Последними клетками, способными к делению, среди гранулоцитов являются миелоциты, а среди эритрокариоцитов - полихроматофильные нормоциты. В процессе дифференцировки морфологически распознаваемые клетки эритроцитарного ряда проделывают 5-6 митозов; гранулоцитарные клетки - 4 митоза; при моноцитопоэзе от монобласта до макрофага проходит 7-8 митозов. В мегакариоцитопоэзе выделяют несколько морфологически различимых предшественников, которые начиная с мегакариобласта претерпевают 4-5 эндомитозов (деления ядра без деления цитоплазмы).

С помощью метода клонирования и анализа хромосомных маркеров было показано, что фагоцитирующие клетки, в частности купферовские клетки печени и все другие тканевые макрофаги, объединенные в систему фагоцитирующих мононуклеаров, относятся к производным кроветворных клеток и являются потомством моноцитов, а не ретикулярных клеток и не эндотелия. Клетки этой системы не имеют гистогенетической общности ни с ретикулярными клетками, ни с эндотелиальными. Основные функц, характеристики, присущие входящим в эту систему клеткам,- способность к фагоцитозу, пиноцитозу, прочному прилипанию к стеклу. По мере дифференцировки в клетках этого ряда появляются рецепторы для иммуноглобулинов и комплемента, благодаря чему клетки приобретают способность к активному фагоцитозу (см.).

В эритроцитопоэзе (эритропоэзе) самой молодой клеткой является эритробласт (ее называют также проэритробластом), который имеет бластную структуру и обычно круглое ядро. Цитоплазма при окраске темносиняя, располагается узким ободком, часто дает своеобразные выросты. В отношении клеток эритрокариоцитарного ряда нет единой номенклатуры. Одни называют их нормобластами, другие эритробластами. Поскольку для других рядов термин «бласт» применяется лишь для клеток-родоначальниц того или иного ростка (отсюда и название «бласт» - росток), все клетки, являющиеся потомством эритробласта, должны иметь в названии окончание «цит». Поэтому термин «нормобласты» был заменен на «нормоциты».

За эритробластом появляется пронормоцит, который отличается от эритробласта более грубым строением ядра, хотя оно и сохраняет правильную структуру хроматиновых нитей. Диаметр ядра меньше, чем у эритробласта, ободок цитоплазмы шире, и становится видна перинуклеарная зона просветления. При изучении миелограммы (см.) пронормоцит легко спутать с эритробластом. В связи с трудностью разделения этих клеток некоторые авторы предлагают в практической гематологии их вообще не дифференцировать.

Следующий - полихроматофильный - нормоцит имеет еще более плотную структуру ядра; цитоплазма занимает большую часть клетки и имеет базофильную окраску за счет структур, содержащих РНК, и оксифильную за счет появления уже достаточного количества гемоглобина.

Ортохромный, или оксифильный, нормоцит имеет маленькое плотное ядро (как вишневая косточка), оксифильную или с базофильным оттенком цитоплазму. В норме оксифильных нормоцитов сравнительно мало, т. к., выталкивая на этой стадии ядро, клетка превращается в эритроцит, но в «новорожденном» эритроците всегда сохраняются остатки базофилии за счет небольшого количества РНК, к-рая исчезает в течение первых суток. Такой эритроцит с остатками базофилии называется полихроматофильным эритроцитом. При применении специальной прижизненной окраски базофильное вещество выявляется в виде сеточки; тогда эту клетку называют ретикулоцитом.

Зрелый эритроцит имеет форму двояковогнутого диска, поэтому в мазке крови он имеет центральное просветление. По мере старения форма эритроцита постепенно приближается к сферической (см. Эритроциты).

Самой молодой клеткой тромбоцитопоэза (тромбопоэза) является мегакариобласт - одноядерная небольшая клетка с крупным бластным ядром, хроматинные нити к-рого толще и грубее, чем у эритробласта; в ядре могут быть видны 1 - 2 темно-синие нуклеолы. Цитоплазма беззернистая, темно-синего цвета, отростчатая, узким ободком окружает ядро. Промегакариоцит возникает в результате нескольких эндомитозов. Ядро полиморфное с грубым строением хроматина; цитоплазма темно-синяя, беззернистая.

Зрелый мегакариоцит отличается от промегакариоцита большим ядром. Цитоплазма имеет сине-розовую окраску, содержит азурофильную красноватую зернистость. Внутри мегакариоцита формируются тромбоциты (см.). В мазке можно видеть и распадающиеся Мегакариоциты, окруженные кучками тромбоцитов. При тромбоцитолитических состояниях отшнуровка тромбоцитов может происходить и на стадии промегакариоцита, тромбоциты при этом лишены азурофильной субстанции, но они активно участвуют в гемостазе.

Лейкоцитопоэз (лейкопоэз) включает гранулоцитопоэз (гранулопоэз), лимфоцитопоэз (лимфопоэз) и моноцитопоэз (монопоэз).

В гранулоцитарном ряду миелобласт является первой морфологически различимой клеткой. Он имеет нежноструктурное ядро, единичные нуклеолы. Форма ядра круглая, размеры чуть меньше, чем у эритробласта. Миелобласт отличается от недифференцируемых бластов из класса клеток-предшественниц наличием зернистости в цитоплазме; форма клетки чаще круглая, ровная.

Следующей стадией созревания гранулоцитов является промиелоцит - нейтрофильный, эозинофильный и базофильный. Круглое или бобовидное ядро промиелоцита больше ядра миелобласта почти вдвое, хотя эта клетка и не является полиплоидной; оно часто располагается эксцентрично, и в нем можно видеть остатки нуклеол. Структура хроматина уже утрачивает нежное нитчатое строение бластных клеток, хотя и не имеет грубоглыбчатого строения. Площадь цитоплазмы примерно равна площади ядра; цитоплазма обильно насыщена зернистостью, имеющей характерные для каждого ряда особенности. Для нейтрофильного ряда промиелоцит является самой зернистой клеткой. Его зернистость полиморфная - крупная и мелкая, окрашивается и кислыми и основными красителями. В промиелоците зернистость часто располагается и на ядре. Зернистость эозинофильного промиелоцита, имея характерную для эозинофилов однотипность зерен (типа «кетовой икры»), вместе с тем окрашивается как кислыми, так и основными красителями. Базофильный промиелоцит имеет крупную полиморфную базофильную зернистость.

Поскольку переход от промиелоцита к следующей стадии созревания клеток - миелоциту - не является резким, появилась промежуточная форма, названная «материнский миелоцит», к-рая по всем признакам соответствует описанному промиелоциту, но отличается от него более грубым ядром. В практике эта форма не учитывается, в миелограмму она не вошла.

Миелоцит представляет собой клетку с круглым или овальным, часто эксцентрически расположенным ядром, потерявшим какие бы то ни было признаки бласта. Цитоплазма окрашена в серовато-синеватый тон, ее зернистость у нейтрофильного миелоцита мельче, чем у промиелоцита. Относительная площадь цитоплазмы нарастает. Эозинофильный миелоцит имеет характерную однотипную оранжево-красную зернистость, базофильный миелоцит - полиморфную крупную базофильную зернистость.

Метамиелоцит характеризуется бобовидным крупноглыбчатым ядром, расположенным обычно эксцентрично. Площадь его цитоплазмы больше площади ядра и цитоплазма содержит ту же зернистость, что и миелоцит, но в нейтрофильных метамиелоцитах она более скудная, чем в миелоцитах.

Моноцитарный ряд представлен довольно простыми стадиями перехода. Монобласт в норме трудно отличить от миелобласта или недифференцируемого бласта, но при монобластном остром или моноцитарном хрон, лейкозе эти клетки легко выявить с помощью гистохим, окраски. Промоноцит имеет ядро промиелоцита, но лишен зернистости (см. Лейкоциты).

В лимфоцитарном ряду лимфобласт (большой лимфоцит) имеет все черты недифференцируемого бласта, но характеризуется иногда единичными крупными нуклеолами. Обнаружение в мазке из лимф, узла или селезенки бласта без зернистости позволяет относить его к лимфобластам. Попытка дифференцировать лимфобласт, монобласт и недифференцируемый бласт по величине и форме ядра, по ширине ободка цитоплазмы не имеет успеха, т. к. лимфобласт под влиянием антигенного стимулирования может претерпевать самые различные изменения.

Пролимфоцит имеет относительно гомогенную структуру ядра, нередко остатки нуклеол, но в нем нет характерной для зрелого лимфоцита крупной глыбчатости хроматина (см. Лимфоциты).

Плазмобласт имеет бластное ядро, беззернистую фиолетово-синюю цитоплазму. Проплазмоцит по сравнению с плазмоцитом обладает более плотным ядром, расположенным обычно эксцентрично, относительно большей цитоплазмой сине-фиолетового цвета. Плазмоцит характеризуется колесовидным плотным ядром, лежащим эксцентрично; цитоплазма - сине-фиолетовая, иногда с несколькими азурофильными красноватыми гранулами. И в норме и в патологии он может быть многоядерным (см. Плазматические клетки).

Будучи гистогенетически единой, кроветворная система в своем функционировании характеризуется определенной независимостью поведения отдельных ростков.

Кроветворение в антенатальном периоде

Кроветворение в антенатальном периоде впервые обнаруживается у 19-дневного эмбриона в кровяных островках желточного мешка, в стебле и хорионе. К 22-му дню первые кровяные клетки проникают в мезодермальную ткань эмбриона, в сердце, аорту, артерии. На 6-й нед. снижается активность К. в желточном мешке. Полностью первый (мезобластический) период гемопоэза, преимущественно эритроцитопоэза, заканчивается к началу 4-го мес. жизни эмбриона. Примитивные кроветворные клетки желточного мешка накапливают гемоглобин и превращаются в примитивные эритробласты, названные П. Эрлихом мегалобластами.

Второй (печеночный) период К. начинается после б нед. и достигает максимума к 5-му мес. К. этого периода преимущественно эритроидное, хотя на 9-й нед. в печени уже созревают первые нейтрофилы. Печеночный период эритроцитопоэза характеризуется исчезновением мегалобластов; при этом эритрокариоциты имеют нормальные размеры. На 3-м мес. эмбриональной жизни в эритроцитопоэз включается селезенка, но у человека ее роль в пренатальном К. ограничена.

На 4-5-м мес. начинается третий (костномозговой) период К. Миелоидный эритроцитопоэз плода - эритробластический и, как и лейкоцитопоэз, мало отличается от эритроцитопоэза взрослого.

Общей закономерностью эмбрионального эритроцитопоэза является постепенное уменьшение размеров эритроцитов и увеличение их числа. Соответственно различным периодам К. (мезобластическому, печеночному и костномозговому) существует три разных типа гемоглобина: эмбриональный, фетальный и гемоглобин взрослого. В основном переход от фетального гемоглобина к гемоглобину взрослого начинается на 3-й нед. жизни плода и заканчивается через 6 мес. после рождения.

В первые дни у новорожденных наблюдается полиглобулия и нейтрофильный лейкоцитоз. Затем активность эритроцитопоэза снижается. Нормализуется он в возрасте 2-3 мес. Нейтрофилез первых дней жизни сменяется лимфоцитозом; только к 5 годам в лейкоцитарной формуле начинают преобладать нейтрофилы.

Регуляция кроветворения

Регуляция кроветворения осуществляется гл. обр. гуморальным путем. Причем для каждого из рядов К., видимо, этот путь является самостоятельным. В отношении эритроцитопоэза известно, что дифференцировка поэтиночувствительных клеток в эритробласты (с последующими их дифференцировками до зрелых эритроцитов) невозможна без эритропоэтина (см.). Стимулятором для выработки эритропоэтина является падение напряжения кислорода в тканях. Для дифференцировки гранулоцитов в культуре необходимо присутствие колониестимулирующего фактора, который, как и эритропоэтин, относится к альфа2-глобулинам.

Кроме специфических гормонов типа эритропоэтина, на К. действуют и другие гормоны, напр, андрогены. Они стимулируют эритроцитопоэз, мобилизуя эндогенный эритропоэтин. Медиаторы (адреналин, ацетилхолин) влияют на кроветворную систему, не только вызывая перераспределение форменных элементов в крови, но и путем прямого воздействия па стволовые клетки (у них обнаружены адрено- и холинорецепторы).

Мало разработан вопрос о нервной регуляции К., хотя обильная иннервация кроветворных тканей не может не иметь биол, значения. Нервное напряжение, эмоциональные перегрузки ведут к развитию кратковременного нейтрофильного лейкоцитоза без существенного омоложения состава лейкоцитов. Несколько повышает уровень лейкоцитов в крови прием пищи. Аналогичный эффект вызывается введением адреналина. В основе этой реакции лежит преимущественно мобилизация сосудистого гранулоцитарного резерва. При этом лейкоцитоз развивается в течение нескольких десятков минут. Лейкоцитоз с палочкоядерным сдвигом вызывается введением пирогенала и глюкокортикоидных стероидных гормонов, достигая максимума через 2-б час., и обусловлен выходом гранулоцитов из костномозгового резерва. Содержание гранулоцитов в костномозговом резерве превышает их количество в кровяном русле в 30-50 раз.

Гуморальная регуляция кроветворения осуществляется преимущественно на уровне поэтиночувствительных клеток. В опытах с неравномерным облучением было показано, что восстановление кроветворных клеток в облученной конечности происходит независимо от состава крови и состояния необлученных участков костного мозга. Пересадка костного мозга под капсулу мышиной почки показала, что объем костного мозга, развивающегося из трансплантата, определяется количеством пересаженных стромальных клеток. Следовательно, они и определяют пределы размножения стволовых клеток, из которых затем развивается костный мозг в почке мыши-реципиента. Работами А. Я. Фриденштейна и др. (1968, 1970) показана специфичность стромальных клеток различных кроветворных органов: стромальные клетки селезенки определяют дифференцировку стволовых клеток в направлении лимфоцитопоэза, костномозговые стромальные клетки - в направлении миелопоэза. Вместе с тем, по-видимому, существуют мощные стимуляторы, включение которых происходит при необычных состояниях (напр., резкая анемия), что приводит к развитию в селезенке очагов несвойственного ей К. с преимущественным размножением эритрокариоцитов. Чаще это наблюдается в детском возрасте. Такие очаги К., называемые экстрамедуллярными, содержат наряду с эритрокариоцитами небольшой процент других элементов костного мозга - миелоцитов, промиелоцитов, мегакариоцитов. При острой массивной или при длительной повышенной потере клеток К. может идти по дополнительным путям в каждом из рядов. По-видимому, существуют возможности к появлению особых клеток-предшественниц 3-го ряда схемы К., которые и дают начало таким шунтовым путям К., обеспечивающим быструю продукцию большого количества клеток. Это хорошо прослежено при эритроцитопоэзе, но, вероятно, существует и в других рядах.

Включение стволовых клеток в дифференцировку является скорее всего случайным процессом, вероятность к-рого при стабильном К. составляет примерно 50% . Регуляция числа стволовых клеток носит не общий, а локальный характер и обеспечивается механизмами, функционирующими в каждом конкретном участке кроветворного микроокружения. Значительно менее ясно, регулируется ли направление дифференцировки стволовых кроветворных клеток. На основании целого ряда экспериментальных данных высказываются предположения о том, что вероятность дифференцировки стволовых клеток в направлении эритроцитопоэза, гранулоцитопоэза и т. д. всегда постоянна и не зависит от внешних условий.

Фактов, свидетельствующих о существовании специализированной системы, регулирующей К., нет. Поддержание определенного количества зрелых клеток в крови осуществляется многоступенчатой передачей нейрогуморальных сигналов. Сигнал поступает к клеточному резерву или клеточному депо, из к-рого эритроциты мобилизуются очень быстро при острой кровопотере. Затем стимулируется продукция соответствующих клеток на уровне поэтиночувствительных элементов путем увеличения их численности сначала без дифференцировки («горизонтальные митозы»), а затем с дифференцировкой. В результате создается категория зрелых клеток.

Патология кроветворения

Патология кроветворения может проявляться нарушением созревания клеток, выходом в кровь незрелых клеточных элементов, появлением в периферической крови несвойственных данной возрастной категории клеточных элементов. Бактериальная инфекция, обширные тканевые распады (распадающиеся опухоли, флегмоны и т. п.), эндотоксинемия сопровождаются выраженным нейтрофильным лейкоцитозом с увеличением процента палочкоядерных нейтрофилов, нередким появлением в крови метамиелоцитов, миелоцитов, промиелоцитов. Четкой зависимости степени лейкоцитоза от тяжести повреждения организма нет. Лейкоцитоз зависит, с одной стороны, от объема костномозгового и сосудистого гранулоцитарного резерва и от активности костномозговой продукции, с другой - от интенсивности потребления гранулоцитов в очаге воспаления. Противоположное лейкоцитозу (см.) состояние - лейкопения (см.), обусловленное прежде всего гранулоцитопенией, может быть связано с подавлением продукции гранулоцитов в результате воздействия противогранулоцитарных антител, аплазии костного мозга иммунной природы, напр, характеризующейся одновременным угнетением гранулоцитарного, эритроцитарного и мегакариоцитарного ростков, или аплазии неизвестного происхождения (собственно апластическая анемия); в других случаях гранулоцитопения и лейкопения могут быть обусловлены повышенным распадом гранулоцитов в увеличенной селезенке (напр., при хрон, гепатите, циррозе печени). В связи с существованием костномозгового резерва падение количества гранулоцитов в крови за счет их повышенного использования встречается редко (напр., при обширных сливных пневмониях). Лейкопения является частым признаком опухолевого замещения костного мозга при милиарных метастазах, при острых лейкозах и изредка наблюдается в начале хрон, лимфолейкоза. При лейкозах (см.) количество лейкоцитов в крови может и увеличиваться; постоянно это бывает при хрон, лейкозах. При острых лейкозах содержание лейкоцитов в крови может быть различным: в начале процесса чаще отмечается лейкопения, затем по мере выхода бластных опухолевых клеток в кровь может возникнуть лейкоцитоз.

Вирусная инфекция, антигенные воздействия ведут к усиленной продукции специфических лимфоцитарных клонов, повышению уровня лимфоцитов в крови. Уменьшение количества тромбоцитов (см. Тромбоцитопения) наблюдается при появлении аутоантител к тромбоцитам (реже к мегакариоцитам), при повышенном разрушении их увеличенной селезенкой. Снижение содержания тромбоцитов возможно в результате кровопотерь, при возникновении обширных гематом, внутрисосудистом диссеминированном свертывании (тромбоцитопения потребления). Увеличение содержания тромбоцитов (см. Тромбоцитемия) наблюдается при некоторых хрон, лейкозах (хрон, миелолейкозе, сублейкемическом миелозе, эритремии), нередко при раке. Иногда при раке почки раковые клетки продуцируют эритропоэтин и, возможно, тромбоцитопоэтин (см.), что сопровождается резким повышением количества эритроцитов и тромбоцитов.

Содержание эритроцитов в крови определяется соотношением их распада и продукции, кровопотерями, обеспеченностью организма железом. Дефицит железа приводит к снижению уровня гемоглобина в эритроцитах при нормальном числе их в крови - низкий цветной показатель. Напротив, дефицит витамина В 12 сопровождается нарушением клеточного деления в результате нарушений синтеза ДНК; при этом эритроциты уродливы, их мало, но гемоглобина в них больше, чем в норме,- повышенный цветной показатель (см. Гиперхромазия, гипохромазия).

В отдельных случаях возможны и реакции нескольких ростков на неспецифические стимулирующие воздействия. Напр., развитие в организме раковой опухоли может приводить к увеличению в крови содержания как гранулоцитов, так и тромбоцитов. Аналогичная картина изредка наблюдается при сепсисе.

К. претерпевает глубокие изменения при остром лучевом воздействии. Эти изменения в основных своих проявлениях соответствуют изменениям, развивающимся нередко при химиотерапии опухолей. Под влиянием ионизирующей радиации гибнут делящиеся клетки костного мозга, лимф, узлов. Зрелые гранулоциты, эритроциты сохраняют жизнеспособность даже при заведомо смертельных дозах облучения. С другой стороны, зрелые лимфоциты относятся к радиочувствительным клеткам. Этим объясняется быстрое уменьшение их количества в периферической крови в первые же часы после облучения. Поскольку эритроциты в крови живут ок. 120 дней, анемия развивается через 1 - 1,5 мес. после облучения. К этому времени в тяжелых случаях начинается активное К., наблюдается повышение содержания ретикулоцитов, и анемия не достигает высокой степени.

В легких случаях восстановительный ретикулоцитоз развивается через 1,5 мес. после облучения, но анемия при этом также не бывает глубокой.

Одним из последствий облучения является гибель клеток костного мозга и развивающееся в дальнейшем уменьшение клеток в периферической крови. Для проявлений острого лучевого поражения специфической является формула «доза - эффект», характеризующая строгую зависимость первичных изменений от поглощенной дозы ионизирующей радиации. Повреждения костного мозга относятся к первичным изменениям, а возникающие вследствие угнетения костного мозга инфекции, геморрагии - к вторичным; их выраженность, да и само появление повреждения строго дозой не обусловлены. Условно считают, что тотальное облучение в дозе более 100 рад ведет к развитию острой лучевой болезни (см.). Меньшие дозы, хотя и приводят к существенной гибели костномозговых клеток, непосредственной опасности не представляют (лучевое повреждение без клин, проявлений). При облучении в дозе более 200 рад развивается лимфопения, агранулоцитоз, глубокая тромбоцитопения; анемии, как правило, не возникает. При меньших дозах отмечаются такие же нарушения, но в меньшей степени. Тотальное или близкое к нему облучение тела в дозах более 200 рад приводит к максимальному падению количества лейкоцитов, тромбоцитов и ретикулоцитов. Время наступления лейкопении также находится в строгой зависимости от дозы облучения. Здесь демонстрируется не только закономерность «доза - эффект», но и закономерность «доза - время эффекта», т. е. срок клинически обнаруживаемых повреждений при острой лучевой болезни определяется дозой облучения.

Закономерность изменения количества лейкоцитов в периферической крови зависит от дозы облучения. Эти изменения складываются из периода первоначального подъема в течение первых суток, периода первоначального снижения (5-14-е сут.), периода временного подъема, который наблюдается при дозах менее 500-600 рад и отсутствует при более высоких дозах облучения; периодов основного падения и окончательного восстановления, которые наблюдаются при дозах менее 600 рад (рис.). Та же закономерность наблюдается у тромбоцитов и ретикулоцитов.

Механизм колебаний количества лейкоцитов можно представить следующим образом. Первоначальный подъем носит, по-видимому, перераспределительный характер и продолжается обычно не более суток, его высота не связана с дозой облучения; в крови повышается только уровень гранулоцитов и не наблюдается омоложения их состава, что обусловлено мобилизацией сосудистого гранулоцитарного резерва.

После периода первоначального подъема начинается постепенное падение количества лейкоцитов, достигающего минимального значения в разные сроки в зависимости от дозы. Чем выше доза, тем раньше наступит момент максимального снижения. При дозах облучения свыше 600-1000 рад дальнейшего сокращения этого периода не наступает, хотя при уменьшении дозы он удлиняется и при дозе ок. 80-100 рад приходится примерно на 14-е сутки. Уровень падения количества лейкоцитов в период первоначального снижения находится в зависимости от дозы. Период первоначального снижения лейкоцитов следует объяснять расходованием костномозгового гра-нулоцитарного резерва (до 5-6-х сут.) и лишь отчасти дозреванием и дифференцировкой сохранившихся после облучения клеток (от момента облучения до конца первоначального снижения). Такой вывод возможен в связи с сохранением гранулоцитов в крови до 5-6-х сут. даже при таких высоких дозах (более 600-1000 рад), когда в костном мозге не остается клеток, способных к какой-либо дифференцировке, а сохраняются лишь высокорадиочувствительные неделящиеся зрелые гранулоциты. При дозах облучения костного мозга выше 600 рад практически все клетки имеют грубые повреждения хромосомного аппарата и погибают сразу после первого митоза в течение ближайших дней после облучения. При меньших дозах нек-рая часть костномозговых клеток сохраняет способность к делению и дифференцировке. Чем их больше, тем позже наступает окончание периода первоначального снижения количества лейкоцитов.

Тот факт, что к 5-6-м сут. резерв исчерпан, подтверждается и тем, что в эти дни в крови начинают появляться гигантские нейтрофилы - продукция клеток пролиферирующего пула, по-видимому, облученных в митозе. Гигантские нейтрофилы обнаруживают с 5-х по 9-е сут. после радиационного воздействия в крови лиц, тотально облученных в любой дозе (эти клетки находят в крови и после действия цитостатиков). При облучении в дозе более 600 рад выход гигантских нейтрофилов непосредственно предшествует наступлению агранулоцитоза.

Следующий этап - временный, так наз. абортивный, подъем количества лейкоцитов - отмечается при дозах облучения меньше 500-600 рад, а при более высоких дозах период первоначального падения непосредственно сменяется периодом основного снижения количества лейкоцитов. Происхождение абортивного подъема полностью не выяснено. Его продолжительность определяется дозой облучения: чем выше доза, тем он короче; при этом уровень лейкоцитов отчетливо не связан с дозой. Такой же абортивный подъем характерен для тромбоцитов и ретикулоцитов. При относительно небольших дозах - ок. 100-200 рад - абортивный подъем продолжается до 20-30-х сут. и сменяется периодом основного падения, а при дозах более 200 рад - агранулоцитозом, очень низким уровнем тромбоцитов и почти полным исчезновением ретикулоцитов. Окончательное восстановление кроветворения (после периода основного падения) наступает тем позже, чем меньше доза. Продолжительность периода основного падения при дозах от 200 до 600 рад примерно одинакова. Абортивный подъем обусловлен активизацией временного К., возможно исходящего из клетки-предшественницы миелопоэза, к-рое до того, как оно будет исчерпано, блокирует дифференцировку стволовых клеток, ответственных за окончательное восстановление К. в костном мозге. После периода основного падения в крови наступает нормализация клеточного уровня. В отдельных случаях это восстановление бывает не совсем полным и уровень лейкоцитов и тромбоцитов оказывается слегка сниженным.

Обнаружение периода временного подъема гранулоцитов, тромбоцитов и ретикулоцитов (но не лимфоцитов) с парадоксальным феноменом более раннего окончательного восстановления состава крови при больших дозах облучения (в пределах до 500 рад) позволило предположить наличие тормозящего влияния клеток-предшественниц миелопоэза на пролиферацию стволовых клеток.

Изменения в составе костного мозга при острой лучевой болезни изучены хуже, чем изменения в периферической крови. Костный мозг поражается облучением даже в малых дозах, не вызывающих острой лучевой болезни, хотя сразу после облучения не всегда удается выявить уменьшение количества клеток. Важную информацию о тяжести поражения костного мозга дает его цитол, характеристика. Уже в первые сутки после облучения значительно уменьшаются клетки красного ряда, процент миелобластов и промиелоцитов. Чем выше доза облучения, тем более глубоки эти изменения. В последующие недели постепенно нарастает опустошение костного мозга. Преимущественно снижается содержание гранулоцитов. Опустошение костного мозга в первые дни опережает возникновение агранулоцитоза в периферической крови. По данным костномозгового пунктата можно судить об исчезновении очагов гемопоэза; кроветворные клетки (при средней тяжести поражения) почти отсутствуют. Важные изменения клеточного состава костного мозга и периферической крови выявлены в результате применения хромосомного анализа. К концу первых суток отмечается появление митозов со структурными нарушениями хромосом - хромосомными аберрациями (см. Мутация), число которых строго пропорционально дозе облучения: при дозе 100 рад количество аберрантных митозов составляет 20%, при дозе 500 рад - ок. 100%. Метод определения количества лейкоцитов в период первичного падения (на 7-8-й день), времени начала периода основного падения лейкоцитов лег в основу системы биол, дозиметрии при остром лучевом воздействии.

Существенные изменения происходят также в лимфоцитопоэзе. Начиная с первого дня количество лимфоцитов в крови снижается и отчетливо зависит от дозы облучения. Через 2 мес. после облучения их содержание в крови достигает нормального уровня. Исследование in vitro хромосом лимфоцитов периферической крови, стимулированных к митозу фитогемагглютинином (см.), обнаруживает дозовую зависимость. Лимфоциты в периферической крови находятся в межмитотическом периоде многие годы; поэтому даже спустя несколько лет после облучения можно по количеству аберрантных митозов в них установить факт повышенного облучения в прошлом и определить приблизительно дозу облучения. В костном мозге клетки с хромосомными аберрациями исчезают уже через 5-6 дней, т. к. в результате потери фрагментов хромосом во время митоза они становятся нежизнеспособными. При стимуляции костномозговых клеток фитогемагглютинином (ФГА) хромосомные повреждения в них обнаруживают через много лет после облучения. Эти клетки все годы после облучения находились в покое, и ответ на ФГА свидетельствует об их лимфоцитарной природе. Обычный анализ хромосомных аберраций клеток костного мозга производится без стимуляции ФГА.

Наблюдения за восстановлением состава крови после острого облучения показали, что скорость восстановления связана не только с дозой облучения, но и с вторичными проявлениями болезни (напр., с воспалительными процессами в коже, в кишечнике и др.). Поэтому при одной и той же дозе облучения время наступления агранулоцитоза у разных больных одинаково, а ликвидация агранулоцитоза зависит от степени поражения других органов.

При хрон, лучевой болезни, к-рая возникает в результате многократных повторных облучений организма на протяжении месяцев или лет в суммарной дозе более 200-300 рад, восстановление К. не имеет столь закономерной динамики; гибель клеток растянута на длительный срок, в течение к-рого происходят и процессы восстановления К., и процессы его дальнейшего повреждения. При этом цитопения может не развиться. Отдельные признаки астенического синдрома, свойственного хрон, лучевой болезни, могут появляться у некоторых больных и при облучении в суммарной дозе ок. 100 рад. В костном мозге при хрон, лучевой болезни обнаруживают отдельные небольшие скопления недифференцированных клеток, уменьшение количества клеток. В крови либо нет никаких изменений, либо отмечается умеренная непрогрессирующая цитопения - гранулоцитопения, тромбоцитопения,

Библиография: Бочков Н. П. и Пяткин Е.Н. Факторы, индуцирующие хромосомные аберрации у человека, в кн.: Основы цитогенетики человека, под ред. A.А. Прокофьевой-Бельговской, с. 176, М., 1969; Бриллиант М. Д. иВоробь-е в А. И. Изменения некоторых показателей периферической крови при тотальном облучении человека, Пробл, гематол, и перелив, крови, т. 17, № 1, с. 27, 1972, библиогр.; Заварзин А. А. Очерки эволюционной гистологии крови и соединительной ткани, в. 2, М.- Л., 1947, библиогр.; Кассирский И. А. и А л e к-с e e в Г. А. Клиническая гематология, М., 1970; Максимов А. А. Основы гистологии, ч. 1-2, Л., 1925; Нормальное кроветворение и его регуляция, под ред. Н. А. Федорова, М., 1976; Руководство по медицинским вопросам противорадиационной защиты, под ред. А. И. Бурназяна, с. 101, М., 1975; ФриденштейнА. Я. и Л а л ы к и н а К. С. Индукция костной ткани и остеогенные клетки-предшественники, М., 1973, библиогр.; ХлопинН. Г. Общебиологические и экспериментальные основы гистологии, Л., 1946; Чертков И. Л. и Воробьев А. И. Современная схема кроветворения, Пробл, гематол. и перелив, крови, т. 18, № 10, с. 3, 1973, библиогр.; Чертков И. Л. иФриденштейн А. Я. Клеточные основы кроветворения, М., 1977, библиогр.; Abramson S., Miller R. G. a. P h i 1 1 i p s R. A. The identification in adult bone marrow of pluripotent and restricted stem cells of the myeloid and lymphoid svstems, J. exp. Med., v. 145, p. 1565, 1977; Becker A. J., M с С u 1- 1 o с h E. А. а. T i 1 1 J. E. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells, Nature (Lond.), v. 197, p. 452, 1963; Becker A. J. a. o. The effect of differing demands for blood cell production on DNA synthesis by hemopoietic colony-forming cells of mice, Blood, v. 26, p. 296, 1965; Byron J. W. Manipulation of the cell cycle of the hemopoietic stem cell, Exp. Hematol., v. 3, p. 44, 1975; E b b e S. Megakaryocytopoiesis and platelet turnover, Ser. Haematol., v. 1, p. 65, 1968; Metcalf D. Hemopoietic colonies, in vitro cloning of normal and leukemic cells, B.-N. Y., 1977; Metcalf D. a. Moore M. A. S. Haemopoietic cells, Amsterdam, 1971; Till J. E. a. McCul-loch E. A. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells, Radiat. Res., v. 14, p. 213, 1961.

А. И. Воробьев, И. Л. Чертков.



Понравилась статья? Поделитесь ей
Наверх